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Glaucoma is a common disease that leads to loss of peripheral vision and, if left untreated, ultimately to blindness. While the exact
cause(s) of glaucoma is still unknown, two leading risk factors are age and elevated intraocular pressure. Several studies suggest a
possible link between glaucoma and inflammation in humans and animal models. In particular, our lab recently identified a T104M
mutation in IL-20 receptor-B (IL-20RB) in primary open angle glaucoma patients from a large pedigree. Several of the interleukin-
(IL-) 20 family of cytokines and receptors are expressed in ocular tissues including the trabecular meshwork, optic nerve head, and
retinal ganglion cells. The DBA/2J mouse develops high intraocular pressures with age and has characteristic optic nerve defects
that make it a useful glaucoma model. IL-24 expression is significantly upregulated in the retina of these mice, while IL-20RA
expression in the optic nerve is downregulated following pressure-induced damage.The identification of a mutation in the IL-20RB
gene in a glaucoma pedigree and changes in expression levels of IL-20 familymembers in theDBA/2Jmouse suggest that disruption
of normal IL-20 signaling in the eye may contribute to degenerative processes associated with glaucoma.

1. Introduction

The eye is an immune privileged site where the introduction
of antigens does not elicit an inflammatory immune response
[1]. Several strategies are used to protect the eye from
pathogens. The first line of protection is the blood-ocular
barrier, which impedes harmful pathogens from entering the
eye via the peripheral bloodstream [2]. A regional immune
system provides a second multilayered defense in case the
blood-ocular barrier is breached. The anterior chamber is
bathed in aqueous humor fluid, which is strongly immuno-
suppressive and profoundly inhibits T cell activation [1]. In
addition, low expression ofmajor histocompatibility complex
(MHC) class II molecules limits antigen presentation to
immune cells reducing the chances of an immune response.
Stromal cells of the iris and ciliary body have the ability to
convert effector T cells to regulatory T cells and expression
of death-inducing molecules results in apoptosis of immune
cells keeping the immune response in check [3]. However,
ocular inflammation can still occur in spite of these multi-
ple overlapping mechanisms. Furthermore, aqueous humor
outflow regulation, which is important in glaucoma, may be
impacted by the innate immune system [4].

2. Glaucoma

The glaucomas are a group of optic neuropathies with a
characteristic pattern of damage to the optic nerve that leads
to loss of peripheral vision (see Figure 1) [5]. A leading
cause of global irreversible blindness, glaucoma will impact
111.8 million individuals by 2040 [6]. The number of affected
individuals is likely to be much higher than the reported
number because the disease is usually asymptomatic up until
major neural damage has occurred [7, 8]. Primary open angle
glaucoma (POAG) is themost common formof glaucoma [6].

The exact etiology of POAG remains unknown. It is clear
that it is a heterogeneous group of disorders with multiple
causative factors including gene mutations, environmental
factors, and certain medications. Moreover, there are several
risk factors that predispose to the disease including advanced
age, elevated intraocular pressure, race, and family history
[9–12].While lowering intraocular pressure often reduces the
rate of vision loss, many patients continue to go blind despite
apparently “successful” pressure control [10, 11, 13]. Since
there is no single causative factor, there are potentially many
disease mechanisms behind glaucoma. Some lead to higher
intraocular pressures, while others affect how the optic nerve
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Figure 1: Schematic showing the anatomy of normal and glaucoma eyes. In glaucoma, a blockage in the aqueous humor outflow pathway in
the anterior chamber (red) causes intraocular pressure to increase leading to loss of retinal ganglion cells and optic nerve damage at the back
of the eye (orange). Images were slightly modified from those freely provided by the National Eye Institute, National Institute of Health.

withstands either pressure fluctuations or sustained elevation
of intraocular pressure. Thus, glaucoma research has focused
on the front of the eye, where intraocular pressure is regulated
by a tissue called the trabecular meshwork, the back of the
eye, where studies have focused on retinal ganglion cell
physiology and optic nerve damage, and distal changes in
retinal ganglion cell axons in terminal projection sites such
as the superior colliculus and the lateral geniculate [14–18].

Diagnostic criteria for glaucoma have been revamped
significantly over the past 40 years with increased emphasis
on characteristic changes in the optic disc and retinal nerve
fiber layer and less reliance on elevated intraocular pressure
[9, 19]. Normal tension glaucoma, that is, patients with
statistically normal intraocular pressures,makes up 30 to 40%
of glaucoma cases [13, 20]. Even for these patients, the only
effective treatment for glaucoma continues to be reduction
of intraocular pressure levels by either pharmaceutical or
surgical means.

Physiological intraocular pressures are established by
maintaining a balance between production and drainage of
aqueous humor in the anterior chamber. Aqueous humor
is continuously produced by the ciliary processes and it
bathes tissues in the anterior chamber before exiting out to
Schlemm’s canal via a filter-like tissue called the trabecular
meshwork (see Figure 2). Building resistance to aqueous
humor outflow in the trabecular meshwork produces a
tunable system by which this filter can increase or decrease
outflow when needed [21]. Dysfunction of this conventional
outflow pathway leads to impaired drainage and elevated
intraocular pressure, as is seen in POAG patients [14].
Increased intraocular pressure places excessive mechanical
stresses on the lamina cribrosa of the optic nerve in the
posterior segment of the eye and loss of retinal ganglion cells
ensues. Once lost, these retinal ganglion cells cannot be

regenerated. Since these cells are responsible for transmitting
visual signals to the brain, irreversible blindness occurs [22].

Inflammatory responses may contribute to the glauco-
matous process as shown by studies in humans and rodent
models [23–26]. In the anterior segment, certain inflamma-
tory cytokines have altered expression levels in the aqueous
humor of glaucomatous eyes compared to age-matched nor-
mal eyes. These include interleukin-6 (IL-6), transforming
growth factor beta-1 (TGF𝛽1), TGF𝛽2, IL-6, IL-8, IL-10, IL-
12, 𝛼-serum amyloid A, interferon-𝛾 (IFN𝛾), and CXL9 [27–
33]. The source of these cytokines in the aqueous humor
of glaucoma patients is not clear. However, acute elevation
of intraocular pressure, such as in primary angle-closure
glaucoma, damages the blood-aqueous-barrier (BAB), which
can lead to leakage of the cytokines into the aqueous humor
[34]. Inflammation-related changes also occur in the pos-
terior segment. In a mouse model of laser-induced ocular
hypertension, there was upregulated expression of MHC-II
and glial fibrillary acidic protein (GFAP) in the microglia of
contralateral eyes. The authors suggest that microglial acti-
vation in the nontreated eye could be related to an immune
response [35, 36]. In humans, however, a systemic autoim-
mune response is less convincing because the contralateral
eye in patients with unilateral glaucoma does not appear to
exhibit glaucomatous degenerative changes [37]. However,
proinflammatory cytokines such as tumor necrosis factor-
𝛼 (TNF𝛼) and its receptor are upregulated in glaucomatous
human optic nerve [38–40]. Moreover, use of bupropion,
which suppresses TNF𝛼 production, significantly lowered the
risk of developing POAG in humans in a large retrospective
study [41], while anti-TNF𝛼 medication (etanercept) was
found to be neuroprotective in a rodent model of glaucoma
[42]. Thus, both in glaucoma patients and in rodent models
of glaucoma, there is accumulating evidence for a potential
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Figure 2: (a) Schematic of the anterior chamber of the eye showing the location of the trabecular meshwork and the flow pattern of aqueous
humor. Image was slightly modified from those freely provided by the National Eye Institute, National Institute of Health. (b) H&E stained
radial section of a human trabecularmeshwork.TheTM is a triangular-shaped tissue comprised of a series of fenestrated beams aroundwhich
the aqueous humor flows (red arrows) before draining into Schlemm’s canal. For orientation purposes, the cornea is to the right and the ciliary
body is toward the left. (c) Schematic of IL-20 signaling in normal cells. IL-20 or IL-24 binds to the IL-20RB receptor, which phosphorylates
Janus kinase (JAK). JAK then phosphorylates STAT3, which translocates to the nucleus to promote transcription of inflammation-related
target genes. This in turn increases MMP activity and ECM remodeling. (d) In glaucoma cells harboring the IL-20RB T104M mutation, the
cytokine is unable to bind to the receptor so the JAK/STAT3 pathway is not activated.Therefore, higher expression of proinflammatory genes
remains and elevated IOP would be sustained since MMP activity and ECM remodeling are not affected.

role of the immune system in contributing to deleterious
changes in anterior and posterior ocular tissues. Our recent
identification of a mutation in interleukin-20 receptor-B (IL-
20RB) supports this contention [43].

3. IL-20RB Mutation Associated with POAG

Our group mapped a gene in a large POAG Oregon family
to chromosome 3, the GLC1C locus [44]. Eighty-six family
members, ranging in age from 8 to 91 years old, had extensive
ophthalmic examinations. Thirteen family members were
diagnosed with POAG and twelve of these had elevated

intraocular pressure (22 to 49mmHg). An additional nine
individuals, who do not have POAG at this time, had
elevated intraocular pressures. After refining the region to
4 cM [45], we sequenced all 49 genes in the GLC1C locus
and identified one nonsynonymous mutation: a T104M
change in IL-20RB (rs367923973) [43]. This is an extremely
rare variant with a reported frequency of 0.02% in dbSNP
(http://www.ncbi.nlm.nih.gov/SNP). This mutation, T104M,
lies in IL-20RB’s active binding site for the cytokines, IL-
19, IL-20, and IL-24, which are all members of the IL-20
subfamily of interleukins (see below) [46]. The T104 site in
IL-20RB binds to S111 in IL-20 [46]. Substitution of T104 with



4 Mediators of Inflammation

a methionine would replace the hydroxyl group that forms a
hydrogen bond with S111 in IL-20 with a sulfate group, thus
disrupting the bond between the cytokine and its receptors
[46]. Based on these findings, this IL-20RBmutation is highly
likely to impact the IL-20 signaling pathway, which may
contribute to the pathogenesis of glaucoma in this family.

4. The IL-20 Family of Cytokines
and Receptors

The IL-20 subfamily of cytokines and receptors are members
of the larger IL-10 family, which are grouped together based
on their utilization of common receptor subunits, similarities
in their target-cell profiles, and biological functions [47].This
subfamily consists of the cytokines, IL-19, IL-20, IL-22, IL-
24, and IL-26, as well as the receptors, IL-20RA, IL-20RB, IL-
10RB, and IL-22RA1 [47]. IL-19 exclusively signals through
the IL-20RA/IL-20RB heterodimer, while IL-20 and IL-24
can use both the IL-20RA/IL-20RB heterodimer and the
IL-22RA1/IL-20RB receptor. IL-22 signals through IL-22RA
and IL-10RB, while IL-26 uses IL-20RA and IL-10RB [47]. It
should be noted that IL-20RA and IL-20RB are also known
as IL-20R1 and IL-20R2, respectively. The IL-20 subfamily
participates both in amplifying inflammatory responses par-
ticularly during autoimmune and chronic inflammation and
alternatively in anti-inflammatory responses, such as tissue
protection and regeneration [47, 48]. Thus, understanding
how regulation of this subfamily is occurring is paramount
in devising new treatment strategies for patients in this large
POAG family.

Both IL-20RA and IL-20RB are expressed in normal
human trabecular meshwork cell lysates and are upregulated
in response to cytokine treatment [43]. IL-20RB mRNA is
also expressed in moderately high levels in both the retinal
ganglion cell layer and the optic nerve head in rats (Dr. Elaine
Johnson, personal communication). Human aqueous humor
contains IL-20, IL-24, IL-20RA, and IL-20RB protein [49].
IL-20, IL-24, IL-20RA, and IL-20 RB are expressed in the
retina and optic nerve head in the DBA/2J mouse model of
glaucoma (see later) [50]. However, IL-19 is not expressed in
the retina or optic nerve head of DBA/2J mice [50].

5. Downstream Signaling via IL-20RB

Binding of IL-20 to its receptor activates the Janus kinase-
(JAK-) signal transducer and activator of transcription
(STAT) pathway (JAK-STAT) [51, 52]. Elevation of intraoc-
ular pressure has also been shown to activate the JAK-
STAT pathway [53], which is involved in retinal ganglion
cell survival [54]. Activation of STAT3 can be both pro-
and anti-inflammatory even within the same cell type, but
how the desired response is elicited remains a question [55].
For example, IL-6 and IL-10 both activate STAT3, but they
generate different cellular responses with IL-6 generating
a proinflammatory response and IL-10 producing an anti-
inflammatory one [55]. These differences appear to correlate
with the level of STAT3 over time, with IL-6 producing a
transient activation while IL-10 generates a sustained level of

STAT3 activation [55]. The STAT3-induced protein, suppres-
sor of cytokine signaling-3 (SOCS3),may be involved because
it mediates signaling dynamics due to its ability to inhibit
signals from the IL-6 receptor, but not the IL-10 receptor [55].

STAT3 signaling can influence matrix metalloproteinase
(MMP) activity. MMPs are a family of enzymes involved in
remodeling of extracellular microenvironments [56]. Several
studies have linked IL-20 signaling to MMP levels and
activity. In breast cancer cells, IL-20 upregulates MMP-9 and
MMP-12 [57]. Furthermore, MMP-3 levels are increased by
IL-20 in cultured human invertebral disc cells [58]. IL-20
appears to act synergistically with IL-1𝛽 in these cells: Higher
levels of TNF𝛼, IL-1𝛽, IL-6, IL-8, MMP-3, and monocyte
chemoattractant protein-1 (MCP1) were found when disc
cells were treated with both cytokines compared to exposure
to IL-20 or IL-1𝛽 alone [58]. MMP activity has been impli-
cated in regulation of intraocular pressure [59–63]. Induction
of MMP activity decreases the resistance to aqueous humor
outflow through the trabecular meshwork which, in turn,
lowers intraocular pressure [61].

6. Functional Consequences of the IL-20RB
Mutation in POAG Fibroblasts

To investigate whether normal downstream signaling path-
ways were active in mutant cells, we asked if IL-20 treatment
induces STAT3 phosphorylation andMMPactivity in normal
dermal fibroblasts and in POAG patient fibroblasts with
the IL-20RB mutation. Fibroblasts from glaucoma patients
with the T104M IL-20RB mutation had higher basal levels
of phosphorylated STAT3 compared to wild-type fibroblasts
(see Figure 3) [43]. Stimulation of wild-type fibroblasts by
IL-19, IL-20, or IL-24 cytokines led to a significant increase
in phosphorylation of STAT3 after 15 minutes, but this was
not found in glaucomatous fibroblasts with the T104M IL-
20RB mutation [43]. Using a quenched fluorescent peptide
assay that produces fluorescent signal when cleaved by a
MMP, we showed that IL-20 increased MMP activity in
wild-type human fibroblasts, but not in fibroblasts with the
T104M IL-20RB mutation (see Figure 4). The differential
response of mutant and wild-type cells to cytokine treatment
suggested that POAG cells with the T104M mutation are
unable to launch an appropriate cell signaling response upon
stimulation by the IL-20 family of cytokines.

Collectively, these observations suggest that, in normal
cells, IL-20 and related cytokines bind to IL-20 receptors on
the cell surface (Figure 2(c)). This would in turn activate
STAT3, which would translocate to the nucleus to modify
transcription of inflammatory-related genes [64]. The anti-
inflammatory response would include upregulation of IL-
20 receptors by trabecular meshwork cells and activation
of MMPs leading to remodeling of the extracellular matrix.
This would lead, ultimately, to greater outflow of aqueous
humor [59]. In glaucoma patients with the IL-20RBmutation
(Figure 2(d)), the IL-20 family of cytokines would not bind
efficiently to the IL-20RA/RB receptor so STAT3would not be
activated and translocated to the nucleus.Therefore, the anti-
inflammatory response would not be adequate and sustained
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Figure 3: STAT3 activation in normal human dermal fibroblasts
(white bars, 𝑛 = 3) and patient fibroblasts with the IL-20RB
T104M mutation (dark bars, 𝑛 = 2) with and without cytokine
stimulation: ∗𝑝 < 0.05 between cytokine treated and untreated cells;
∗∗𝑝 < 0.01 and ∗∗∗𝑝 < 0.05 comparing fibroblasts with the T104M
IL-20RB mutation versus wild-type cells with the same cytokine
treatment (reprinted with copyright permission from Journal of
Ocular Pharmacology andTherapeutics). IL-20 was added at 100 or
200 ng/mL and IL-19 and IL-24 were used at 100 ng/mL.
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Figure 4: MMP activity in conditioned media from normal (white
bars, 𝑛 = 3) and patient fibroblasts with the IL-20RB T104M muta-
tion (dark bars, 𝑛 = 2) treated with cytokines ∗𝑝 < 0.03 (reprinted
with copyright permission from Journal of Ocular Pharmacology
and Therapeutics). IL-20 was added at 100 or 200 ng/mL and IL-19
and IL-24 were used at 100 ng/mL.

expression of proinflammatory genes would remain. Subse-
quently, many secondary downstream effects may contribute
to the elevated intraocular pressure observed in glaucoma
patients harboring the IL-20RB mutation and, ultimately, to
glaucomatous damage [43].

7. The IL-20 Family and the DBA/2J Mouse
Model of Glaucoma

The DBA/2J mouse model of glaucoma is an inbred mouse
strain that progressively develops glaucoma-like abnormal-
ities with aging. In the anterior chamber, the mice develop
a form of pigment dispersion syndrome with the primary
action being an inflammatory response resulting in elevation
of intraocular pressure [65]. The DBA/2J mouse has two
distinct phenotypes: iris pigment dispersion, which may be
involved in immune dysfunction in DBA/2J eyes, and iris
stromal atrophy.These phenotypes are caused bymutations in
the Gpnmb and Tyrp1 genes, respectively, [66, 67]. Gpnmb is
expressed in some types of dendritic cells [68, 69], which are
potent professional antigen presenting cells, whereas Tyrp1 is
an antigen that is involved in inflammatory eye disease [70].
As discussed above, normal aqueous humor inhibits T cell
activation and is strongly immunosuppressive. However, the
aqueous humor of DBA/2J mice lacks immunosuppressive
properties and the capacity to support anterior chamber
associated immune deviation [65].

The DBA/2J mouse develops glaucoma secondary to its
pigment disease. Iris pigment is shed into the aqueous humor,
where it enters the outflow pathways and eventually causes
blockage of the drainage channels. This causes progressive
elevation of pressure [71]. Following elevation of intraocular
pressure, DBA/2J mice between 6 and 7 months of age begin
to lose retinal ganglion cells. By 10–12 months, significant
retinal ganglion cell loss has occurred in the majority of
DBA/2J mice [72, 73]. However, if the mice are exposed to
a high dose of 𝛾-irradiation, the DBA/2J mice are protected
from developing glaucomatous damage, although they still
have high intraocular pressures [73, 74]. Both retinal and
optic nerve morphology appear normal in the irradiated
mice, whereas untreated DBA/2J mice show optic nerve
atrophy, as well as clear loss of retinal ganglion cell axons [73].

A unique finding in the DBA/2J mice is a high level
of activated microglia in the inner central retina and optic
nerve region at 3 months, which occurs well before the
loss of retinal ganglion cells [75]. IL-19 is the mostly highly
upregulated gene in activated microglia and, in addition, the
IL-20RA and IL-20RB receptors are expressed [76]. IL-19
has anti-inflammatory activity in microglia via STAT3 acti-
vation, which leads to an anti-inflammatory response [76].
Irradiation reduces the number of proliferating microglia in
the optic nerve head along with a reduction in the levels
of microglia activation in the central retina, optic nerve head,
and laminar region in the DBA/2J mouse [74, 77]. Minocy-
cline, a neuroprotective tetracycline derivative that sup-
presses chronic neuroinflammation and microglial activa-
tion, also has a protective effect on retinal ganglion cell
viability in the DBA/2J mouse [78].

In DBA/2J mice with moderate axon damage, IL-24
expression is significantly increased in the retina, but no
significant differences were seen for either IL-20 or IL-20RB
[50]. Conversely, IL-20RA levels are significantly reduced in
optic nerves from eyes with severe axon damage in DBA/2J
mice compared to DBA/2J-Gpnmb+ [50]. The reduction of
IL-20RA levels as axon damage becomes severe suggests
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that heterodimeric IL-20RA/IL-20RB signaling is impaired,
which could ultimately lead to altered extracellular matrix
remodeling by MMPs via inappropriate STAT3 activation as
described above. Changes in extracellular matrix composi-
tion and organization in the glaucomatous optic nerve head
have been well documented and include deposition of extra-
cellular matrix materials in areas formerly occupied by axons
[79].The extracellular matrix changes likely contribute to the
altered biomechanical properties of the glaucomatous optic
nerve head and increase the vulnerability of the remaining
axons to cell death [80, 81].

8. Conclusions

In conclusion, several lines of evidence provide compelling
evidence for a role of the IL-20 family of cytokines in glau-
coma. First, we have identified a mutation in IL-20RB at a
residue that is critical for binding of the receptor to the IL-
20 family of cytokines in a large POAG pedigree. Second,
IL-20 stimulation of the mutant IL-20RB leads to abnormal
STAT3 activation and MMP activity in glaucoma fibroblasts.
Third, IL-20 family members and their receptors have altered
expression levels in the retina and optic nerve head of the
DBA/2J mouse, which develops glaucoma-like symptoms
with aging. While the IL-20RB mutation most likely is not
a causative factor in the majority of glaucoma cases, the
identification of this mutation has revealed that defective
IL-20 signaling may lead to glaucoma in this large POAG
pedigree. Future studies will focus on the role of the IL-
20 subfamily members in both aqueous outflow regulation
in normal trabecular meshwork and their anti-inflammatory
role in the posterior tissues of the eye. This may lead to
the development of novel therapeutic treatments to maintain
tissue homeostasis and prevent glaucomatous vision loss in
this large Oregon POAG family.
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