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Fructus Rosae Roxburghii (FRR) has been considered as edi-
ble and medicinal fruit possessing antiatherosclerotic effect
[1-5], but the mechanism is still unclear. Hyperlipidemia
(HLP) is the material basis for atherosclerosis (AS) formation
[6,7]. In this study, total cholesterol (TC), triglyceride (TG),
low-density lipoprotein (LDL), lower high-density lipoprotein
(HDL) and atherosclerotic index (ASI) in mice were analyzed
under the action of FRR juice. Then differentially expressed
proteins in liver were further analyzed by using TMT label-
ing and LC-MS/MS for better understanding the effect and
molecular mechanism of FRR on diet-induced hyperlipidemic
mice [8]. After the protein extraction and trypsin diges-
tion, TMT labeling proteomic analysis were performed. The
functions and KEGG signaling pathways of differentially ex-
pressed proteins were analyzed by bioinformatics methods.
Hence, the potential antiatherosclerotic mechanism of FRR
regulating blood lipids from protein level has great signifi-
cance to explore new drug targets for AS.
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Biotechnology

Proteomic analysis has long been powerful and reliable technology for
identification of proteins expression in tissues or cells [9,10]. Proteomics can
provide understanding for cellular activities including the growth, development
and metabolism in organisms, particularly in exploring potential mechanism of
nutrients [11]. In this experiment, Tandem Mass Tag (TMT) labeling proteomic
analysis was used to quantify the dynamic changes of liver proteome of mice.
To characterize the functional consequences of proteins in liver, GO functional
enrichment and KEGG pathway analysis of differentially expressed proteins
were performed.

Figure

Reverse-phase HPLC using Agilent 300Extend C18 column (5 pm particles,

4.6 mm ID, 250 mm length); reversed-phase analytical column (Acclaim
PepMap RSLC, Thermo Scientific); Q Exactive™ Plus hybrid
quadrupole-Orbitrap mass spectrometer (ThermoFisher Scientific).

Secondary Data

The peptides were first separated with a gradient of 2% to 60% acetonitrile in
10 mM ammonium bicarbonate (pH 10) over 80 min into 80 fractions. Then,
the peptides were combined into 18 fractions and dried by vacuum
centrifugation. Peptides were dissolved in 0.1% FA, directly loaded onto a
reversed-phase pre-column. Peptide separation was performed using a
reversed-phase analytical column at constant flow rate on EASY-nLC 1000
UPLC system. The gradient was comprised of an increase from 9% to 25%
solvent B (0.1% FA, 98% ACN, 1.9% H,0) over 40 min, 25% to 36% in 12 min,
climbing to 80% in 4 min and then holding at 80% for last 4 min. The peptides
were subjected to NSI source followed by tandem mass spectrometry (MS/MS)
in Q Exactive™ Plus coupled to the UPLC online. Intact peptides were detected
in the Orbitrap at a resolution of 70,000. Peptides were selected for MS/MS
using NCE setting as 32. The ion fragments were detected at a resolution of
35,000. A data-dependent procedure that alternated between one MS scan
followed by 20 MS/MS scans was applied for the top 20 precursor ions above a
threshold ion count of 1E4 in MS survey scan with 30 s dynamic exclusion.
The electrospray voltage was 2.0 kV. 5E4 ions were accumulated for generation
of MS/MS spectra. The m/z scan range was 350 to 1800. Fixed first mass was
set as 100 m/z. The resulting MS/MS data were processed using Maxquant
search engine (v.1.5.2.8). Tandem mass spectra were searched against Swissprot
Mus musculus database. Trypsin/P was specified as cleavage enzyme allowing
up to 2 missing cleavages. Mass error was set to 20 ppm for precursor ions
and 0.02 Da for fragment ions. Carbamidomethyl on Cys-were specified as
fixed modification and oxidation on Met-was specified as variable
modifications. For protein quantification, TMT 10plex was selected in
Maxquant. FDR was adjusted to < 1% and peptide ion score was set > 20. The
distribution of mass error for identified peptides was mostly less than 0.02 Da.
The length of most peptides distributed between 8 and 16 were in agreement
with the property of tryptic peptides.

Identified proteins were classified into three categories by

Gene Ontology (GO) annotation: biological process, cellular component and
molecular function. A two-tailed Fisher’s exact test was employed to test the
enrichment of differentially expressed protein against identified proteins.

Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to
annotate enriched protein pathways by a two-tailed Fisher’s exact test. The
KEGG pathway enrichment-based clustering analysis and enrichment pathway
in the groups of Diet Il vs I, Il vs I and II vs III were performed.

The proteomics data have been submitted to proteomexchange repository. Data
are available via ProteomeXchange with identifier (PXD019962).

Repository name:proteomexchange

Data identification number:PXD019962

Direct URL to data:

Project Webpage: http://www.ebi.ac.uk/pride/archive/projects/PXD019962

FTP Download: ftp://ftp.pride.ebi.ac.uk/pride/data/archive/2021/01/PXD019962
P.P. Song, X.C. Shen, Proteomic Analysis of Liver in Diet-induced Hyperlipidemic
Mice under Fructus Rosa roxburghii Action, ]. Proteomics.
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Value of the Data

 From obtained data, much more valuble information could be deeply digged out. GO func-
tional enrichment and KEGG pathway analysis showed that FRR juice could ameliorate the
blood lipids and maintain metabolic homeostasis by regulating the expression of differen-
tially co-expressed proteins in HLP mice. Various kinds of bioactive substances in FRR might
regulate the lipid metabolism by synergistic effect. This is of great significance to provide
theoretical basis for application of FRR and explore new drug targets for AS.

Some researchers in the field of atherosclerotic cardiovascular disease (CVD) could benefit
from these data. A comparison of experimental data may facilitate the discovery of common
factors that play the major roles in the development of a disease. It may narrow down the
potential targets for future research. These potential drug targets could be further explored
and verified according to the upregulation or downregulation of differentially expressed pro-
teins. The people with HLP or early-stage AS could also try to supplement the intake of FRR
juice, which would be beneficial for the prevention of CVD.

Based on the results, narrowing down interested proteins and performing functional study
were recommended. These differentially expressed proteins with significant expression, spe-
cific functions, specific pathways and antibodies preparation and validation could be used
for target selection. Once appropriate proteins targets are selected, functional study will be
performed. Differentially expressed proteins between the control and experimental samples
could be validated by using Western Blot. The results from bioinformatic analysis could
be validated by the immnuoprecipiation (IP), for example, whether the target proteins are
interacted with other signaling molecules or protein complexes. Overexpression or knock-
down/knockout version of target proteins could be introduced to in vivo or in vitro system,
and then the phenotype and functional changes could be examined.

1. Data Description

The GO enrichment and KEGG pathway analysis were used to analyze the differentially ex-
pressed proteins, which showed that many biological processes were significantly altered be-
tween the proteomics of three diet groups. The KEGG pathway enrichment-based clustering
analysis were also performed in the groups of Diet Il vs I, Ill vs I and II vs III (Fig. 1). Com-
paring Diet III and I groups, eighteen KEGG terms were significantly enriched (p<0.05, Fig. 2).
The five KEGG terms between the groups of Diet Il and Il were significantly enriched (p<0.05,
Fig. 3). The eleven KEGG terms between the groups of Diet II and I were significantly enriched
(p<0.05, Fig. 4). The original data from KEGG pathway analysis have been uploaded in PRIDE
(W8026TQ).

2. Experimental Design, Materials and Methods
2.1. The preparation of animal model and protein sample

2.1.1. Materials

Fresh FRR juice from Guinong No. 5 was prepared by automatic squeezer and preserved in a
fridge (4 °C). The male Yunnan KM mice were purchased from Animal Center of Guizhou Medi-
cal University (No. SCXK Jing 2012-0001). All studies were approved by the Institutional Animal
Care and Use Committee (IACUC) of Guizhou Medical University. The mouse feeds were pur-
chased from Xiaoshu Biotechnology Limited Company (Beijing, China). The components of nor-
mal diet were 45% corn, 20% bean, 20% wheat flour, 10% pear skin, 1% fish meal, 0.2% yeast, 1%
salt, 0.58% vegetable oil, 2% bone meal, 0.2% methionine, 0.02% multivitamin. The high-fat diet
were composed of 78.7% normal diet, 1% cholesterol, 0.3% cholic acid, 10% pork lard, 10% yolk
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Fig. 1. The KEGG pathway enrichment-based clustering analysis in the groups of Diet II vs I, IIl vs I and II vs IIl. A:
Biological Process; B: Cellular Component; C: KEGG Pathway; D: Molecular Function; E: Protein Domain. The categories
were at least enriched in one of protein groups with P<0.05. Filtered P matrix was transformed by the x=—log10 (P).
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Fig. 1. Continued
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Fig. 2. The analysis for enrichment pathway between Diet III vs I groups. A: Galactose metabolism; B: Fatty acid degra-
dation; C: Steroid biosynthesis; D: Steroid hormone biosynthesis; E: Valine, leucine and isoleucine degradation; F: Lysine
degradation; G: Tryptophan metabolism; H: S-alanine metabolism; I: Pyruvate metabolism; J: Propanoate metabolism;
K: Butanoate metabolism; L: Terpenoid backbone biosynthesis; M: Drug metabolism-other enzymes; N: Biosynthesis
of unsaturated fatty acids; O: PPAR signaling pathway; P: Maturity onset diabetes of the young; Q: Bile secretion; R:
Cholesterol metabolism. The proteins in green were down-regulated, proteins in red were up-regulated and in yellow
some proteins were up-regulated and some were down-regulated.
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STEROID BIOSYNTHESIS
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STEROID HORMONE BIOSYNTHESIS
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Fig. 3. The analysis for enrichment pathway between Diet II vs III groups. A: Primary bile acid biosynthesis; B: Steroid
hormone biosynthesis; C: Linoleic acid metabolism; D: Bile secretion; E: Chemical carcinogenesis. The proteins in green
were down-regulated, proteins in red were up-regulated and in yellow some proteins were up-regulated and some were
down-regulated.
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Fig. 4. The analysis for enrichment pathway between Diet II vs I groups. A: Glycolysis/Gluconeogenesis; B: Fatty acid
degradation; C: Steroid biosynthesis; D: Tryptophan metabolism; E: S-alanine metabolism; F: Pyruvate metabolism; G:
Retinol metabolism in animals; H: Biosynthesis of unsaturated fatty acids; I: PPAR signaling pathway; ]: Peroxisome; K:
Vitamin digestion and absorption. The proteins in green were down-regulated, proteins in red were up-regulated and in
yellow some proteins were up-regulated and some were down-regulated.
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powder. All experimental chemicals were obtained from Kaixin Biotechnology Limited Company
(Guizhou, China).

Thirty healthy male mice with 6 weeks were divided into three groups by average weight,
and given a 12 h light/dark cycle and free access to purified water. The control mice were fed
normal diet (Diet I), the model group was fed high-fat diet (Diet II), and the treatment group
(Diet III) was fed 50% FRR juice based on high-fat diet daily. FRR juice was given to mice by
gavage (0.25 ml/10 g). On day 30, the blood was collected by retro-orbital bleeding, finally
these mice were euthanized by cervical dislocation. After mice anatomization, hepatic tissue was
washed by 0.9% physiological saline, and preserved in liquid nitrogen for following proteomic
analysis (Table 1).

2.1.2. Protein extraction and trypsin digestion

Four volumes of lysis buffer (8 M urea, 1% Protease Inhibitor Cocktail) were added to protein
powder, then sonicated three times on ice by using ultrasonic processor. After the centrifugation
(12,000 g, 4 °C, 10 min), the supernatant was collected and protein concentration was deter-
mined by BCA kit. The protein solution was reduced with 10 mM DTT for 1 h at 37 °C and
alkylated with 20 mM IAA for 45 min at room temperature in the darkness. Then protein sam-
ple was diluted to urea concentration less than 2 M by adding 100 mM TEAB. Finally, trypsin
was added at 1:50 trypsin-to-protein mass ratio for first digestion overnight and 1:100 trypsin-
to-protein mass ratio for a second 4 h-digestion. ~100 ng protein for each sample was digested
with trypsin for following experiments.

2.1.3. TMT labeling and HPLC fractionation

The peptide was desalted by Strata X C18 SPE column (Phenomenex) and vacuum-dried. Pep-
tide was reconstituted in 0.5 M TEAB and processed for 10plex TMT kit. One unit of TMT reagent
required to label 100 pg of protein were thawed and reconstituted in 24 pl ACN. Then peptide
mixtures were incubated for 2 h at room temperature and pooled, desalted and vacuum-dried.
The sample was fractionated into fractions by the reverse-phase HPLC using Agilent 300Extend
C18 column (5 pm particles, 4.6 mm ID, 250 mm length). Peptides were separated with a gra-
dient of 2% to 60% acetonitrile in 10 mM ammonium bicarbonate (pH 10) over 80 min into
80 fractions, then combined into 18 fractions and vacuum-dried.

2.2. Quantitative proteomic analysis by LC-MS/MS [12-15]

Peptides were dissolved in 0.1% FA, directly loaded onto a reversed-phase pre-column (Ac-
claim PepMap 100, Thermo Scientific). Peptide separation was performed using a reversed-phase
analytical column (Acclaim PepMap RSLC, Thermo Scientific). The gradient was comprised of sol-
vent B (0.1% FA in 98% ACN) over 40 min at an increase from 9% to 25%, 25% to 36% in 12 min
and climbing to 80% in 4 min, then holding at 80% for 4 min, all are at a constant flow rate by

Table 1

The basic reagents for proteomic analysis.
Name Company
TMT Kit Thermo
Sequencing Grade Modified Trypsin Promega
EtOH (ethyl alcohol) Fisher Chemical
ACN (acetonitrile) Fisher Chemical
TFA (trifluoroacetic acid) Sigma-Aldrich
FA (formic acid) Fluka
IAA (iodoacetamide) Sigma
DTT (dithiothreitol) Sigma

2-D Quant kit GE Healthcare
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EASY-nLC 1000 UPLC system. The resulting peptides were analyzed by Q Exactive™ Plus hybrid
quadrupole-Orbitrap mass spectrometer (ThermoFisher Scientific).

The peptides were subjected to NSI source, followed by the MS/MS in Q Exactive™ Plus
(Thermo) coupled to the UPLC online. Intact peptides were detected in the Orbitrap at a resolu-
tion of 70,000. Peptides were selected for MS/MS using NCE setting as 32, ion fragments were
detected in the Orbitrap at a resolution of 35,000. A data-dependent procedure that alternated
between one MS scan followed by 20 MS/MS scans was applied for top 20 precursor ions above
a threshold ion count of 1E4 in MS scan with 30 s dynamic exclusion. The applied electrospray
voltage was 2.0 kV. Automatic gain control (AGC) was used to prevent the overfilling of ion trap,
5E4 ions were accumulated for generation of MS/MS spectra. For MS scans, m/z scan range was
350 to 1800. Fixed first mass was set as 100 m/z.

The resulting MS/MS data were processed using Maxquant search engine (v.1.5.2.8). MS/MS
were searched against Swissprot M. musculus database. Trypsin/P was specified as cleavage en-
zyme allowing up to 2 missing cleavages. Mass error was set to 20 ppm for precursor ions and
0.02 Da for fragment ions. Carbamidomethyl on Cys-was specified as fixed modification and ox-
idation on Met-was specified as variable modifications. For protein quantification, TMT 10plex
was selected in Maxquant. FDR was adjusted to < 1% and peptide ion score was set > 20. The
distribution of mass error for identified peptides is near zero and most of them are less than
0.02 Da. The length of most peptides is distributed between 8 and 16, which agree with the
property of tryptic peptides.

2.3. Bioinformatics methods

Gene Ontology (GO) annotation was derived from UniProt-GOA database (http://www.ebi.ac.
uk/GOA/). Converting identified protein ID to UniProt ID and mapping to GO IDs by protein ID
are necessary. If identified proteins were not annotated by UniProt-GOA database, InterProScan
software would be used to annotate their GO function according to protein sequence alignment.
Then proteins were classified into three categories by GO annotation: biological process, cellular
component and molecular function.

Kyoto Encyclopedia of Genes and Genomes (KEGG) can connect known information with
molecular interaction networks, such as pathways and complexes. KEGG pathways are mainly in-
cluding the metabolism, genetic information processing, environmental information processing,
cellular processes, rat diseases and drug development. KEGG database was used to annotate the
protein pathway. KEGG online service tools KAAS is used to annotated protein’s KEGG database
description. Then the annotation for KEGG pathway database is mapped using KEGG mapper.

For the proteins of each category, KEGG database was used to identify enriched pathways by
a two-tailed Fisher’s exact test to test the enrichment of differentially expressed protein against
identified proteins. Correction for multiple hypothesis testing was carried out using standard
FDR. The pathway with a corrected P<0.05 was considered to be significant. These pathways
were classified into hierarchical categories according to KEGG website.

Functional enrichment-based clustering for different protein groups was used to explore po-
tential relationships between different protein groups from special protein functions (GO, Do-
main, Pathway). The protein groups after functional enrichment analysis were collated along
with P-value, then filtered for those categories which were at least enriched in one of protein
groups with P<0.05. Filtered P value matrix was transformed by the x=—log10 (P). These x val-
ues were z-transformed for each functional category, z scores were clustered by one-way hi-
erarchical clustering. Cluster membership was visualized by a heat map using the “heatmap.2”
function from “gplots” R-package.

Ethics Statement
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