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ABSTRACT

Human cancers accumulate various mutations during development and consist 
of highly heterogeneous cell populations. This phenomenon is called intratumor 
heterogeneity (ITH). ITH is known to be involved in tumor growth, progression, 
invasion, and metastasis, presenting obstacles to accurate diagnoses and effective 
treatments. Numerous studies have explored the dynamics of ITH, including 
constructions of phylogenetic trees in cancer samples using multiregional ultradeep 
sequencing and simulations of evolution using statistical models. Although ITH is 
associated with prognosis, it is still challenging to use the characteristics of ITH 
as prognostic factors because of difficulties in quantifying ITH precisely. In this 
study, we analyzed the relationship between patient prognosis and the distribution 
of variant allele frequencies (VAFs) in cancer samples (n = 6,064) across 16 
cancer types registered in The Cancer Genome Atlas. To measure VAF distributions 
multidimensionally, we adopted parameters that define the shape of VAF distributions 
and evaluated the relationships between these parameters and prognosis. In 
seven cancer types, we found significant relationships between prognosis and 
VAF distributions. Moreover, we observed that samples with a larger amount of 
mutations were not necessarily linked to worse prognosis. By evaluating the ITH 
from multidimensional viewpoints, it will be possible to provide a more accurate 
prediction of cancer prognosis.

INTRODUCTION

Cancer is indicated via dysregulated cell growth, 
proliferation, and cell cycle progression. Cancer cells 
often consist of heterogeneous populations with various 
mutations rather than composed of homogeneous 
populations [1–3]. Previous studies demonstrated that 
cancer develops from mutations in certain driver genes 
and eventually accumulates various genetic mutations 
through cell growth, leading to intratumor heterogeneity 
(ITH) [4]. ITH may be associated with drug resistance and 
disease recurrence [5].

The recent advent of next-generation sequencing 
technologies allows us to analyze the process of 

accumulated mutations in cancer cells during progression. 
Using multiregional sequencing, we can construct the 
“cancer evolutionary tree,” which depicts clonal and 
subclonal mutations as the trunk and branches [4, 6, 7]. 
Another approach is using variant allele frequencies 
(VAFs). VAFs are able to estimate the fraction of tumor 
populations containing mutations in cancer cells [8, 9]. 
These studies have revealed that cancer evolution is highly 
diverse and complex among cancer types and individuals.

Despite these efforts, the relationship between 
the heterogeneity in cancer cells and clinical outcomes 
of patients remains insufficiently understood. Several 
measures have been developed and used for the analysis. 
For example, some algorithms estimate the number of 
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subclonal populations and quantify the extent of ITH [10, 
11]. A previous study suggested a nonlinear relationship 
between the extent of ITH and prognosis [12]. Moreover, 
mutant-allele tumor heterogeneity (MATH) [13] scores 
represent the variance of VAFs, and the entropy-based 
mutation allele fraction (EMAF) [14] represents uncertainty 
of somatic mutation patterns. It is reported that higher 
scores of these measures were significantly associated 
with poorer prognosis in head and neck squamous cell 
carcinoma and in non-small cell lung cancer, respectively. 
These measures are, however, not robust for all cancer 
types, mainly because the one-dimensional measure 
is insufficient for expressing the complexity of cancer 
evolution. Furthermore, it is difficult to one-dimensionally 
infer the status of cancer cells in the evolutionary process.

In this study, to evaluate the multidimensional nature 
of cancer heterogeneity, we adopted three parameters that 
define the shape of VAF distribution, such as the number 
of mutations, peak position, and variance. We used VAFs 
from 6,064 The Cancer Genome Atlas (TCGA) samples of 
16 cancer types. Using the three parameters, we analyzed 
the association between the shape of the VAF distribution 
and the prognosis of each cancer type (Figure 1).

RESULTS

Clustering all cancer samples using VAF 
distribution parameters

We obtained somatic mutation data for each 
sample (n = 6,064) across 16 cancer types from the 

TCGA repository: bladder urothelial carcinoma (BLCA), 
breast adenocarcinoma (BRCA), cervical squamous 
cell carcinoma and endocervical adenocarcinoma 
(CESC), colon adenocarcinoma (COAD), glioblastoma 
multiforme (GBM), head and neck squamous cell 
carcinoma (HNSC), kidney renal clear cell carcinoma 
(KIRC), lower-grade glioma (LGG), liver hepatocellular 
carcinoma (LIHC), lung adenocarcinoma (LUAD), 
lung squamous cell carcinoma (LUSC), ovarian serous 
carcinoma (OV), prostate adenocarcinoma (PRAD), 
skin cutaneous melanoma (SKCM), thyroid carcinoma 
(THCA), and uterine corpus endometrial carcinoma 
(UCEC). The total more functional (MF) mutations, 
which are mutations classified as “probably damaging” 
or “possibly damaging” by PolyPhen-2, were 469,553 
(Supplementary Table 1). We used three parameters that 
define the shape of VAF distributions of MF mutations in 
each sample: the corresponding VAF with the maximum 
value for probability density function of VAF distribution 
of MF mutations (m_Peak), log2[the total number of 
MF mutations] (m_Count) and MATH score for MF (m_
MATH). First, we calculated the correlation coefficients 
for all possible combinations of the three parameters to 
examine whether they are independent variables. Since 
correlation coefficients were -0.44, 0.03, and 0.00, 
which were observed between m_Peaks vs. m_MATH, 
m_Peak vs. m_Count, and m_Count vs. m_MATH, 
respectively, we considered the parameters could be used 
as independent variables representing the characteristics 
of VAF distributions.

Figure 1: Graphical summary of the workflow. VAFs are calculated for each mutation in patient samples obtained from TCGA. 
Using three parameters derived from the shape of the VAF distribution, samples are classified into five clusters. Survival analysis was 
performed to compare the prognoses among samples belonging to each cluster.
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We next examined the VAF distribution patterns 
of individual samples across 16 cancer types. Principal 
component analysis (PCA) was performed using the 
three parameters defining the shape of VAF distributions 
in 6,064 samples, and we extracted two principal 
components. Each principal component (PC1 and PC2) 
accounted for 48.2% and 33.3% of the total variance in 
the data, respectively (Supplementary Figure 1A). Using 
the two principal components, a total of 6,064 samples 
were divided into five clusters by the k-medoids algorithm 
(Supplementary Figure 1B). We used k = 5 for clustering 
because it was possible to obtain distinct VAF distribution 
by dividing samples into five clusters rather than k = 3, 
4, or 6. We drew histograms of VAFs assembled from all 
mutations in samples belonging to each cluster and created 
trunk-branch models of mutations in tumors (Figure 2A). 
For each type of cancer, we calculated the proportions 
of the five clusters (Figure 2B and Supplementary Table 
2). We also calculated the median values of the three 
parameters for the five clusters (Table 1).

As a result, the samples in clusters 1 and 2 harbored 
more MF mutations than the other three clusters. Since 
the VAF distributions showed that samples in cluster 1 
had more MF mutations with higher VAF than lower VAF, 
while the samples in cluster 2 had more MF mutations 
with lower VAF than higher VAF, they were predicted 
to have accumulated clonal mutations in cluster 1 and 
subclonal mutations in cluster 2, respectively [15, 16]. 
As shown in Figure 2B, the frequencies of samples in 
cluster 1 were relatively higher in SKCM and LUSC. 
This observation was consistent with a recent study by 
McGranahan and colleagues, which indicated that, in 

some cancer types, including melanoma and lung cancer, 
mutations accumulated prior to carcinogenesis [6]. The 
frequencies in cluster 2 were also higher in BLCA, LUAD, 
and LUSC. In these cancers, a large subclonal mutation 
burden was previously observed [6].

Samples in clusters 3, 4, and 5 had fewer MF 
mutations than clusters 1 and 2. The frequencies of these 
clusters were relatively higher in GBM, KIRC, LGG, 
PRAD, and THCA. Previous studies showed that kidney, 
brain, and thyroid tumors had a relatively lower number of 
mutations [17]. We next focused on the differences among 
the three clusters. Samples in cluster 3 had higher m_Peaks 
and lower m_MATH, whereas samples in cluster 5 had 
lower m_Peak and higher m_MATH (Table 1). This trend 
can be interpreted as MF mutations occurring in the early 
stages of cancer development and maintained through 
cancer progression, without further accumulating a large 
number of MF mutations among samples in cluster 3. In 
cluster 4, expansion of some subclones with certain MF 
mutations might occur during cancer progression under 
strong positive selection [18, 19]. In contrast, samples 
in cluster 5 had MF mutations that possibly occurred 
under neutral cancer evolution [20]. The frequencies of 
clusters 4 and 5 were especially higher in PRAD. The 
results described above were partly supported by the 
“Evolutionary Trees” illustrated in a previous study [6].

Genetic characteristics of five clusters

To evaluate the clusters’ genetic characteristics, we 
calculated MF mutation frequencies of each gene for 16 
cancer types and examined the 10 genes with the highest 

Figure 2: VAF distributions of the five clusters and sample frequencies among 16 cancer types. (A) Histograms for VAFs 
of MF mutations of the five clusters. The horizontal axis indicates VAF values and the vertical axis indicates mutation frequencies. Trunk-
branch models are shown at the bottoms of the histograms. The number of mutations with higher VAFs are represented as the trunk of the 
tree (blue), whereas the number of mutations with lower VAFs are represented as the branches (green). (B) The proportions of the five 
clusters for each cancer type. The number of tumor samples represent analyzed cases. Color codes for the five clusters are indicated at the 
bottom of the bar plots.
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frequency of mutations in each cluster (Supplementary 
Figure 2). In BRCA, the frequencies of MF mutation 
in PIK3CA in clusters 3, 4, and 5 (35.5%, 40.5%, 
and 32.5%, respectively), in which the m_Count was 
small, were relatively high. Once mutations in PIK3CA 
occurred, without a striking increase in the number of 
other mutations, cells may remain genetically stable. The 
MF mutation frequency of CTNNB1 (20.0%) in cluster 
3 in LIHC was also high. This result suggests that liver 
cancer cells with mutations in the driver gene CTNNB1, 
which have been generated in the earlier stage of cancer 
development, occupied in the cancer cell population. 
Although high frequency MF mutations (in SKCM and 
UCEC) were mainly found in cluster 1, the samples in 
cluster 2, which also had a large number of MF mutations, 
had mutations with lower frequencies. This result showed 
that there are common mutated genes in cluster 1.

Moreover, we evaluated the extent of ITH via 
genomic instability. A previous study showed that genomic 
instability is correlated with ITH [12]. We assessed 
the association between copy number variant (CNV) 
abundance as the extent of the genomic instability and 
five clusters for each cancer type [21]. The tendencies 
of CNV abundance for the five clusters varied widely 
among cancer types (Figure 3A, Supplementary Figure 3, 
and Supplementary Table 2). In our study, the samples in 
cluster 2 was predicted to have the highest ITH level due 
to a large number of mutations with lower VAF. Although 
we hypothesized the samples in cluster 2 would have the 
highest CNV levels, only BLCA, BRCA, and LGG had 
the highest levels of CNV abundance.

We also examined the MF mutation spectrum 
between the five clusters (Figure 3B and Supplementary 
Figure 4). In melanoma, the frequency of C>T transitions 
decreases, and the frequency of T>G transversions 
increases among branch mutations compared to trunk 
mutations [22, 23]. The frequency of C>T mutations was 
significantly lower among samples in clusters 2, 3, 4, and 
5 than samples in cluster 1 (cluster 2: false discovery rate 
(FDR)-adjusted P < 0.001, cluster 3: FDR-adjusted P < 
0.001, cluster 4: FDR-adjusted P < 0.001, and cluster 5: 
FDR-adjusted P < 0.001), which was predicted to have a 
larger number of trunk mutations in SKCM. Therefore, 
most mutations in samples with fewer mutations were 
proposed to occur in later, rather than earlier, stages of 

cancer development [2, 24]. The frequency of C>A 
transversions decreased among branch mutations 
compared to trunk mutations in LUAD and LUSC samples 
[25]. We observed that the frequency of C>A decreased 
in LUAD samples in clusters 2, 3, 4, and 5 compared 
with samples in cluster 1 (cluster 2: FDR-adjusted P < 
0.001, cluster 3: FDR-adjusted P < 0.001, cluster 4: 
FDR-adjusted P < 0.001, and cluster 5: FDR-adjusted 
P < 0.001). We also observed that the frequency of C>A 
decreased in LUSC samples in clusters 3 and 4 compared 
with samples in cluster 1 (cluster 3: FDR-adjusted P < 
0.001 and cluster 4: FDR-adjusted P < 0.001). As a result, 
samples in these clusters may include later mutations 
compared to earlier mutations. We also found that the 
observed mutation spectrum was strongly associated 
with smoking history in LUAD [25, 26]. The proportion 
of “never smoker” samples were significantly higher 
in clusters 3, 4, and 5 than in cluster 1 (cluster 3: FDR 
adjusted P = 0.027, cluster 4: FDR adjusted P < 0.001, and 
cluster 3: FDR adjusted P < 0.001) (Figure 3C).

Clinical characteristics of samples in the five 
clusters of VAF distributions

To investigate the clinical characteristics of samples 
in the five clusters of VAF distributions, we examined 
the distributions of age at cancer diagnosis, tumor stage, 
gender, and breast cancer subtypes (Supplementary Table 
2). We found that there were significant differences in the 
mean age among samples in the five clusters of the four 
cancer types (BLCA: FDR-adjusted P = 0.041, HNSC: 
FDR-adjusted P = 0.041, LIHC: FDR-adjusted P = 0.041, 
and LUAD: FDR-adjusted P = 0.041) (Figure 4A). For 
three of the cancer types (except LUAD), the average age 
of samples in either cluster 1 or 2 was relatively higher 
compared to other clusters. As mentioned above, samples 
in clusters 1 and 2 supposedly accumulated a large number 
of MF mutations during cancer development. This result 
was consistent with the fact that mutation frequencies 
increase with the patient’s age [27, 28].

Significant differences in the proportion of the 
five clusters between tumor stages I/II and III/IV were 
observed only in SKCM (FDR-adjusted P = 0.009) (Figure 
4B). In SKCM, the frequency of samples in cluster 1 was 
higher in lower tumor stages than in higher tumor stages. 

Table 1: Parameter characteristics regarding VAF distribution

Parameters Cluster

1 2 3 4 5

median of m_Peak 0.376 0.229 0.424 0.271 0.140

median of m_Counts 6.794 6.119 4.000 3.807 3.807

median of m_MATH 0.186 0.320 0.133 0.251 0.473
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The frequency of cluster 1 significantly decreased, and the 
frequencies of clusters 2 and 4 significantly increased in 
the higher stage group (cluster 1: FDR-adjusted P = 0.001, 
cluster 2: FDR-adjusted P = 0.024, and cluster 4: FDR-
adjusted P = 0.042). This result suggested that melanoma’s 
aggressiveness may increase due to subclonal mutations 
that occur in later stages of cancer evolution.

In contrast, significant differences in the proportion 
of the five clusters between the gender were not observed 
in any types of cancer, indicating no relationships between 
gender and VAF distribution.

To evaluate the relationship between breast 
cancer subtypes and the five clusters, we calculated 
the frequencies of four major breast cancer subtypes 
(Basal-like, HER2-enriched, Luminal A, and Luminal 
B) in each cluster (Figure 4C) [29]. As a result, the 
frequency of basal-like breast cancer, which is a subtype 
included in triple negative breast cancer, was the highest 
in cluster 2 (34.8%). Furthermore, the frequency of 
HER2-enriched breast cancer was the highest in cluster 
1 (25.9%). These results indicated that the evolutionary 
process of breast cancer may be very different depending 
on subtype [30].

Relationship between samples in the five clusters 
of VAF distributions and prognosis

To assess the relationship between samples in each 
cluster of VAF distributions and their clinical outcomes, 
we separately constructed univariate Cox models for 
each cancer type. In this analysis, cluster 2 was used as a 
reference for each cancer type, because they are predicted 
to have the highest ITH level. As a result,  significant 
association between samples in cluster 2 and survival was 
evident in only two cancer types (LUSC and SKCM). 
Compared to samples in some other clusters, samples in 
cluster 2 were associated with better prognosis in LUSC 
and SKCM (vs. cluster 4 in LUSC, P < 0.001; vs. cluster 
1 in SKCM, P = 0.021; vs. cluster 3 in SKCM, P < 0.001; 
and vs. cluster 4 in SKCM, P = 0.001) (Supplementary 
Table 3). This result suggested that the relationship 
between ITH and prognosis is not uniform and may be 
different for cancer types.

To examine the relationship between samples 
in each cluster of VAF distributions and their clinical 
outcomes in detail, we took covariates into consideration. 
The aim of this analysis was to evaluate the differences 

Figure 3: Comparison of genetic characteristics among the five clusters of VAF distributions. (A) Boxplot for CNV 
abundance of samples in each cluster. ANOVA, followed by Tukey’s honest significant difference test, was performed. *P < 0.05, **P < 
0.01, and ***P < 0.001. (B) Bar plot for the frequencies of mutation spectra in three cancer types. The fractions of six mutation types in each 
cluster were shown. (C) Mosaic plot for the frequencies of patients’ smoking history in LUAD and LUSC. Color codes for smoking history 
are indicated at the bottoms of the plots.
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in the states of tumor cell population leading to poor 
prognosis by a multivariate Cox proportional hazards 
regression analysis using at most three covariates of age, 
gender, and cancer stage. In this analysis, samples in a 
certain cluster were used as references for each cancer 
type. A cluster resulting in hazard ratio (HR) >1 to all 
the other clusters was selected as a reference cluster 
(Supplementary Table 4). We found that at least one 
cluster was associated with the prognosis for seven of 
the 16 cancer types (BLCA, LGG, LIHC, LUAD, LUSC, 
SKCM, and UCEC) (Figure 5). Samples in cluster 1 in 
LIHC were associated with worse prognosis compared 
to those in cluster 3 (P = 0.002). Samples in clusters 1 
and 2 in LUAD were associated with worse prognosis 
compared to those in cluster 5 (P = 0.034 and P = 
0.024, respectively). This suggested more mutations are 
associated with worse prognosis in these cancer types. 
Contrarily, samples in cluster 3 in BLCA were associated 
with worse prognosis compared with samples in cluster 
1 (P = 0.020). Samples in cluster 3 and 5 in UCEC were 
associated to worse prognosis compared with samples in 
cluster 1 (P = 0.049 and P = 0.045, respectively). These 
results indicate that accumulation of a large number 
of mutations is not necessarily associated with worse 
prognosis. Cancer cells occupied by a lower number of 
mutations occurring early in cancer development might 
be associated with worse prognosis in BLCA and UCEC. 

Thus, samples were associated with poor prognosis when 
fewer mutations occurred at carcinogenesis and survived 
during cancer development. This result indicated genomic 
instability is a trade-off between cost and benefit [12].

Worse prognosis was observed in samples in clusters 
3 and 4 in LGG compared to those in cluster 5 (P = 0.023 
and P = 0.010, respectively). Therefore, samples in LGG 
with higher m_Peak and lower m_MATH were associated 
with poor prognosis. Since frequencies of MF mutations 
in IDH1, which is one of the driver genes in LGG, were 
higher among samples in clusters 3, 4, and 5 (69.5%, 
54.5%, and 59.5%, respectively), it was expected that 
other factors that increase the number of mutations from 
the early to mid-stage of cancer development may affect 
patient prognosis. We could not, however, identify any 
genes specifically mutated in samples in clusters 3 and 4.

The effects of VAF distribution in LUSC and SKCM 
on prognosis were more complicated than those in the 
five cancer types described above. Samples in cluster 4 in 
LUSC were associated with worse prognosis compared to 
those in cluster 1 (P < 0.001). Samples in clusters 3 and 
4 in SKCM were associated with worse prognosis than 
those in cluster 2 (P < 0.001 and P = 0.001, respectively). 
In these cancer types, subclonal progression was presumed 
to be associated with poor prognosis.

Figure 4: Comparison of clinical characteristics among the five clusters of VAF distributions. (A) Boxplot for the average 
age in each cluster. ANOVA, followed by Tukey’s honest significant difference test, was performed. *P < 0.05, **P < 0.01, and ***P < 0.001. 
(B) Bar plot for the frequencies of five clusters in lower (I/II) or higher cancer stage (III/IV) samples in SKCM. Color codes for the five 
clusters are indicated at the bottom of the bar plots. (C) Mosaic plot of the frequencies of BRCA molecular subtypes. Color codes for the 
molecular subtypes are indicated at the bottom of the plots.
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Classification of samples using the decision tree 
model

More accurate prognostic prediction can be 
performed using the three parameters than using one-
dimensional measures. To generate simple splitting criteria 
for classifying samples into one of the five clusters of 
VAF distributions, we performed decision tree analysis 
(CART). First, we constructed a complex decision tree and 
then pruned the branches using complexity parameter (CP) 
= 0.1 [31]. We additionally used a 10-fold cross-validation 
analysis to test the accuracy of the algorithm in classifying 
samples into one of the five clusters.

We created a decision tree with the three parameters 
used in this study. The maximum accuracy achieved by 
the classifier was 80.7%, and the average accuracy (±SD) 
was 76.8% (±2.0%), indicating that the decision tree 
model calculated from the three parameters can be used 
to a certain extent for classifying samples into one of the 
five clusters (Figure 6).

DISCUSSION

Higher ITH has been implicated in poor cancer 
prognosis [1, 32–34]. Previous studies have used one-

dimensional measures of ITH to analyze the relationship 
between ITH and clinical outcomes [13, 14, 35]. 
However, Andor and colleagues demonstrated a nonlinear 
association between the number of clones in tumor cells 
and prognosis [12]; thus, it is necessary to evaluate cancer 
heterogeneity from multidimensional viewpoints. To 
evaluate ITH multidimensionally, we used three kinds 
of parameters defining the shape of VAF distributions of 
each sample to divide those samples into five clusters. 
The shape of VAF distribution of each cluster had distinct 
genetic and genomic characteristics and were used to 
infer the evolutionary pathway of cancer cells. Moreover, 
we performed survival analyses for samples in each 
cluster and found that certain clusters were significantly 
associated with prognosis in seven cancer types. This 
result demonstrated it is possible to predict the preferable 
cancer cell status during evolution using VAF distribution. 
We also found that VAF distribution associated with 
worse prognosis varied considerably among cancer types. 
Although cancer cells are generally thought to accumulate 
multiple mutations during cancer development, our 
results showed that a larger amount of mutations are not 
necessarily associated with worse prognosis.

For SKCM samples, we obtained remarkable 
results from VAF distribution analysis. Previous studies 

Figure 5: Survival curves and HRs derived from Cox proportional hazards regression. Survival curves are shown for 
clusters in seven cancer types with significant HRs. Cox analysis adjusted for other covariates was performed using clusters with sample 
sizes ≥ 10. For each cancer type, one of the five clusters was selected as a reference so that all HRs were calculated as more than 1 (e.g., 
in the case of BLCA, cluster 1 was used as a reference). The horizontal axis indicates time (days), and the vertical axis shows survival 
probability. *P < 0.05, **P < 0.01, and ***P < 0.001.
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have shown that melanoma is a highly malignant cancer 
and harbors various mutations in the early stages of 
cancer development [17, 36–38]. Melanoma is a highly 
aggressive cancer that tends to metastasize to various body 
tissues, leading to drug resistance via changing clonal 
composition [12, 39]. Our results consistently showed 
that most samples have a large number of mutations 
accumulated prior to carcinogenesis. The samples, which 
had fewer mutations and a branched evolutionary pattern, 
yielded worse prognosis than samples with a larger 
number of mutations. Taking the mutation spectrum into 
consideration, most mutations in the samples with fewer 
mutations were considered to occur in the later rather than 
earlier stages of cancer development. The proportion of 
samples in clusters 2 and 4 was significantly higher in 
the higher rather than the lower tumor stage. From these 
results, we proposed the following hypothesis of the 
genetic evolution of melanoma: melanoma is generated 
by a large number of genetic mutations, including those 
in BRAF (clusters 1 and 2) [38], and only those cells with 
certain mutations are selected under selective pressure. 
Highly malignant cancer cells with fewer mutations are 
then occupied in the cancer cell population. Those cells 
are possibly associated with a poor prognosis (clusters 
3 and 4). Other mutated genes may be involved in 
evolutionary process of melanoma because of the low 
frequency of driver gene mutations in samples with few 
mutations.

As with melanoma, a large number of clonal 
mutations is known to occur in non-small cell lung 
carcinoma (NSCLC) [6]. Recently, tumor mutation 
burden (TMB) is used as a biomarker to assess response 
to immune checkpoint inhibitors in NSCLC treatment 

[40]. Previous studies showed that high TMB in NSCLC 
was associated with worse prognosis [41]. In LUAD, the 
study results were consistent with our finding that samples 
with more mutations have a poor prognosis (clusters 1 and 
2). Therefore, the number, not the timing, of mutations 
might have a greater effect on the prognosis. In LUAD, the 
mutations partially attributable to smoking may gradually 
accumulate in cells during cancer progression, leading to 
more aggressive cancer cells. Conversely, in LUSC, once 
mutations are occupied in cancer cells under selective 
pressure (cluster 4), those samples were predicted to have 
a worse prognosis than cancer cells with a large number of 
clonal mutations (cluster 1). These cell populations might 
promote tumor growth and metastasis.

Even using three parameters separately, we could 
predict the prognosis of cancer patients. However, it will 
be difficult to infer the evolutionary process of cancer 
cells via a single variable. For example, even if there 
is an association between the number of mutations and 
prognosis, it will be difficult to infer the timing of such 
mutations. Via multidimensional analysis, we shed light 
on the association between prognosis and the state of 
cancer evolution. Since our analysis made it possible to 
predict this relationship more accurately and easily, we 
can apply such methodology to prognosis prediction and 
effective treatments.

In this study, we analyzed 16 cancer types using only 
single nucleotide substitutions in genes. To understand the 
evolutionary process of cancer in more detail, we should 
analyze each cancer type independently using other types 
of mutations, such as indels and CNVs. By considering 
the mutation signatures and gene expression patterns, 
we will be able to obtain further information on cancer 

Figure 6: A decision tree to classify samples into the five clusters of VAF distributions. A decision tree constructed using the 
three parameters derived from MF mutations is shown. The formula in the decision tree split criteria for samples. The nodes at the bottom 
of the tree indicate the five clusters and the corresponding accuracy of classification.
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cells’ evolution and its impact on patient prognosis. 
Furthermore, if we can identify genetic characteristics 
that show a higher correlation with certain shapes of VAF 
distributions, they can be used as prognostic predictors 
or diagnostic markers. These characteristics include, 
for example, mutated genes, mutation accumulation in 
regulatory regions, changes in epigenetic modifications, 
and gene expression.

MATERIALS AND METHODS

Datasets

Somatic mutation data, which were identified 
by applying the Mutect2 software package to matched 
tumor-normal pairs, were downloaded from the TCGA 
data portal (https://portal.gdc.cancer.gov/). The following 
16 cancer types were analyzed: bladder urothelial 
carcinoma (BLCA), breast adenocarcinoma (BRCA), 
cervical squamous cell carcinoma and endocervical 
adenocarcinoma (CESC), colon adenocarcinoma (COAD), 
glioblastoma multiforme (GBM), head and neck squamous 
cell carcinoma (HNSC), kidney renal clear cell carcinoma 
(KIRC), lower-grade glioma (LGG), liver hepatocellular 
carcinoma (LIHC), lung adenocarcinoma (LUAD), 
lung squamous cell carcinoma (LUSC), ovarian serous 
carcinoma (OV), prostate adenocarcinoma (PRAD), 
skin cutaneous melanoma (SKCM), thyroid carcinoma 
(THCA), and uterine corpus endometrial carcinoma 
(UCEC). We also downloaded associated CNV data and 
clinical data [42].

Mutation analysis

In this study, we considered only point mutations 
with a coverage depth of ≥ 20. Moreover, we extracted 
the mutations considered to be MF if they were classified 
as “probably damaging” or “possibly damaging” by 
PolyPhen-2 [43, 44]. The MF mutations of amino acid 
substitution may have an impact on protein structures 
and/or functions, suggesting their possible involvement 
in cancer development or progression. Copy number 
status was combined with these mutation data. Mutations 
with CNVs were excluded from this study. That is, we 
extracted mutations with segment mean values between 
-0.2 and 0.2, and the number of probes ≥ 10 [45]. For each 
mutation, VAFs were calculated as the proportion of the 
variant allele reads to the total reads at the mutation site. 
The VAFs were adjusted with tumor purity estimated by 
the ESTIMATE R package [46].

Calculation of parameters that define the shape 
of VAF distribution shape

We only used samples with ≥ 2 MF mutations 
to calculate the three parameters that define the shape 
of VAF distributions: the corresponding VAF with the 

maximum value for probability density function of VAF 
distribution of MF mutations (m_Peak), log2[the total 
number of MF mutations] (m_Count) and MATH score 
for MF (m_MATH) [13]. The m_Peak indicates the peak 
position of the VAF distribution, the m_Count indicates 
the size for distribution, and the m_MATH indicates 
the variation of VAFs. We used these three parameters 
because they define overall shape of VAF distribution 
for MF.

Statistical analysis

Statistical analysis was conducted using the 
R software, version 3.3.1 (R Project for Statistical 
Computing, Vienna, Austria), and JMP Pro, version 13.0 
(SAS Institute Inc., Cary, NC, USA). A χ2 test or Fisher’s 
exact test (when ≥ 1 cell had an expected frequency of ≤ 
5 in any clinical group) was used to compare categorical 
variables. Survival analysis was performed using only 
clusters with sample sizes ≥ 10 in each cancer type. For 
the survival analysis, HRs with 95% confidence intervals 
(95% CIs) were calculated using a Cox proportional 
hazards regression analysis in the R survival package 
(version 2.41-3). The package was also used to evaluate 
the proportional-hazards assumption. To classify the 
samples into five clusters, k-medoids clustering with 
squared Euclidean distance metric was conducted using 
the cluster package (version 2.0.6) in R. For comparison of 
more than two groups, we performed ANOVA followed by 
Tukey’s honest significant difference test. For comparison 
of genetic and clinical characteristics among 16 cancer 
types, P-values were adjusted by Benjamini-Hochberg 
correction. P-values were considered statistically 
significant at < 0.05 (* P < 0.05, ** P < 0.01, and *** P < 
0.001).
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