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Abstract: Treatment of Mn(N(SiMe3)2)2(THF)2 with bulky chelating bis(alkoxide) ligand [1,1′:4′,1′ ′-
terphenyl]-2,2′ ′-diylbis(diphenylmethanol) (H2[O-terphenyl-O]Ph) formed a seesaw manganese(II)
complex Mn[O-terphenyl-O]Ph(THF)2, characterized by structural, spectroscopic, magnetic, and
analytical methods. The reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various nitrene precur-
sors was investigated. No reaction was observed between Mn[O-terphenyl-O]Ph(THF)2 and aryl
azides. In contrast, the treatment of Mn[O-terphenyl-O]Ph(THF)2 with iminoiodinane PhINTs (Ts =
p-toluenesulfonyl) was consistent with the formation of a metal-nitrene complex. In the presence of
styrene, the reaction led to the formation of aziridine. Combining varying ratios of styrene and PhINTs
in different solvents with 10 mol% of Mn[O-terphenyl-O]Ph(THF)2 at room temperature produced
2-phenylaziridine in up to a 79% yield. Exploration of the reactivity of Mn[O-terphenyl-O]Ph(THF)2

with various olefins revealed (1) moderate aziridination yields for p-substituted styrenes, irrespective
of the electronic nature of the substituent; (2) moderate yield for 1,1′-disubstituted α-methylstyrene;
(3) no aziridination for aliphatic α-olefins; (4) complex product mixtures for the β-substituted styrenes.
DFT calculations suggest that iminoiodinane is oxidatively added upon binding to Mn, and the re-
sulting formal imido intermediate has a high-spin Mn(III) center antiferromagnetically coupled to
an imidyl radical. This imidyl radical reacts with styrene to form a sextet intermediate that readily
reductively eliminates the formation of a sextet Mn(II) aziridine complex.

Keywords: alkoxides; aziridination; manganese; iminoiodinane

1. Introduction

The nitrogen equivalent of an epoxide, aziridine, is a three-membered heterocycle
containing one nitrogen and two carbon atoms [1]. The combination of Baeyer strain and
an electronegative element in a three-membered ring makes it susceptible to ring-opening
reactions [2]. Because of the high reactivity of aziridines, they serve as intermediates in the
total synthesis of natural products [3] and pharmaceuticals [4,5], exhibit diverse biologi-
cal/biomedical functions [6,7], and have been used extensively in the synthesis of various
heterocycles [8,9]. Different routes toward this useful functional group have been reported
in the literature [1,2,10,11]. In the absence of transition metals, aziridine synthesis requires
extreme conditions (high temperature and/or pressure) or the availability of highly reactive
ylide-based precursors [12–14]. Generally, transition metal-catalyzed nitrene group transfer
to olefins enables a more efficient route to aziridines, which also takes place under milder
reaction conditions. Various nitrene transfer reagents, such as iminoiodinanes [15–18],
organic azides [19], chloramine–T, and bromamine–T [20–22], can act as nitrene precursors
to carry out this transformation. Catalysts based on noble metals, such as Ag [23–28],
Rh [29–37], Ru [38–44], and Pd [45–47], were found to be reactive, with a wide variety of
alkenes. Although these catalysts are often very efficient, the high cost and low availability
of precious metals prompted interest in developing more sustainable catalysts based on
earth-abundant and generally less toxic 3d metals [48,49]. Aziridination via nitrene transfer
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using Mn and Fe porphyrins was reported early on by Breslow et al. [50]. The reactivity
of porphyrinoid (porphyrin, corrole, and phthalocyanine), salen, and oxazoline ligands
in aziridination has led to a growing interest among the scientific community in develop-
ing nitrogen-donor ligand-based aziridination catalysts with varying properties [48]. A
significant number of Fe- and Co-based aziridination catalysts have been reported in the
last decade, most of which are supported by nitrogen-donor ligands [51–66]. In recent
years, a number of Fe-based aziridination catalysts supported by oxygen-donor [67,68] and
carbon-donor [69–75] ligands have been reported as well. The stability and reactivity of
formally high-oxidation state Fe and Co have been demonstrated to depend on ancillary
ligand environments. While for weak-field nitrogen and oxygen ligand environments the
reactions are generally postulated to proceed via highly reactive (and often not isolable)
metal(III)-imidyl radical species, strong-field (carbene) ligation forms more stable Fe(IV)
imides [76,77]. In contrast, the field of Mn-based aziridination catalysis has been less
explored. Most reported Mn catalysts feature nitrogen-donor ligands [78–88], with the
notable exception of the mixed nitrogen/oxygen donor set of salen ligands. The present
work describes the aziridination reactivity of a Mn complex bearing an oxygen-ligand
environment exclusively.

Group-transfer catalysts containing 3d transition metals coordinated with bulky
bis(alkoxide) ligands are currently under investigation in our group [89,90]. Bis(alkoxide)
ligand platforms provide weak-field ligand environments, leading to reactive nitrene- and
carbene-transfer catalysts [91–96]. Using these systems, we demonstrated iron- and chromium-
mediated nitrene transfer to form azoarenes and carbodiimides, respectively [91–94]. How-
ever, no aziridine formation was observed in the reactions of the chromium or iron systems
with the combination of organoazides and styrene. To improve catalyst stability and perfor-
mance, we recently synthesized a new chelating bis(alkoxide) ligand H2[O-terphenyl-O]Ph

([1,1′:4′,1′ ′-terphenyl]-2,2′ ′-diylbis(diphenylmethanol)) [97,98]. The resulting iron com-
plex Fe[O-terphenyl-O]Ph(THF)2 (1, Scheme 1) demonstrated significantly more efficient
catalytic performance in azoarene production [97]. The improved performance of the
chelating bis(alkoxide) ligand [O-terphenyl-O]Ph in catalysis prompted us to investigate
the application of its complexes in olefin aziridination. Herein, we report the first exam-
ple of an Mn-based aziridination catalyst featuring a low-coordinate, oxygen-only, bulky
bis(alkoxide) ligand environment.
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Scheme 1. Synthesis of Mn[O-terphenyl-O]Ph(THF)2 (2), along with the previously reported synthesis
of iron analogue 1.

2. Results and Discussion

2.1. Reactivity of Fe[O-terphenyl-O]Ph(THF)2 (1) and Synthesis and Characterization of
Mn[O-terphenyl-O]Ph(THF)2 (2)

Complex 1 (Fe[O-terphenyl-O]Ph(THF)2) was prepared as previously described
(Scheme 1) [97]. The attempted aziridination using the combination of an organoazide
precursor (p-tolyl azide), styrene, and 1 (10 mol%) (room temperature) did not produce the
desired 2-phenyl-1-(p-tolyl)aziridine product (Figure S14). However, replacing organoazide
with the more reactive nitrene precursor iminoiodinane (PhINTs, Ts = p-toluenesulfonyl)
produced 2-phenyl-1-tosylaziridine in 32% yield (Figure S15). In selected cases, Mn-based
catalysts exhibited reactivity superior to their Fe-based counterparts [88]. We decided to
prepare the Mn(II) analogue of 1 and explore its aziridination reactivity.
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Mn[O-terphenyl-O]Ph(THF)2 (2) was synthesized by treating Mn(N(SiMe3)2)2(THF)2
with H2[O-terphenyl-O]Ph in THF at room temperature (Scheme 1). The purple solution
of the Mn(N(SiMe3)2)2(THF)2 precursor turned light yellow upon the addition of the
ligand over a course of 8 hours. Recrystallization of the crude reaction product from
CH2Cl2/THF mixture at −35 ◦C produced very pale yellow (nearly colorless) crystals of 2
in 74% yield. The product was characterized by solution magnetic measurements, X-ray
crystallography, IR, and UV-vis spectroscopy, and elemental analysis. The solution state
magnetic moment of 2 (measured in C6D6) was found to be 5.8 ± 0.2 µB (an average of two
measurements), consistent with high-spin Mn(II) (Figures S3 and S4). 1H NMR spectrum of
the paramagnetic Mn(II) complex 2 demonstrated only two broad signals around 1.6 ppm
and 3.8 ppm attributable to THF protons (Figures S1 and S2). The UV-vis spectrum in the
350–900 nm range was nearly featureless, as expected for high-spin Mn(II) (Figure S5).

The X-ray structure of 2 is presented in Figure 1 (crystal and refinement data are
given in Table S4). As anticipated, [O-terphenyl-O]Ph binds to the metal in a chelating
fashion. The geometry at the metal is a distorted seesaw, with a narrow angle between
the THF ligands (91.3(2)◦) and a wide angle between the alkoxide donors (150.3(2)◦) (see
Figure 1 for selected bond distances and angles). The seesaw geometry in 2 is similar to the
previously reported iron counterpart 1 [97]. The inter-alkoxide angle (RO-Mn-OR, ~150◦) in
2 is significantly wider than the corresponding angle in the related Mn(II) complex with two
monodentate alkoxides (Mn(OCtBu2Ph)2(THF)2, ~130◦) [99]. A similar difference in this
angle was observed for the corresponding iron isologues Fe[O-terphenyl-O]Ph(THF)2 (1)
and Fe(OCtBu2Ph)2(THF)2), [97,99,100] and likely resulted from the rigidity of the chelating
para-terphenyl bis(alkoxide) framework. The distance between the central phenyl and
Mn is 3.09 Å, suggesting no interaction between the phenyl ring and the metal center,
as previously observed for the iron analogue [97]. In contrast, a considerably shorter
distance between the metal and the central phenyl (2.49 Å) in the chromium analogue
Cr[O-terphenyl-O]Ph(THF)2, was consistent with a weak covalent interaction between
chromium and the central phenyl [98].
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Figure 1. X-ray structure (50% probability) of Mn[O-terphenyl-O]Ph(THF)2 (2). Alternative confor-
mations of one of the top THF ligands and one of the lateral phenyls, H atoms, and disordered 
solvent were omitted for clarity. Selected bond distances (Å) and angles (°): Mn-O1 1.888(5), Mn-
O2 1.922(4), Mn-O3 2.205(4), Mn-O4 2.178(4), O1-Mn-O2 150.3(2), and O3-Mn-O4 91.23(2). 

2.2. Reactivity of 2 in Aziridination 

Figure 1. X-ray structure (50% probability) of Mn[O-terphenyl-O]Ph(THF)2 (2). Alternative conforma-
tions of one of the top THF ligands and one of the lateral phenyls, H atoms, and disordered solvent
were omitted for clarity. Selected bond distances (Å) and angles (◦): Mn-O1 1.888(5), Mn-O2 1.922(4),
Mn-O3 2.205(4), Mn-O4 2.178(4), O1-Mn-O2 150.3(2), and O3-Mn-O4 91.23(2).

2.2. Reactivity of 2 in Aziridination

Following the synthesis and characterization of 2, its reactivity in nitrene transfer was
investigated. The reaction of 2 with representative organic aryl azides, including mesityl
azide, p-tolyl azide, and tosyl azide in benzene, did not display any significant color change,
even at elevated temperatures. No change in the 1H NMR spectra of the reaction mixtures
was observed, further suggesting a lack of reactivity. The reaction of 2 with organic azides in
the presence of styrene or isocyanides similarly exhibited no change in the NMR spectrum
of the reaction mixture. However, replacing the nitrene precursor with iminoiodinane
(PhINTs, Ts = p-toluenesulfonyl) produced a rapid color change (colorless to brown). The
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combination of PhINTs, styrene, and 2 (10 mol%, C6D6) for 24 h at room temperature led
to the formation of the desired aziridine product, with 78% yield. The 1H NMR spectrum
of the reaction mixture (Figure S15) was relatively clean, exhibiting peaks attributable to
the aziridine, styrene, and iodobenzene by-product. The control reaction of styrene (and
other alkenes, see below) with PhINTs in the absence of a catalyst under similar reaction
conditions formed trace amounts of TsNH2; no formation of aziridines was observed.

To optimize catalyst performance, we carried out the aziridination of styrene at vary-
ing ratios of catalyst, PhINTs, and styrene (Table 1). In addition, we investigated the effects
of different solvents on the reaction outcomes. All reactions were conducted at room tem-
perature for 24 hours. Only small variations in product yields (74–78%) were observed for
different ratios of styrene:PhINTs:catalyst in C6D6 (Table 1). These results are noteworthy,
as a large excess of styrene is generally necessary in Mn-catalyzed aziridination reactions.
The use of CD2Cl2 or CD3CN as the reaction solvent produced similar yields at a 4:1 ratio
of styrene:PhINTs (entries 1–3). However, in sharp contrast to C6D6, a significant decrease
in the product yields was observed in these solvents when the styrene:PhINTs ratio was
decreased to 1:1 (entries 6–8). It is feasible that a decrease in the product yields at a lower
styrene:PhINTs ratio in polar solvents results from the increased solubility and therefore
faster decomposition of reactive PhINTs in these solvents. As the reaction yield remained
nearly optimal in benzene under less wasteful reaction conditions (reagent ratio of 1:1), it
was used as a solvent in subsequent reactivity studies. Reducing catalyst loading to 5%
(entry 5) led to a decline in the aziridine yield to 53%; a significant amount of undissolved
PhINTs remained.

Table 1. Optimization of aziridination conditions.
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Entry 
(#) 

2 
(mol%) 

Solvent 
PhINTs 
(equiv) 

Styrene 
(equiv) 

Yield 
(%) 

1 10 C6D6 1 4 78 
2 10 CD2Cl2 1 4 79 
3 10 CD3CN 1 4 70 
4 10 C6D6 1 2 74 
5 5 C6D6 1 2 53 
6 10 C6D6 1 1 75 
7 10 CD2Cl2 1 1 17 
8 10 CD3CN 1 1 43 
9 10 C6D6 2 1 74 

Entry 2
(mol%) Solvent PhINTs

(equiv)
Styrene
(equiv)

Yield
(%)

1 10 C6D6 1 4 78
2 10 CD2Cl2 1 4 79
3 10 CD3CN 1 4 70
4 10 C6D6 1 2 74
5 5 C6D6 1 2 53
6 10 C6D6 1 1 75
7 10 CD2Cl2 1 1 17
8 10 CD3CN 1 1 43
9 10 C6D6 2 1 74
10 10 C6D6 1.5 1 75

Following the optimization of reaction conditions for styrene aziridination, the aziridi-
nation of additional olefins was investigated. All reactions were conducted at room tem-
perature for 24 h using 10 mol% catalyst and a ratio of 1:1 PhINTs:styrene. The formation
of the products was confirmed by 1H NMR spectroscopy and GC-MS (see Supplementary
Material). Several different variables in the olefin structure were investigated (Figure 2),
including the electronic effect (para substitution) in styrene, the aromatic vs. aliphatic
nature of mono-substituted olefins, and α- and β-disubstituted styrenes. The catalyst
showed moderate reactivity with p-tBu, p-CN, and p-CF3-substituted styrenes (52–54%); a
slightly higher yield (62%) was obtained for electron-rich 4-methoxy styrene. In addition to
the aziridine products, NMR spectra demonstrate the presence of an unreacted starting
material (styrene) and the expected by-product iodobenzene. No additional products
(e.g., TsNH2 or C-H aminated products) were observed in significant quantities by 1H
NMR. However, the formation of these products in small quantities, or the formation of
paramagnetic metal-based by-products, cannot be ruled out. The comparable reactivity of
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electron-rich and electron-poor styrenes in Mn-catalyzed aziridination is consistent with
previous reports [88]. No aziridination reactivity with non-aromatic olefins (methyl acrylate
and 1-decene, Figures S21 and S22) was observed.
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We also investigated the reactivity of α- and β-disubstituted styrenes. The reaction of
α-methyl-styrene produced 1,1’-methylphenylaziridine relatively cleanly, with a moderate
yield (53%). However, nitrene transfer onto β-disubstituted styrenes (cis/trans β-methyl-
styrene and cis/trans stilbene) formed significantly more complex mixtures of products
exhibiting broad resonances. Our attempts to isolate the organic products of these reactions
were unsuccessful.

2.3. Spectroscopic and Computational Probing of the Reaction Mechanism

How does the formation of aziridine occur with 2 as a catalyst? Different mechanistic
hypotheses for manganese-mediated aziridination with PhINTs were proposed, including
via a Mn-N(Ts)IPh adduct or Mn=NTs imido [85,88]. We probed the nature of reactive
intermediates by NMR spectroscopy and DFT calculations. PhINTs is insoluble in the
reaction medium. Upon the combination of 2 with PhINTs in C6D6, its dissolution occurs.
The 1H NMR spectrum collected immediately after the dissolution of PhINTs (approxi-
mately 10–15 min) showed the formation of free PhI (iodobenzene, Figures S7–S9). Thus,
the formation of PhI occurs concurrently with the formation of brown intermediates and
dissolution of PhINTs, suggesting that Mn[O-terphenyl-O]Ph-N(Ts)IPh is not a long-lived
reaction intermediate. The addition of styrene after the formation of the brown interme-
diate shows aziridine formation, suggesting that the nitrene transfer to styrene does not
take place via a Mn[O-terphenyl-O]Ph-N(Ts)IPh intermediate. No TsNH2 was observed
by 1H NMR after 15 min; formation of TsNH2 was observed after approximately 20 h
(Figures S10–S12). The UV-vis spectra of the mixtures of 2 with PhINTs, taken at different
time intervals, were not informative (Figure S13). Because our multiple attempts to isolate
reaction intermediates were not successful, we used DFT calculations to probe the nature
of the reaction intermediates and the reaction mechanism.
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Additional support for the short-lived iminoiodinane adduct comes from computa-
tions. DFT calculations of putative iminoiodinane adducts showed significant activation, as
evidenced by the long N-I distances of 2.94 and 3.10 Å for the two isomers vs. 2.06 Å in free
iminoiodinane (Figure S28). Mayer bond orders of only 0.08 and 0.05 confirm that the N-I
bond is broken in both isomers. Moreover, the electronic structure of this species is nearly
identical to that of the formal imido species (vide infra) formed after the loss of PhI. The
reaction of 2 with two equivalents of PhINTs is unlikely due to steric constraints [86,98].
We hypothesize that the aziridination of styrene takes place via a Mn-imido intermediate.

Multiple geometries and possible oxidation/spin states were evaluated for the man-
ganese imido species. The lowest energy quartet optimized structure is shown in Figure 3.
This species has a short Mn-NTs bond length of 1.72 Å that is slightly longer than the
known Mn-imido species of ~1.6 Å [101–103] and shorter Mn-O bond lengths of 1.75 and
1.78 Å than the crystal structure of the Mn(II) species (Figure 1). The spin isosurface shows
that spin is mostly localized at Mn and N, with opposite spins on each atom in Figure 3;
Mulliken spin densities are 3.5 for Mn, 0.0 for [O-terphenyl-O]Ph, and −0.5 for NTs. This
suggests that this quartet has an electronic structure between a formal high-spin Mn(IV)-
imido and high-spin Mn(III)-imidyl, with antiferromagnetic coupling between the metal
and ligand radical. This geometric and electronic structure is similar to the one reported for
Mn with a triphenylamido amine ligand; thus, we consider it Mn(III)-imidyl going forward
and computationally probe the radical mechanism previously proposed [88]. Analysis of
the electronic structure of the iminoiodinane adduct showed Mulliken spins of 3.4 for Mn,
0.0 for [O-terphenyl-O]Ph, and −0.4 for TsNIPh, and visualization of the spin density (see
Supplementary Material) shows that it is localized on the N. Thus, that adduct is probably
better interpreted as manganese imidyl with a van der Waals-bound PhI.
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Figure 4 summarizes the lowest energy structures along the reaction mechanism.
Alternative regio and stereoisomers, and spin states are discussed in the Supporting In-
formation. Starting with the bis-THF complex, the loss of both THF molecules is uphill
by 13.2 kcal/mol. Binding of iminoiodinane to Mn[O-terphenyl-O]Ph is exergonic by
28.3 kcal/mol and affords putative iminoiodinane adduct A, which we use as the refer-
ence point for this mechanism. As discussed above, A has a nearly identical electronic
structure to Mn(III)-imidyl intermediate B, which is exergonic by 2.3 kcal/mol. B reacts
with styrene on the quartet surface through a transition state that is 6.8 kcal/mol uphill
in Gibbs free energy, and spin crossover occurs before the radical intermediate C, which
is downhill in Gibbs energy by 12.4 kcal/mol relative to B. C has Mulliken spins of 4.0
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for Mn, 0.0 for [O-terphenyl-O]Ph, and 0.9 for NTsCH2CHPh, the latter of which is mostly
localized on CHPh (see Supplementary Material). The barrier between C and D is uphill by
4.9 kcal/mol, and D is exergonic by 7.0 kcal/mol. D has Mulliken spins of 4.8 for Mn, 0.1 for
[O-terphenyl-O]Ph, and 0.1 for aziridine. Thus, the high-spin Mn(III) intermediate C is well
poised to reductively eliminate aziridine and re-form sextet Mn(II), D, in a spin-allowed
step. This mechanism agrees well with the previously proposed mechanism [88].
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The possible catalytic cycle (combining the spectroscopic and computational findings
described above) is given in Scheme 2 below. The formation of PhINT adduct A is followed
by the dissociation of PhI and facile formation of Mn(III)-imidyl radical B (free PhI is
observed by NMR). While our computational studies focused on the reaction path in
which PhINTs replace both THF ligands, it is possible that one THF remains coordinated
to the metal throughout the reaction mechanism. Next, reactive (high-energy) species B
reacts with styrene to form lower-energy radical intermediate C. As C is significantly more
stable and the reaction barrier is low, little discrimination is observed between different
para-substituted styrenes (featuring different electronic effects in the sterically remote para
position). However, the reaction is anticipated to be sensitive to a more pronounced steric
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effect, including styrene di-substitution. Likely due to the reactive radical nature of the
reaction, complex mixtures of the reaction products were observed for the β-disubstituted
styrenes. Subsequent C—N coupling forms azidine adduct D, which restores A, liberating
the aziridine product.
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3. Summary and Conclusions

We have reported the synthesis and aziridination reactivity of a new manganese com-
plex Mn[O-terphenyl-O]Ph(THF)2, ligated by a bulky chelating bis(alkoxide) ligand. While
the complex did not exhibit a reaction with an organoazide, its treatment with a mixture of
PhINTs and styrene led to the formation of 2-phenyl-1-tosylaziridine in a good yield (up
to 79%) with 10 mol% of the catalyst at room temperature. Various p-substituted styrenes,
as well as the α-methyl-styrene produce the corresponding aziridines in comparable mod-
erate yields; no reactivity with aliphatic olefins was observed. DFT calculations suggest
a radical reaction intermediate, which is formed upon reaction of the high-spin imidyl
radical MnIII[O-terphenyl-O]Ph(=NTs•) with styrene. Whereas the reactivity of the Mn
bis(alkoxide) aziridination catalyst is not superior to the other known Mn aziridination cat-
alysts (described in the Introduction), it (1) allows styrene aziridination relatively efficiently
under sustainable (PhINTs:styrene 1:1 ratio) conditions, and (2) represents the first example
of nitrene transfer into olefin by a 3d complex in a bulky bis(alkoxide) ligand environment.
Our future studies will focus on the additional group-transfer reactions of middle and late
3d complexes in weak-field alkoxide ligand environments, and on the attempts to isolated
and structurally and spectroscopically characterize various reaction intermediates.

4. Materials and Methods
4.1. General Methods and Characterization

Air-sensitive reactions were carried out in a nitrogen-filled glovebox. MnCl2 and
KN(SiMe3)2 were purchased from Strem chemicals and Sigma-Aldrich, respectively, and
used as received. 2-bromophenylboronic acid, 1,4-diiodobenzene, and K2CO3 were pur-
chased from Sigma-Aldrich and used as received. H2[O-terphenyl-O]Ph and PhINTs were
synthesized based on the literature procedures [97,104]. Benzene-d6 was purchased from
Cambridge Isotope Laboratories and stored over 3 Å molecular sieves. HPLC-grade non-
deuterated solvents were purchased from Sigma-Aldrich and purified using an MBraun
solvent purification system. Compounds were generally characterized by 1H and 13C
NMR, high-resolution mass spectrometry, and/or elemental analysis. Selected compounds
were characterized by X-ray crystallography. NMR spectra were recorded at the Lumigen
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Instrument Center on an Agilent 400 MHz Spectrometer and an Agilent DD2-600 MHz
Spectrometer in C6D6 or CDCl3 at room temperature. Chemical shifts and coupling con-
stants (J) were reported in parts per million and Hertz, respectively. The solution state
effective magnetic moment of 2 was determined using the Evans method. Elemental analy-
sis was carried out by Midwest Microlab LLC under air-free conditions. A Thermo Fisher
Scientific LTQ Orbittrap XL mass spectrometer at the Lumigen Instrument Centre was
used for high-resolution mass spectra. IR spectra of powdered samples were recorded
on a Shimadzu IR Affinity-1 FT-IR Spectrometer outfitted with an MIRacle10 attenuated
total reflectance accessory with a monolithic diamond crystal stage and pressure clamp.
UV-visible spectra were obtained using a Shimadzu UV-1800 spectrometer. GC-MS analysis
was carried out using an Agilent 6890N spectrometer, Thermo TG5MS 30 m × 0.32 mm ×
0.25 µm column, 7683 series injector, and Agilent 5973 detector.

4.2. Synthesis of Mn[O-terphenyl-O]Ph(THF)2 (2)

A 57 mg solution of ligand (0.096 mmol, 1 eq.) in THF was added dropwise to a 5 mL
THF solution of Mn[N(SiMe3)2]2(THF)2 [105] (0.050 g, 0.096 mmol, 1 eq.). The color of
the reaction changed from purple to light brown over the course of 12 h. The volatiles
were removed under vacuum, and the crude product was recrystallized using a DCM-THF
solvent mixture at −35 ◦C to give the complex 88% yield (0.061 mg, 0.077 mmol). IR
(cm−1, selected peaks) 2942 (m), 2899 (m), 2366 (m), 1490 (s), 1439 (s), 1115 (s), 1173 (s),
1073 (s), 1026 (s), 909 (s), 888 (s), 832 (s), 790 (s), 755 (s), 700 (s), and 638 (s). The UV−vis
spectrum was nearly featureless in the 350–800 nm region (Figure S5). The magnetic
moment for the compound was determined using the Evans method; two measurements
(Figures S1 and S2) yielded µeff values of 5.68 and 5.97 µB. Anal. Calc for C52H46MnO4: C,
79.07; H, 5.87. Found: C, 79.84; H, 6.21.

4.3. General Procedure for Catalytic Formation of Aziridines

A vial containing solid PhINTs (1 eq.) was transferred to a stirred C6D6 solution
containing mesitylene (internal standard), alkene (1 eq.) and Mn[O-terphenyl-O]Ph(THF)2
(0.1 eq.). The color of the solution changed from colorless to brown. The NMR of the
solution was collected after 24 h, and the yield was calculated with reference to the internal
standard. Major products were identified by NMR and GC-MS. C6D6 was removed under
vacuum, and the crude mixture was dissolved in CDCl3. A comparison of the NMR with
literature reports confirmed the formation of aziridines [106–108].

4.4. Computational Methods

Calculations were performed using density functional theory, as implemented in
Gaussian 09 [109]. Geometry optimizations and frequency calculations [110], and wave-
function stability analyses [111] were executed at the BP86-D3(BJ)/def2-SVP level of theory
employing density fitting and ultrafine grids [112–116]. Subsequent single-point energy
refinements were performed at the B3LYP-D3(BJ)/def2-TZVP level of theory with ultrafine
grids [114,117–120]. Structural analysis and orbital/spin density visualization were done
in GaussView 06 [121]. Mayer bond orders were calculated using Multiwfn 3.5 [122].

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules27185751/s1, 1H NMR and GC-MS spectra of the aziri-
dine products (Figures S14–S27), characterization data for complex 2 (Figures S1–S13), computational
details, including energies, frequencies, and optimized geometries, for all species (Figures S28–S30,
Tables S1–S3), crystal and refinement data for 2 (Table S4). CCDC 2183156.
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