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Quantifying global tissue deformation patterns is essential for understanding how organ-

specific morphology is generated during development and regeneration. However, due to

imaging difficulties and complex morphology, little is known about deformation dynamics for

most vertebrate organs such as the brain and heart. To better understand these dynamics, we

propose a method to precisely reconstruct global deformation patterns for three-dimensional

morphogenesis of curved epithelial sheets using positional data from labeled cells

representing only 1–10% of the entire tissue with limited resolution. By combining differential-

geometrical and Bayesian frameworks, the method is applicable to any morphology described

with arbitrary coordinates, and ensures the feasibility of analyzing many vertebrate

organs. Application to data from chick forebrain morphogenesis demonstrates that our

method provides not only a quantitative description of tissue deformation dynamics but also

predictions of the mechanisms that determine organ-specific morphology, which could form

the basis for the multi-scale understanding of organ morphogenesis.
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Understanding how three-dimensional (3D) organ
morphology is determined during development and
regeneration is one of the ultimate goals in biology. This is

important not only for pure scientific interests but also for
potential medical applications for controlling and designing
functional organs. To achieve these goals, it is essential to clarify
the quantitative relationships between microscopic molecular/
cellular activities and organ-level tissue deformation dynamics1.
While the former have been studied for several decades, the latter
—macroscopic geometrical information about physical tissue
deformation—has been lacking. Recent advancements in imaging
techniques and fluorescent probes have made total cell recordings
possible, especially in flat, small, and relatively transparent tissues
such as Drosophila germband and wing, and Zebrafish skin2–6.
Based on tracking data, collective cellular behaviors and tissue
deformation dynamics at single-cell resolution during develop-
ment have been studied using velocimetric methods.

Aside from these notable exceptions, we have little knowledge
of tissue deformation dynamics during the morphogenesis of
many vertebrate organs including brain, heart, and even artifi-
cially synthesized organoids derived from ES and iPS cells7–10.
One reason for this lack of information is the difficulty in
measurement; in general, tissue morphologies are achieved
through complex 3D deformation of highly curved sheet-like
structures, either cystic or tubular. Furthermore, high resolution
deep imaging is often quite difficult. In addition, to achieve high
temporal resolution, methods of embryo culture which maintain
normal function over an appropriate period are required.
From the analytical perspective, image processing that can
automatically distinguish individual cell trajectories from a dense
cell population is often difficult, which itself is an important issue
in this field11, 12. Furthermore, although sheet deformation occurs
in 3D space, its actual structure is two-dimensional (2D) even
with curvature. Thus, in order to analyze deformation dynamics,
it is necessary to introduce a 2D curvilinear coordinate system
onto the sheet with the involvement of a non-Euclidean metric.
As will be described below, the 2D coordinate system and metric
is, in general, different at each developmental time point with
differing morphology, making it difficult to perform ordinary
velocimetric analysis.

Against this background, we propose a method to reconstruct
tissue deformation dynamics for 3D morphogenesis of curved
epithelial sheets from a small set of positional cellular data with
limited resolution. This method is a generalization of that pro-
posed in our previous study which focused on flat tissues13. By
combining differential-geometrical and Bayesian frameworks, the
difficulties listed above are overcome. In particular, with this
method, manifold- and tensor-based descriptions are adopted,
allowing it to be applied to any tissue described with arbitrary
coordinate systems. This is critically important for analyzing the
deformation of curved structures because orthonormal coordinate
systems cannot be applied to them and because curvilinear
coordinate systems defining the surface itself can differ with
changes in morphology. With our method, positional information
from just 1–10% of the total cells within a tissue is adequate for
reconstructing the global deformation pattern with sufficient
accuracy, which ensures the feasibility of analyzing many
vertebrate organs with complex morphologies. Moreover, the
sparse cell labeling makes it easier to distinguish individual cells
even if the microscopic resolution is not high.

The performance of the proposed method is validated using
both simulated and in vivo data. In particular, we focus on the
process of tissue evagination and confirm with simulated data
that the spatial patterns of deformation characteristics calculated
from reconstructed tissue deformation maps show clear
signatures for distinguishing different mechanisms that generate

similar morphologies. Then, as an actual biological target,
we apply this method to morphogenesis during early develop-
ment of the chick forebrain from somite stage (SS) 5 to SS13; SS5
corresponds to the very beginning of optic vesicle (OV) formation
from a simple neural tube and at SS13 a fully evaginated OV and
overall more complex morphology is present (Fig. 1). The tissue
deformation analysis shows that globally aligned anisotropic
deformation (i.e., biased tissue stretching) along the medio-lateral
axis, rather than local area growth, is the predominant morpho-
genetic mechanism that occurs throughout the entire period of
our focus (i.e., SS5-SS13). This is supported by experiments in
which tissue evagination and OV elongation could still be
observed even though cell proliferation has been inhibited,
although overall size changes slightly. Quantification of
cellular characteristics (specifically cell size, shape, and division
orientation) suggests that this tissue-level anisotropic deforma-
tion is driven by cell rearrangement. Thus, our analysis not only
provides quantitative descriptions of tissue deformation dynamics
but also enables the prediction or narrowing of mechanisms that
determine organ-specific morphology, which could form the basis
for multi-scale understanding of organ morphogenesis.

Results
2D coordinates on curved surfaces and metric anisotropy.
Within epithelial tissues, adjacent cells are tightly connected
through apical junctions14, 15, enabling the maintenance of sheet-
like structures during morphogenesis. In the case of forebrain
morphogenesis, the neuroepithelial sheet maintains a single layer
of columnar cells of almost uniform height throughout each
developmental stage from SS5 to SS13 (Fig. 1e and Supplemen-
tary Fig. 7C, and see also Supplementary Fig. 7A, B for methods
on measuring cell height or tissue thickness). In the following,
we propose a method to reconstruct the deformation dynamics
of such sheet-like structures from a limited data set. We first give
a brief overview of differential-geometrical descriptions of a
surface and its deformation (see Supplementary Notes and text-
books such as refs 16, 17 for details), then describe how a
Bayesian statistical model for inferring deformation maps is
developed.

In most microscopic imaging data, cell position within an
epithelial sheet is given as a 3D coordinate. However, since a sheet
is actually a 2D structure embedded in 3D space, and the position
of each cell is generally restricted within the sheet during
development (except for processes such as delamination and cell
death), the deformation of a sheet can essentially be described as a
2D map that relates the positions before and after deformation for
each cell. Thus, in order to analyze sheet deformation dynamics,
we need to start by allotting 2D coordinates to points on a curved
sheet. Epithelial tissues often have sac like or tubular morphol-
ogies that can be approximated by closed surfaces, for which the
spherical harmonics expansion (SHE) (i.e., representation as a
weighted sum of multiple harmonics) would be the best choice
for obtaining 2D coordinate charts (Figs. 1c and 2a, and see also
Supplementary Note 1 for details). This representation means a
smooth mapping of a given closed surface onto a unit sphere,
and intuitively the 2D coordinates on the sheet can be interpreted
as a pair of the latitude and longitude. In the example of chick
forebrain shown in Fig. 1c, a 2D coordinate was chosen so that
its anterior (or posterior) end corresponds to the “Arctic”
(or “Antarctic”) pole.

As a result of compressing a curved surface into a flat plane, the
metric (roughly, a type of ruler) differs depending on the position
in the given 2D coordinate system (Fig. 2a(bottom), b and
Supplementary Note 1). This is intuitively understandable by
considering the relationship between the surface of the earth in
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Fig. 1 Chick forebrain formation as an example of 3D epithelial sheet morphogenesis. a Chick embryo at HH11 (SS13). Scale bar: 500 μm. b Methods for
modeling forebrain 3D morphology. Using a two-photon microscopic image (left), apical and basal surfaces were manually traced. The traced data were
represented as a set of dots for each surface. From the traced data, smooth 3D morphologies of both the apical (white) and basal (gray) surfaces were
obtained using the spherical harmonics approximation (right). During the developmental stages studied, the forebrain has a single-layered structure. Scale
bar: 100 μm. c Spherical harmonics expansion (SHE) of 3D sheet morphology. This expansion not only provides a smooth approximation of complex sheet
morphology but also a 2D coordinate system on the sheet. Since epithelial tissues often have sac-like or tubular morphologies that can be approximated by
closed surfaces, SHE is a convenient way to define the 2D curvilinear coordinates on the surface (see also Fig. 2 and Supplementary Notes). d Time course
of the morphological changes of the apical surfaces of the forebrain from SS5 (HH8+) to SS13 (HH11). e Distribution of tissue thickness. From SS5 to SS13,
the thickness is almost spatially uniform although the mean values gradually decrease (see Supplementary Fig. 7 for details)
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3D space and a flattened 2D world atlas, for example. In this case,
a circular neighborhood of the same size (small relative to the
curvature radius) at each point looks very different depending on
its position within the 2D atlas; this is due to the difference in the
metric ~g between points on the atlas (Fig. 2b). Since the deviation
Δx from each point in 3D space and its correspondence in 2D Δu
should have the same size, the metric, called the induced metric,

satisfies the following relationship (Supplementary Note 1):

kΔxk2 ¼ ΔxTΔx ¼ ΔuT~gΔu ¼ kΔuk2: ð1Þ

This metric ~g plays key roles in developing statistical models
for the inference of tissue deformation maps and in calculating
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spatiotemporal patterns of tissue deformation characteristics after
the map is determined.

Geometrical characterization of tissue deformation dynamics.
Organ-specific morphology is achieved through complex tissue
deformation dynamics resulting from cellular processes such as
division, apoptosis, and intercellular rearrangement18. As is the
case in many vertebrate organs, the scale of the whole organ
(102−104 μm) is generally much larger than that of a single cell
(100−101 μm), and thus it is useful in tissue-level deformation
analysis to regard them as continuums by averaging the
variability in the shape and size of individual cells. Continuum
deformation can be described as a map, and as with positional
coordinates of cells, the deformation map also has 3D (denoted
by x= ϕ(X)) and 2D (u ¼ ~ϕðUÞ) representations (Fig. 2a).
For a given pair of 2D coordinate charts before and after
deformation (H and h in Fig. 2a), ϕ and ~ϕ are linked by the
relationship, ϕ ¼ h�1 � ~ϕ �H. As mentioned before, since
epithelial sheets are two-dimensional structures, what we directly
estimate here from positional cell data is the 2D map ~ϕ, and
its 3D representation ϕ is ultimately reconstructed using that
relationship (see Fig. 3 for the flowchart of tissue deformation
analysis). In practical estimation processes, a map is modeled
by a lattice deformation; i.e., the correspondence of positional
coordinates before and after deformation for each lattice point are
estimated (see the gray lattice in Fig. 2a as an example, and
Supplementary Notes 2, 3). The destination of an off-lattice point
is approximated by a weighted sum of the destinations of
neighboring lattice points (Supplementary Notes 2, 3).

Once the map is obtained, local tissue deformation can be
calculated from the deformation gradient tensor ~F (Fig. 2a and
Supplementary Note 2); in particular, quantifying the spatial
patterns of area growth rate (the change in the area per given time
interval) and deformation anisotropy (biased stretching of
local tissue pieces) clarifies when, where, and to what extent
characteristic deformations occur. On the cellular scale, such local
deformation is realized by different processes such as cell
proliferation, cell growth, cell death, and cell intercalation.
Quantifying local deformation patterns enables us to predict
or narrow down the cellular mechanisms that determine organ-
specific morphology2, 19.

Bayesian reconstruction of tissue deformation maps. As pre-
viously described, total cell recording is often difficult for many
vertebrate organs, and discrete snapshot data from randomly and
sparsely labeled cells are more practically available. Such
positional data of cells include different types of noise, such as

stochasticity in cell trajectories originating from the randomness
of cell division orientation, and positional rearrangement through
push-and-pull dynamics between neighboring cells, as well as
measurement noise. Thus, to reconstruct tissue deformation
dynamics from such data, statistical approaches are necessary. In
this study, we adopted a hierarchical Bayesian modeling, where
the statistical parameter θ to be estimated from the positional
data of labeled cells was the discretized tissue deformation map,
i.e., the positional coordinate of each lattice point after defor-
mation (Supplementary Fig. 2). Here, we briefly explain the basic
concepts and main assumptions in the process of estimating the
2D map ~ϕ (see Supplementary Note 3 for the details of the
estimation process).

For a given data point u (i.e., the 2D positions of labeled cells
after deformation), the posterior probability for the parameter has
the form P(θ|u) ∝ P(u|θ)π1(θ|η1)π2(η1|η2). P(θ|u) is the probability
of observing the data point u for a fixed parameter set θ.
Conversely, as a function of θ with u fixed, this acts as a
likelihood function. In regards to this data distribution, we
assumed additive noise obeying isotropic Gaussian distribution
on the tangent plane at each point in the 3D representation
(Fig. 2c and Supplementary Fig. 2). The key point here is that this
noise distribution needs to be transformed into its 2D
representation for modeling P(u|θ), and the transformed
distribution is no longer isotropic but anisotropic due to the
anisotropy of the metric ~g as shown earlier (Fig. 2a, b). For each
data point (i-th point), the variance-covariance matrix ~ΣðiÞ and
the metric have the following relationship:

~ΣðiÞ ¼ σ2~g�1ð~ϕðU iÞÞ ffi σ2~g�1ðuiÞ; ð2Þ

Fig. 2 Mathematical description of epithelial-sheet deformation. a Geometrical view of tissue deformation. When the scale of organs is much larger than
that of a cell, tissue-level deformation can be described as a map of continuum. The deformation map of a surface has 3D and 2D representations (x= ϕ(X)
and u ¼ ~ϕðUÞ, respectively). H(X) and h(x) are functions that indicate how to transform a 3D coordinate into 2D at different time points (T1 and T2). With
these functions, the relationship ϕ ¼ h�1 � ~ϕ � H holds. In our method, using positional data from sparsely labeled cells, the 2D map modeled by lattice
deformation is estimated; the deformation of the gray region from ~Ω to ~ϕð~ΩÞ shows an example. The regions ~Ω and ~ϕð~ΩÞ can be linked to their 3D
representations (i.e., Ω and ϕ(Ω)) through the functions H−1(U) and h−1(u), respectively. After the map is determined, local tissue deformation can be
calculated from the deformation gradient tensor ~F. In the figure, the local deformation around a point ~p in a 2D coordinate system (from Δ~Ωp to ~FðΔ~ΩpÞ) is
shown. As a result of compressing a curved surface into a flat plane, the metric differs depending on the position in the 2D coordinate systems (~GαβðUÞ and
~gαβðuÞ). The bottom figure shows examples of the positional dependence of metric calculated from the spherical harmonics used for modeling the 3D
morphologies at time points T1 and T2 shown in the figure. Different ellipses with different colors show the metric anisotropy at their positions. b Using the
metric ~g, the neighborhood of each point in the 3D representation (ΔxTΔx= const., shown as red circles) can be approximated by ΔuT~gΔu ¼ const. in 2D.
c In the process of estimating deformation maps from landmark positions, we assumed that the observed positions include an additive noise obeying
isotropic Gaussian distribution (ξi) on the tangent plane at each point in the 3D representation. In the 2D representation, the noise distribution becomes
anisotropic (~ξi) due to metric anisotropy. The variance-covariance matrix was modeled as ~ΣðiÞ ffi σ2~g�1ðuiÞ using the metric at the observed position in the
2D coordinate system of each landmark. σ represents noise magnitude. Including this noise anisotropy into the likelihood function improves the estimation
performance (see Fig. 4)

Flowchart of tissue deformation analysis

1. Measure 3D positions of landmarks on a deforming curved surface 

2. Represent the 3D data on a 2D coordinate system 
    (e.g., using simple projection or spherical harmonics expansion)

3. Compute positional dependence of metric on the 2D coordinate system

4. Compute Bayesian inference

5. Convert estimated 2D deformation map to 3D

Fig. 3 Flowchart of estimating tissue deformation maps from landmark
positions
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Where σ2 is the magnitude of the noise. In the computation,
~ΣðiÞ was approximated by the metric at the data point after
deformation (i.e., at ui) as shown in the rightmost term in
Eq. (2) because ~ϕ itself is the value to be estimated and thus it is
unknown before computation. As will be described later,
including this noise anisotropy into the data distribution model
is important for improving the estimation performance. π1(θ|η1)
and π2(η1|η2) are the prior distributions for the parameter θ and
for the hyper-parameter η1. η2 is also the hyper-parameter
necessary for determining the shape of the distribution π2.
As biologically plausible prior information, we assumed the
smoothness of deformation both inside the tissue as well as at its
boundary. Specifically, the first spatial derivative of the deforma-
tion gradient tensor ~F and the second derivative of the boundary
curve are assumed to be not large (Supplementary Figs. 2 and 3,
and see also Supplementary Note 3 for the concrete
implementation).

Using these conditions, in the computation the values of the
hyper-parameters are first determined by maximizing the
marginal likelihood function ∫P(u|θ)π(θ|η)dθ; then, using these
values, the discretized deformation map θ is obtained by

maximizing the posterior probability13, 20, 21. Finally, from the
relationship ϕ ¼ h�1 � ~ϕ �H, the 3D deformation map is
reconstructed.

Validation of the proposed method using artificial data sets.
We evaluated the performance of our method by using artificially
generated data (Figs. 4 and 5). Considering the later biological
application to forebrain morphogenesis in which OV formation is
one of the main events, we generated test data from two types of
tissue evagination models.

The first model depicts the evagination of a surface whose
shape before and after deformation can be represented as graphs,
i.e., z= f(x, y) (Fig. 4a and see also Supplementary Note 4-1 for
details). In this case, the 2D coordinates for each cell within the
sheet can be simply given by its projection onto the z-plane. The
deformation map is defined by specifying the correspondence of
positions before and after deformation for all points on the sheet.
The data generated from this model were used to test how
estimation performance is affected by the spatial heterogeneity of
noise anisotropy resulting from the heterogeneity of the metric
tensor whose values are determined by the choice of the 2D
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Fig. 4 Validation using artificially generated data I. a A test of how the estimation performance is affected by spatially heterogeneous noise anisotropy
resulting from metric anisotropy. We Inferred the deformation map of a surface whose shape before and after deformation can be represented as graphs. b
Since the answer of the map was given, the performance of the proposed method was evaluated by its estimation error (see Supplementary Note 4–1). The
labels, “True”, “Approx.”, and “No adjust.” indicate cases in which the noise anisotropy was calculated using the answer of the map given a priori
(Eq. (2)), was approximated using the data point (Eq. (2)), or was not taken into consideration (i.e., 2D isotropic noise was assumed), respectively.
Including the noise anisotropy in the likelihood improved the mean estimation error by 5–10%, but more importantly, c it prevented spatially biased error;
otherwise the error strongly depends on position (more precisely, the error is highly correlated with the size of the induced metric that is measured by
det½~g�), which was clearly observed when the magnitude of noise was not negligible. d Positional dependence of the mean estimation error over 10
estimation trials. The error bar indicates the standard deviation. Incorporating metric-dependent noise anisotropy into the statistical model improves the
error bias. In particular, the error in the region with a steep gradient (e.g., at position 5) was clearly improved
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coordinate system (Fig. 2). To analyze this, we compared the
following two situations: one case in which isotropic noise was
assumed in the data distribution P(u|θ), and another case in
which noise anisotropy was adjusted based on the metric tensor
at each position (Eq. (2)). As shown in Fig. 4b, the average
estimation error was only improved by 5–10% by including the

noise anisotropy, but more importantly, we found that when the
noise anisotropy is not included in the likelihood function,
the estimation precision of deformation dynamics depends on the
position within the tissue; for some domains, their deformation
dynamics is more precisely estimated, but in other domains it is
worse (Fig. 4c, d). This position-dependent estimation error was
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evident when the magnitude of noise added to the test data was
not negligible (reflecting real biological data), while it was barely
detectable when the noise was relatively small (corresponding to a
subcellular scale). This analysis clearly showed that modeling the
data distribution with metric-dependent noise anisotropy is
necessary for preventing bias in the estimation error, or in other
words, for preventing the dependence of choosing the 2D
coordinate system on the sheet. In regard to the magnitude of
the estimation error itself, compared to the mesh size, deforma-
tion maps and spatial patterns of deformation characteristics are
captured precisely.

Next, in order to generate data reflecting more realistic
situations, we performed mechanical simulations for evagination
of an elastic membrane (Fig. 5 and see also Supplementary
Note 4-2 for details). In the simulations, two potential candidate
mechanisms for achieving tissue evagination were tested: biased
tissue growth as seen in plant root development22, and
mechanical anisotropy without growth, such as the main
mechanism in Drosophila germband extension23, 24 (Fig. 5b).
The main purpose was to evaluate whether these two different
deformation mechanisms can be clearly distinguished using only
positional data from sparsely labeled cells. Different from the
previous case, only the rules for growth rate or mechanical
anisotropy were given, and for each cell the position after
deformation was not specified a priori, meaning that the value
for the deformation map ϕ was not given. Therefore, the
performance of the proposed method was validated indirectly by
examining prediction errors (i.e., cross validation).

In the inference processes, the 2D coordinates for the cells were
given using the SHE, and taking into consideration the
morphological symmetry, the deformation map for the region
that included one protrusion was estimated. As shown in
Fig. 5b,c, deformation dynamics for both mechanisms were
precisely reconstructed and could be clearly distinguished from
each other. In particular, the average prediction errors were
relatively small compared to the mesh size representing the
deformation map, thus demonstrating the high performance of
our method (Fig. 5c). In the model of mechanical anisotropy,
spatial heterogeneity of the area growth rate was barely detected,
and deformation anisotropy along the evagination axis was clearly
observed throughout the entire tissue. Specifically around the
evagination center, radial tissue elongation was observed (Fig. 5d).
In contrast, in the biased growth model, the large area expansion
in the growth region was detected correctly, while there was no
significant trend (nearly random) in the direction of deformation
anisotropy (Fig. 5d). These results demonstrated that the
directional distribution of the deformation anisotropy, especially
around the evagination center, as well as that of the area growth
rate, can be a clear signature for distinguishing different
mechanisms of tissue evagination.

Furthermore, we also found that the number of data points
comparable to the number of lattice points used to approximate

the deformation map can provide satisfactory estimation
performance. This provides useful information for application
to actual biological data, as the fineness of the mesh and the
number of data points necessary can be estimated to achieve the
desired precision. Additionally, the analysis described above
demonstrates that our continuum approach to the inference
process works well even if the morphological change includes
slight discontinuity due to positional rearrangement between the
discrete points that correspond to the cell centers.

Application to chick forebrain morphogenesis. Many vertebrate
organs are formed from epithelial tissues. From the simple
morphology that initially exists, region-specific tissue deforma-
tion leads to the generation of organ- and species-specific
morphology. Early forebrain morphogenesis is a good model
for studying how complex morphology is generated from a simple
sheet-like structure (Fig. 1). During this process, the most
dramatic morphological change is the formation of the OV. After
its formation, an eye (i.e., optic cup and lens) will be formed at
the tip of OV. Since local tissue deformation is realized by
different cellular processes, early histological studies of OV
formation focused on cellular characteristics such as height
and diameter using fixed mouse and chick samples. Specifically,
it was reported that cell height decreases during the evagination
process25, 26. However, how such cellular morphological changes
contribute to tissue-level deformation or determine overall
forebrain shape was difficult to discuss.

In more recent works, taking advantage of the small size and
transparency of embryos, four-dimensional imaging of the
evagination process in the teleost OV was performed27–31.
In the study by Ivanovitch et al.32, characteristic cellular behavior
during evagination of the zebrafish OV was shown. Prior to OV
evagination, two types of cells exist in the forebrain: the marginal
cells which form a cylindrical layer structure and have an
apicobasal polarity like an epithelial cell, and the core eye field
cells that are found inside the tube formed by the marginal cells
and which have a mesenchyme-like shape. It was observed that
the mesenchyme-like core cells intercalated into the layer of
marginal cells during OV evagination through a mesenchymal-
epithelial transition. However, it remains unknown whether this
intercalation itself is a driving force of tissue evagination/
elongation or not. To understand if and how such local cellular
behavior contributes to morphogenesis, it is essential to quantify
tissue-level deformation dynamics and clarify the relationship
between cellular and tissue-level events, the latter of which,
as described above, is often lacking.

In vivo validation of the deformation analysis. Here, we applied
the methods for tissue deformation analysis that we proposed
above to data from chick forebrain morphogenesis. We chose to
study chick embryos since, in contrast to teleost embryos, their

Fig. 5 Validation using artificially generated data II. a A test of how the estimation performance is affected by spatially heterogeneous noise anisotropy
resulting from metric anisotropy. Test data were generated by mechanical simulations of elastic membranes (see Supplementary Note 4–2 for the details
of calculation). b Two potential candidates for tissue evagination were simulated: biased tissue growth (upper) and mechanical anisotropy without growth
(lower). Local deformation dynamics (specifically, the area growth and deformation anisotropy) for both mechanisms were precisely reconstructed and
could be clearly distinguished. In the biased growth model, the large area expansion in the growth region was correctly detected, while the degree of
deformation anisotropy was low over the whole domain and showed no significant trend in its direction. In the mechanical anisotropy model, spatial
heterogeneity of the area growth rate could barely be detected, and deformation anisotropy along the evagination axis was clearly observed throughout the
entire tissue. c The performance of the proposed method was evaluated by examining the prediction errors (cross validation) as well as residual errors. The
small prediction error assured the validity of the proposed method. The blue and yellow dots indicate results for the u1 and u2 coordinates, respectively. d In
addition to the spatial pattern of the area growth rate, the distribution of the direction of deformation anisotropy around the evagination center can also be
a clear signature for distinguishing both mechanisms of tissue evagination
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forebrain morphogenesis can be regarded as the deformation of a
simple single-layered sheet. Using two-photon microscopic ima-
ging, we measured the 3D morphology of the entire forebrain and
the positional changes of sparsely labeled cells at every somite
stage. Cell-labeling was done by adding glutathione-coated
quantum rods (Q-rods)33, 34 that can randomly attach to apical
surfaces. More precisely, we focused only on small aggregations of

Q-rods ranging from 1 to 20 micrometers in diameter, and
the positions of such Q-rod aggregates were manually tracked
(see Methods and Supplementary Fig. 8 for details of the
experiments). The deformation of both dorsal and ventral
surfaces was analyzed from SS5 to SS10, and from SS10 to SS13
only the dorsal surface was analyzed due to limitations in imaging
resolution.
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As with the second example of in silico validation described in
the previous section, the 2D coordinates on the neuroepithelial
sheet were given by the SHE. Figures 6 and 7 show the results of
the deformation analysis (see also Supplementary Figs. 9–11). We
first checked the estimation performance; the prediction error
was around 10 μm, which correspond in size to the diameter of a
few cells and were small enough compared to the size of the mesh
used to estimate the tissue deformation map (Figs. 6c, f and 7c).
This clearly shows the applicability of the proposed method to
actual experimental data.

Tissue deformation patterns and cellular characteristics. We
then examined the spatio-temporal patterns of the deformation
characteristics. As for the area growth rate of the apical surface,
no clear bias was observed throughout the entire period we
analyzed (SS5-SS13), although some variations were present
depending on position. In contrast, deformation anisotropy
showed a clear pattern, with high values and globally oriented
direction along the medio-lateral axis throughout the entire
period of forebrain analysis although, at later stages (e.g., after
SS11), the definition of the M-L axis became ambiguous due to
the morphological complexity and the differences in the degrees
of deformation anisotropy for the OV and non-OV regions
became clearer. These results clearly show that anisotropic
deformation (i.e., biased tissue stretching) along the medio-lateral
axis, and not local area growth, is the predominant mechanism
underlying the dynamic change in forebrain morphology during
the period of our focus, which we think could not be readily
predicted by simply comparing the morphologies shown in
Fig. 1d. This was also supported by the experiment in which cell
proliferation was inhibited using aphidicolin (Fig. 8a and
Supplementary Fig. 13). Although total size was slightly reduced,
evagination itself was still clearly observed, demonstrating that
cell proliferation contributes to the size of the OV but is not
important for the evagination process.

Furthermore, we examined the changes in tissue thickness
during morphogenesis. We first confirmed that, consistent with
previous histological studies, tissue thickness and cell height itself
gradually decreased over time (from 65 μm at SS5 to 52 μm at
SS13, on average). At each stage, the distribution of thickness was
narrow (Supplementary Fig. 7). We then calculated the rate of
thickness change per somite stage at each position (Supplemen-
tary Fig. 12), and found that there was almost no correlation with
the area growth rate of the apical surface throughout the entire
study period. From these, we concluded that changes in tissue
thickness or cell height do not contribute to morphogenesis
during early development of the forebrain.

At the cellular level, we quantified apical area, shape, and
division orientation within the evaginated regions (Fig. 8 and
Methods). While the mean apical cell area was slightly smaller at
later stages, its variance was quite large compared to the mean
and we did not find any specific patterns. The major axis of
cell shape was almost randomly distributed at earlier phases
(e.g., SS7), whereas after the OV became clearer (SS10), direction

was biased in the anteroposterior axis, perpendicular to the
direction of OV evagination (i.e., the medio-lateral axis). Within
the corresponding region, tissue-level deformation anisotropy
trended remarkably in the direction of the medio-lateral axis
(Fig. 8e), demonstrating that deformation anisotropy could not be
explained by changes in cell shape. Similar to the major cell axes,
tissue anisotropic deformation could not be explained by division
orientation, as its distribution was also random (Fig. 8f). Based on
this quantification of cellular characteristics, changes in cell size
and shape or division orientation were excluded as potential
candidate determinants of anisotropic tissue deformation. Our
experiments and analyses thus suggest that the dynamic
morphological changes in the forebrain are driven by positional
rearrangement of the cells. Results from the mechanical
simulations shown above (Fig. 5) also suggest that mechanical
anisotropy is present (i.e., such as the anisotropy in stress
distribution and/or in mechanical tissue properties) and drives
cellular rearrangement along an axis. Experiments on mechanical
perturbation and observations of its response will be important
and interesting future issues for identifying the driving forces that
achieve the tissue deformation dynamics described in this study.

Discussion
Here, we have demonstrated a differential-geometrical and
Bayesian method for reconstructing tissue deformation dynamics
for 3D morphogenesis of curved epithelial sheets from positional
data of landmarks. Unlike previous studies in which velocimetric
analysis using high-resolution data was performed, our approach
enables precise reconstruction from data with limited spatio-
temporal resolution, expanding the possibility of tissue-level
deformation analysis for many vertebrate organs for which total
cell recording is difficult. Furthermore, our method would also be
useful for analyses during later stages of development. Compared
to early development, little is known about tissue deformation
dynamics during later development. A major reason for this
limitation is that organ size often becomes larger than 1 mm in
scale for which high-resolution live imaging of developing tissues
is quite difficult using confocal and two-photon microscopy.
In contrast, although the spatial resolution is much lower
(0.1–1 mm) than in microscopes, a larger range of tissues
(1–100 mm) can be scanned using magnetic resonance imaging,
computed tomography, or ultrasound imaging35. In these cases,
the method proposed here could contribute to the analysis of
such low resolution data.

Our investigation has also shown that the quantitative
analysis of tissue deformation dynamics is useful for predicting
mechanisms that determine organ-specific morphology.
As demonstrated in the example of tissue evagination, spatial
patterns of deformation characteristics, such as directional
distribution of deformation anisotropy and surface expansion,
show clear signatures for distinguishing background mechanisms
that generate similar morphologies. In particular, during chick
forebrain development, strong and globally oriented deformation
anisotropy along the medio-lateral axis was observed throughout

Fig. 6 Application to chick forebrain morphogenesis from SS5 to SS10. a, d Estimated deformation maps and spatial patterns of local deformation
characteristics from SS5 to SS8 for one embryo a or from SS8 to SS10 for a different embryo d; the figures show deformation of the dorsal apical surface
(see Supplementary Figs. 9–11 for results on the deformation of the ventral apical surface, and the results for other embryos). No clear bias in the area
growth rate was observed even with slight variations among positions. However, the deformation anisotropy was uniformly high throughout the entire
forebrain and its direction was aligned along the medio-lateral axis (shown as black line segments on the surface). These tendencies were consistent from
SS5 to SS10 (and still held until SS13, shown in Fig. 7). b, e Trajectory data from small aggregates of Q-rods (ranging 1–20 micrometers in diameter)
attached to the apical surface that were used to infer the tissue deformation map. c, f The precision of the estimated maps was evaluated by prediction
errors. The mean prediction error was on the order of a few cell diameters (on the apical surface). The yellow and blue dots indicate results for the u1 and u2
coordinates, respectively
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Fig. 7 Application to chick forebrain morphogenesis from SS10 to SS13. a Estimated deformation maps and spatial patterns of local deformation
characteristics from SS10 to SS13 for one embryo. Due to limitations in the imaging resolution, deformation dynamics were only analyzed for the dorsal
apical surface (see Supplementary Fig. 11(D) for results from another embryo). As with the case for SS5-SS10, no clear bias in area growth rate was
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data from small aggregates of Q-rods (ranging 1–20 micrometers in diameter) attached to the apical surface that were used to infer the tissue deformation
map. c The precision of the estimated maps was evaluated by prediction errors. The mean prediction error was on the order of a few cell diameters (on the
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the entire region as well as relatively non-biased area growth
patterns. This strongly suggests that the evagination is driven
mainly by cell intercalation along a specific axis, not by
local growth, which was confirmed by additional experiments
involving the inhibition of cell proliferation and quantification of
cellular characteristics.

The anisotropic deformation through dynamic cellular rear-
rangement implies the existence of anisotropic stress distribution
within the tissue. Previous studies on epithelial tissue

development of different organs/species have identified some
factors for generating mechanical anisotropy, these include the
localization of phosphorylated Myosin23, 24, 36, 37 and PCP pro-
teins38–40, and mechanical constraints such as external forces and
boundary conditions41–44. Quantitatively linking such force
generation mechanisms with tissue deformation dynamics would
enable the development of models for explaining morphological
anomalies and diversity among species, and would aid the
morphological design of artificially constructed organoids.
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Furthermore, during the analysis of major cell shape axis
orientation, we found that in the evaginated region, the axes were
perpendicular to the direction of anisotropic tissue deformation
(Fig. 8d). This tendency is commonly seen in other systems
where cell rearrangement induces directional tissue elongation.
Xenopus gastrulation is one such example45. Another example is
Drosophila germband extension, evident in mutants in which
posterior midgut invagination does not occur (specifically, the tor
mutant)4, 43. In that case, without posterior midgut invagination,
the extrinsic or boundary force is diminished, while cell rear-
rangement and tissue elongation still occur, although to a lesser
degree than in wild types. Does this tendency toward a directional
relationship between cell shape and cell rearrangement share a
common mechanism among different systems? This would also
be an interesting issue to study from a mechanical viewpoint.

As previously described, the teleost OV is composed of two
types of cells, epithelial-like marginal cells and mesenchyme-like
core cells, and during OV evagination the core cells vertically
intercalate into the layer of marginal cells, which is considered to
contribute to OV formation. In contrast, in amniotes such as
chick, the eye field is composed of a single layer of neuroepithelial
cells. Our current analysis suggested that the intercalation of
epithelial cells within this layer is the predominant cellular
mechanism that induces anisotropic tissue deformation. Despite
differences in the initial cell arrangements and the direction of
cell intercalation between chick and zebrafish, both embryonic
tissues elongate along a common medio-lateral axis. Comparative
analysis of the molecular mechanisms that induce the evagination
process in both embryos will be an interesting future topic from
an evolutionary perspective.

Methods
Embryos. Fertilized chicken eggs (Shiroyama Farm) were incubated in a
humidified incubator at 38 °C to obtain Hamburger and Hamilton (HH) stage 4
embryos46.

Construction of fluorescent protein expressing plasmid. To label the rostral
portion of the neural tube, we used fluorescent protein expressing plasmids
containing the N2 enhancer of Sox247. We amplified the myrVenus gene
(fluorescent protein with myristoylation signal peptide myr) by PCR, using fol-
lowing primers: myrVenus forward 5′-AAGCTTATGGGAAGCAGCAAGAGC
AAGCCAAAGATGGTGAGCAAGGGCGAGG-3′ and myrVenus reverse 5′-
TCTAGA TTACTTGTACAGCTCGTCC-3′. Using these fragments, we replaced
the EGFP gene in the pN2-EGFP47 with the myrVenus gene resulting in
pN2-myrVenus.

Culture preparation and electroporation. The embryos were explanted using
the EC culture method48 with some modifications. For electroporation and 3D
imaging, the vitelline membrane was removed in 123 mM NaCl solution. For
neural epithelial cell labeling, we electroporated pN2-myrVenus plasmids into the
future neural tube region. We used a CUY21EX electroporator (BEX) at the fol-
lowing settings: poration pulse 7 V, 1 pulse of 50 ms. Afterward, 3 V driving pulses,
five pulses of 50 ms with a 50 ms interval.

Labeling of apical surface using quantum rod. For labeling the apical surface, we
used two approaches. In one method, we positioned the electroporated embryo
with the dorsal side up, and added a drop of Glutathione-coated Q-rods33, then
incubated the embryo in a CO2 incubator (37 °C, 5% CO2) until the desired stage.
The addition of a drop of glutathione-coated Q-rods was done prior to neural tube
closure. At that stage, the apical surfaces of the neuroepithelial cells are exposed on
the outside of the embryo, thus we could label the apical, not basal, surface. In the
other method, we first incubated the electroporated embryo in a CO2 incubator
(37 °C, 5% CO2) until the desired stage. Then, we introduced Q-rods inside the
neural tube using a glass capillary tube (tissue was pierced from a posterior
approach so it did not affect the morphogenesis of the forebrain region). Note that,
at target stages, the neural tube was already closed. The latter method was
more efficient for labeling tissues, that is more Q-rods (precisely, more small
aggregations of Q-rods) were attached to the apical surfaces. In particular, the
latter method was necessary for introducing sufficient numbers of small Q-rod
aggregations at later stages (after SS10).

The size of each Q-rod used was <100 nanometers, but objects chosen for
analysis in our study only included small aggregations of Q-rods with a diameter of
1–20 micrometers (corresponding to a scale from the subcellular level to the
diameter of a few cells) that were clearly detected by our microscopic set-up and
distinguishable from one another in the manual tracking process. The small
aggregations tended to remain on the apical surface.

Multi-photon live imaging and data processing. Live 3D imaging was performed
using an upright microscope (FV1000MPE; Olympus) equipped with an Olympus
25×/NA1.05 XLPLN25XWMP objective and a multi-photon femtosecond laser
(excitation wave length 920 nm; Mai-Tai DeepSeeeHP, Spectra-Physics). For
the live imaging, an electroporated embryo was immersed in 1× PBS. The 3D
morphology of the neural tube was determined by stacking the optical section
images along the Z-axis (at an interval of 5 μm with a total of 80 sections). For each
Z-level, four X-Y images (512 × 512 pixels each) were tiled so that the entire region
of the prospective brain was included. The embryo was then returned to culture
until the next imaging time point. All images were taken at room temperature.
Imaging intervals (incubation time) were 2 h. Within each interval, embryo
development progressed to the next somite stage. Although this developmental
speed is slightly slower than that in normal development (1.5 h/somite), the
morphology itself appeared normal.

Initial image processing was done with Imaris 7.6 (Bitplane). In order to obtain
the 3D morphology, we first manually traced the apical and basal surfaces of the
neural tube for each section along different axes. By stacking the traced data, the
3D morphology of the rostral neural tube lumen was reconstructed. The result of
manual tracing could be obtained as a set of dots, as shown in Fig. 1b (middle),
from which the 3D models of the apical and basal surfaces and 2D coordinates on
the apical surface were obtained using the SHE (see Supplementary Fig. 6 for the
validation of the approximation of both apical and basal surfaces by SHE). Using
the 3D models, the tissue thickness was measured (Supplementary Fig. 7). The
position of the Q-rods (small aggregations ranging from 1 to 20 micrometers in
diameter) attached to the apical surface before and after deformation were
manually linked (Supplementary Fig. 8), and their 2D coordinates were obtained by
projecting them onto the approximated surface by the SHE.

Deformation analysis. From the positional data of the Q rods, the 2D deformation
map was estimated using the proposed method. The analytical procedure
was similar to that used for the validation with artificially generated data
(see Supplementary Note 4-2-4). The deformation analysis was performed for
six different embryos in total.

Inhibition of cell proliferation. In Fig. 8a, for the inhibitor treatment, embryos
were grown in an EC culture setting (dorsal side up) until somite stage (SS) 6 then
treated with aphidicolin (Sigma-Aldrich) dissolved in PBS to a final concentration
of 100 μM. Embryos were then returned to culture until the desired stage.
See Supplementary Fig. 13 for the confirmation that cell cycle progression was
efficiently inhibited by treatment with aphidicolin.

Fig. 8 Growth inhibition and quantification of cellular characteristics. a Evagination of the optic vesicle still occurred when cell proliferation was inhibited by
aphidicolin (see also Supplementary Fig. 13). Scale bar: 100 μm. b Regions analyzed for the quantification of cellular characteristics (specifically, cell area c,
cell shape d, and division orientation f). Scale bars: 100 μm (upper left in b), 10 μm (upper right in b). c Mean cell size differed slightly depending on stage
and was smaller during later stages, but the variance was large. Since the area of the evaginated region gradually increased, it was concluded that changes
in cell size did not contribute to morphogenesis. d Cell shape was basically elliptical (far from a rounded shape) and its degree was almost constant at
different stages (SS7 and SS10). In contrast, the direction of the major axis of cell shape changed over time; during earlier stages of evagination it was
almost randomly distributed, while it had a bias in the anteroposterior direction. However, as shown in e, the direction of anisotropy of local tissue
deformation had a clear bias along the medio-lateral axis. Consequently, the orientation of the major cell shape axis could not explain the anisotropic tissue
deformation. f The direction of division orientation was almost random, and also failed to explain the anisotropic tissue deformation. Taken together, the
quantification of cellular characteristics suggests that forebrain morphogenesis, especially optic vesicle formation, is driven by cellular rearrangement.
Scale bar: 20 μm
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Quantifying forebrain morphology and cell characteristics. In Fig. 8a, for the
quantification of forebrain morphology, embryos were grown until somite stage
(SS) 10, and the forebrain was imaged using a multi-photon microscope. The
cavity size of the OV along the medio-lateral and the anterior-posterior axes was
measured using Fiji software after projecting the 3D image in the z-plane. In
Fig. 8b–d, for the quantification of apical cell shape and the angle of cell division
in the OV regions, embryos were fixed for 1 h with 4% PFA in PBS at room
temperature. The neural tubes were dissected into dorsal and ventral halves and
permeabilized with 0.5% Triton X-100 (NacalaiTesque) in PBS for 30 min at room
temperature. F-actin was stained with phalloidin, using a standard protocol.
The neural tubes were mounted with their apical sides up in Fluoroshield with
4',6-diamidino-2-phenylindole (DAPI) (ImmunoBioScience). Images of the stained
actin fiber networks were acquired with a FV1000 confocal microscope (Olympus).
A standard watershed algorithm in Fiji software was used to identify cell bound-
aries. From the segmented image of each cell, its apical area was quantified. Based
on the variance in the position of cell boundary pixels, cell shape (ellipticity) was
calculated as follows:

Ellipticity ¼ 1� λmin=λmax;

Where λmax and λmin are the larger and smaller eigenvalues, respectively. The
direction of cell shape was evaluated by that of its major axis. Lastly, late-stage
mitotic cells (from anaphase to cytokinesis) were identified by DAPI staining. The
cell division orientation was quantified as the angle between the medio-lateral axis
(along which evagination occurs) and the line through the centers of the two
daughter cells. In all Figures of 8a–d and f, statistics were calculated using at least
three embryos.

Data availability. The data that support the finding of this study are available from
the corresponding author upon reasonable request.
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