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Abstract

A recent genome wide association study (GWAS) demonstrated that more than 100 genetic variants influence the risk of
multiple sclerosis (MS). We investigated what proportion of the general population can be considered at high genetic risk of
MS, whether genetic information can be used to predict disease development and how the recently found genetic
associations have influenced these estimates. We used summary statistics from GWAS in MS to estimate the distribution of
risk within a large simulated general population. We profiled MS associated loci in 70 MS patients and 79 healthy controls
(HC) and assessed their position within the distribution of risk in the simulated population. The predictive performance of a
weighted genetic risk score (wGRS) on disease status was investigated using receiver operating characteristic statistics.
When all known variants were considered, 40.8% of the general population was predicted to be at reduced risk, 49% at
average, 6.9% at elevated and 3.3% at high risk of MS. Fifty percent of MS patients were at either reduced or average risk of
disease. However, they showed a significantly higher wGRS than HC (median 13.47 vs 12.46, p = 4.08610210). The predictive
performance of the model including all currently known MS associations (area under the curve = 79.7%, 95%CI = 72.4%–
87.0%) was higher than that of models considering previously known associations. Despite this, considering the relatively
low prevalence of MS, the positive predictive value was below 1%. The increasing number of known associated genetic
variants is improving our ability to predict the development of MS. This is still unlikely to be clinically useful but a more
complete understanding of the complexity underlying MS aetiology and the inclusion of environmental risk factors will aid
future attempts of disease prediction.
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Introduction

Multiple sclerosis (MS) is a complex disorder of the central

nervous system with a strong genetic component [1]. Indeed, the

risk of developing this condition in biological relatives of MS

patients increases with increasing degree of kinship; this observa-

tion has provided the rationale for genetic studies in MS [2].

The main genetic locus for MS (the HLA-DRB1*1501 allele) was

discovered in the 1970s within the major histocompatibility

complex (MHC) region, long before the era of genome wide

association studies (GWAS) [3]. However, the genetic role in MS

susceptibility is not limited to the MHC, and the development of

GWAS has provided further insights into MS genetics. Two

studies published in 2011 by the International Multiple Sclerosis

Genetics Consortium (IMSGC) and the Wellcome Trust Case

Control Consortium 2 provided evidence for approximately 60

single nucleotide polymorphisms (SNPs) located outside the MHC

influencing MS risk [4,5]. More recently, the IMSGC performed

an updated GWAS that included almost 30,000 MS patients and

used a novel SNP array (the ImmunoChip, (Illumina INC, USA))

specifically designed for immune mediated diseases such as MS.

This study was able to further increase the number of known MS

associated variants to 110 [6].

The identification of individuals carrying a considerably high

genetic risk of MS in the general population could be relevant for

the development of disease prevention strategies and holds major

public health implications. However, it remains unclear what
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proportion of the general population can be considered at

substantially increased risk of disease and whether we will ever

be able to predict MS development based on genetic information

alone. Previous attempts to do so using GWAS data have shown

that genetics is only moderately able to discriminate between MS

patients and healthy individuals and that this is still far from being

useful clinically [7–9]. We aimed to investigate whether the

predictive performance of MS genetic associations has changed

given that their number has now exceeded the remarkable

threshold of 100.

Methods

We extracted summary statistics (odds ratios (OR) and risk allele

frequencies) for all currently known MS associations located

outside the MHC from the recent ImmunoChip based GWAS

performed by the IMSGC [6]. This article did not report

association results within the MHC and therefore summary

statistics regarding the HLA-DRB1 association were extracted from

a previous meta-analysis also published by the IMSGC in 2011

[5].

The R package ‘‘REGENT’’ (Risk Estimation for Genetic and

Environmental Traits) was used to estimate the proportion of

population predicted to be at reduced, average, elevated and high

risk of MS under three separate models considering: 1) only the

HLA-DRB1 association; 2) HLA-DRB1 + associations known in

2011 (Old SNPs) (n = 62) [4,5]; 3) HLA-DRB1 + all currently

known associations (full model, n = 110) (Table S1) [6]. REGENT

applies summary GWAS statistics to a large simulated population.

In particular, the distribution of genotypes across 100,000

hypothetical individuals is simulated based on the allelic frequen-

cies reported in published GWAS assuming the presence of

Hardy-Weinberg Equilibrium. Secondly, the odds ratios reported

for each SNP and the sample size used in the original association

study are used to calculate the overall risk of each individual

profile with 95% confidence intervals (CI) assuming a multiplica-

tive model between alleles. These estimates of risk are scaled by

the risk profile which is closest to the mean risk of the simulated

population (baseline risk) to calculate an individual relative risk

(RR) [10,11]. All individuals with 95%CI overlapping with the

95%CI of the baseline risk profile are defined at average risk (i.e.

their risk is not significantly different from the baseline risk). The

remaining individuals are also grouped into additional risk

categories (reduced, elevated and high) based on their 95%CI

(i.e. individuals at reduced and elevated risk of disease are those

whose 95%CI lie below and above the baseline profile 95%CI

respectively; individuals at high risk are those whose 95%CI lie

above the 95%CI of the first elevated risk profile) [10,11].

Blood was drawn, DNA extracted and MS associated variants

profiled using the ImmunoChip (Illumina INC, USA) in a total of

73 MS patients and 99 ethnically matched healthy controls (HC)

recruited at the Blizard Institute, Queen Mary University (White-

chapel, London, United Kingdom). Allele frequencies, missing

genotypes and Hardy-Weinberg equilibrium tests for each

investigated SNP are reported in Table S2. After excluding those

samples with more than 10% missing genotypes, 70 MS and 79

HC were used for analysis. We used REGENT to estimate how

many MS and HC were included in each category of risk under

each model [10]. Furthermore, a weighted genetic risk score

(wGRS) was calculated for each individual as described in De

Jager et al (i.e. by multiplying the number of risk alleles by the

weight of each SNP and then taking the sum across all associations

considered) [7]. The ability of this estimate of risk to predict MS

status was assessed using receiver operating characteristic (ROC)

curve. Differences in the predictive performance of different

genetic models were tested using the DeLong’s test for correlated

ROC curves in the R package ‘‘pROC’’. This study was

conducted according to the principles expressed in the Declaration

of Helsinki and obtained ethical permission (East London REC 1

(ref. 10/H0704/62)). All participants provided their written

consent to participate in this study using a standardised consent

form approved by the ethics committee. Individual genotypes of

MS patients and HC are available on request.

Results

The distribution of risk across the simulated general population

considerably varied based on the genetic variants that were

considered in the analysis. For example, when only the HLA-DRB1

association was considered, all individuals were grouped in three

risk categories (average, elevated and high) corresponding to their

HLA-DRB1 status (homozygous DRB1*15 negative, DRB1*15

heterozygous and homozygous DRB1*15 positive) (figure 1,

table 1). This is because only these three genotypes are possible

at this locus and based on the allelic frequency of the MS

associated HLA-DRB1 allele, the baseline risk used as reference to

calculate risk categories is the one of homozygous negative

individuals.

When old associated SNPs were included in the model, the RR

of MS appeared more continuously distributed across the

population and the proportion of individuals at reduced, average,

elevated and high risk was 44.8%, 41.6%, 7.5% and 6.1%

respectively (figure 1, table 1). Including the more recent

associations did not substantially change these estimates and a

substantial proportion of population (40.8%) was still predicted to

be at reduced (RR 95%CIs = 0.00–0.70), 49% at average (RR

95%CIs = 0.70–1.47), 6.9% at elevated (RR 95%CIs = 1.47–2.71)

and 3.3% at high risk of MS (RR 95%CIs = 2.71–Inf) (figure 1 and

table 1).

We then estimated the proportion of our genotyped MS and

HC individuals within the risk categories defined by REGENT

under each genetic model. We found that the proportion of MS

patients identified at elevated and high risk of disease was

consistently higher than that of HC. When the full model was

considered, 20% and 30% of MS patients vs 15.2% and 8.9% of

HC were at elevated and high risk of MS respectively (table 2).

However, even when all known variants were included in the

model, 50% of MS patients were at either average or reduced risk

of disease.

We then calculated the wGRS of each MS and HC individual

and compared the distribution of this variable between the two

groups. In each model, MS patients had a higher wGRS than HC

(figure 2 and table 2). The median wGRS of MS vs HC were 1.09

vs 0.00 (when considering only HLA-DRB1), 9.14 vs 8.15 (when

considering HLA-DRB1 + old SNPs) and 13.47 vs 12.46 (when

considering HLA-DRB1 + all known SNPs). The difference in

wGRS between MS and HC was statistically significant in all

considered models (table 2). We next assessed the predictive

performance of each model using ROC curves and tested whether

this has been considerably influenced by the discovery of

additional MS genetic associations. The HLA-DRB1 was on its

own moderately able to discriminate between MS patients and

HC (area under the curve (AUC) = 70.8% (95%CI = 63.4%–

78.2%)). The AUC progressively increased to 76.6%

(95%CI = 69.1%–84.2%) and to 79.7% (95%CI = 72.4%–87.0%)

when including old SNPs and all currently known SNPs in the

model respectively (figure 3). In the full model, the best wGRS

threshold (i.e. the one providing the best sum of sensitivity +
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specificity) was 13.0 and this corresponded to a sensitivity of 71.4%

and a specificity of 78.5% (figure 3). The AUC of models

excluding HLA-DRB1 and considering either old or all SNPs were

66.0% (95%CI = 57.2%–74.8%) and 69.3% (95%CI = 60.9%–

77.8%) respectively.

The difference between predictive performances was significant

between the model considering only HLA-DRB1 vs the one

considering HLA-DRB1 + all SNPs (p = 0.016), while HLA-DRB1

vs HLA-DRB1 + old SNPs and HLA-DRB1 + old SNPs vs HLA-

DRB1 + all SNPs trended towards significance (p = 0.054 and

p = 0.13 respectively). However, when the prevalence of MS in the

general population was considered (approximately 1/1,000), the

positive predictive value of the full model was below 1% (i.e. the

probability of having MS given a wGRS.13.0) [12].

Discussion

Our knowledge of the genetics of complex diseases has greatly

advanced in the last few years and the development of genome-

wide analyses has enabled the discovery of more than 100

common variants influencing the risk of MS located outside the

MHC. It seems plausible that even more variants could be

discovered by further increasing the sample size and the

statistical power of GWAS. MS researchers should therefore

ponder upon what we have learnt from genetic studies in MS

and what can potentially be derived from future ones. GWAS

data have been extremely useful in helping us to improve our

understanding of MS aetiology and its immunological nature.

For example, gene-ontology analyses interrogating the genes

located within MS-associated genomic regions have shown a

Figure 1. GWAS statistics (OR and risk allele frequencies) were used to simulate a population of 100,000 individuals under different
models considering: only HLA-DRB1, HLA-DRB1 + MS associations known in 2011 and HLA-DRB1 + all currently known MS
associations. Categories of risk were defined based on the 95%CI of risk of each individual (see methods). Green = reduced risk, blue = average risk,
yellow = elevated risk, red = high risk.
doi:10.1371/journal.pone.0096578.g001

Genetic Prediction of MS

PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e96578



Figure 2. Boxplots of weighted genetic risk score (wGRS) in MS patients and HC considering only HLA-DRB1, HLA-DRB1 + MS
associations known in 2011 and HLA-DRB1 + all currently known MS associations. The wGRS was calculated by multiplying the number of
risk alleles by the weight of each SNP and then taking the sum across all associations (see methods). The whiskers extend to the most extreme data point
which is no more than 1.5 times the IQR from the box.
doi:10.1371/journal.pone.0096578.g002

Table 1. Proportion of population and 95%CIs for each category of risk considering only HLA-DRB1, HLA-DRB1 + MS associations
known in 2011 and HLA-DRB1 + all currently known MS associations.

Model considered Risk Category

Reduced Average Elevated High

HLA-DRB1 95% CI 0–0.89 0.89–1.12 1.12–3.27 3.27–Inf

Proportion of population 0.0% 63.8% 32.1% 4.1%

HLA-DRB1 + Old associations 95% CI 0–0.76 0.76–1.34 1.34–2.06 2.06–Inf

Proportion of population 44.8% 41.6% 7.5% 6.1%

HLA-DRB1 + All associations 95% CI 0–0.70 0.70–1.47 1.47–2.71 2.71–Inf

Proportion of population 40.8% 49.0% 6.9% 3.3%

In brief, GWAS statistics (OR and risk allele frequencies) are used to simulate a population of 100,000 individuals. An overall genetic risk of MS is calculated for each
individual and scaled by the mean risk profile. Categories of risk are defined based on the 95%CI of risk of each individual (see methods).
doi:10.1371/journal.pone.0096578.t001
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substantial overrepresentation of Immune-related processes

[4,13]. Similarly, the integration of GWAS and open chromatin

data has demonstrated that MS associated variants are

particularly active in CD4+ T helper, CD8+ cytotoxic T and

B cells [14]. What remains unclear today is whether genetic data

can be similarly useful in disease prediction.

We used summary genetic association statistics to estimate what

proportion of the general population can be predicted to be at a

significantly different risk of MS as compared to an average

baseline profile. We found that these estimates are clearly

influenced by the strength and the number of genetic variants

included in the model. As expected, considering one single variant

of strong effect (such as HLA-DRB1) identified three significantly

different risk categories in the population that correspond to the

three possible genotypes at this locus. The distribution of risk

became more continuous across the population when a larger

number of variants were included such as non-MHC SNPs known

in 2011 before the ImmunoChip study and novel ImmunoChip

Figure 3. Predictive performance of the wGRS assessed using receiver operating characteristic (ROC) curves when considering only
HLA-DRB1, HLA-DRB1 + MS associations known in 2011 and HLA-DRB1 + all currently known MS associations. The wGRS threshold
providing the best predictive performance is also shown (specificity and sensitivity within brackets).
doi:10.1371/journal.pone.0096578.g003
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associations. Notably, the full model indicated that most individ-

uals in the general population (about 90%) are either at average or

reduced risk of MS, 10% have a risk higher than average and an

extremely small fraction demonstrates a substantially increased

risk (e.g. more than 10 times the average risk). This is comparable

with previous estimates [15].

We then assessed to what extent two independent groups of MS

patients and HC differed in terms of their position within this risk

distribution. We found that in all considered genetic models, more

MS patients than HC were identified at either elevated or high risk

of disease. However, the inclusion of non-MHC SNPs in the

models did not increase the number of MS patients considered at

risk higher than average and, even when all variants were

considered, half of MS patients appeared at either average or

reduced risk of disease.

When the wGRS of MS was used as a predictor of disease status

using ROC, the predictive performance improved with the

increasing number of discovered associations and the best wGRS

threshold in the full model was associated with 71.4% sensitivity

and 78.5% specificity. This was significantly different from the

AUC obtained considering only the HLA-DRB1 association and

higher than that based on the variants known in 2011. The lack of

significance in the comparison between the models considering

HLA-DRB1 + all associations and HLA-DRB1 + old associations

should be interpreted with caution given the relatively small

sample size of this study and the p value trending towards

significance (p = 0.13). Nevertheless, when the low prevalence of

MS was taken into account, the positive predictive value was very

low.

The main limitation of this study is represented by the small

sample size of MS patients and controls that were genotyped.

Although predictive performance estimates may be influenced by

increasing the sample size, our results are overall comparable with

those of previous studies [7–9]. For example, Isobe et al found that

MS patients from multi-case families have a greater genetic risk

score than sporadic cases, but the predictive power of this estimate

of genetic risk was still very limited [9]. Taken together, these

findings indicate that the bias towards a greater genetic score

found in MS patients is consistent across different sets of genetic

associations and can be found in a relatively small sample size of

patients and controls such as the one used in this study.

Furthermore, the recent discovery of additional MS associated

genetic variants has improved our ability to discriminate between

MS patients and healthy individuals. Despite this, genetic data are

still unlikely to be useful on their own and in this form for disease

prediction in clinical settings.

A number of factors need to be considered for MS prediction.

Several studies have implicated environmental agents in the

aetiology of this disease and in particular a history of Epstein Barr

virus infection, vitamin D deficiency and smoking [16]. Including

these variables in the model may increase the predictive

performance of the estimated risk. However, currently available

data suggest that risk estimates are unlikely to be massively

changed by considering the putative environmental agents in MS

[15].

If neither genetics nor environment can fully predict disease

development, then what determines MS onset? It is plausible that

the effect of a risk factor on disease development is influenced by

the presence or absence of additional agents. There is strong

evidence for such mechanisms in classical monogenic conditions

where the effect of mutations can be modified by epistatic

interactions with other genetic variants and environmental factors

[17,18]. For example, the effect of phenylalanine hydroxylase

mutations on the phenotype of phenylketonuria depends on
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dietary phenylalanine consumption [19]. Similarly, genetic vari-

ation on chromosome 21 has been reported to influence congenital

heart defects in Down’s syndrome patients (all of whom have

trisomy 21) [20]. It seems highly likely that similar mechanisms are

at play in more complex diseases such as MS. Furthermore,

environmental exposures both vary over time and are likely to act

at specific time points; and it is often difficult (if not impossible) to

take into account these factors in epidemiological studies [21,22].

Environmental associations are therefore more difficult to measure

with accuracy and this likely influences their potential role in

disease prediction. A more full understanding of the complexity of

MS, together with the interactions between risk factors and of the

time specificity of environmental agents is needed to aid future

attempts of disease prediction.
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