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Abstract

discusses future research directions.

In recent years, the rapid development of next-generation sequencing (NGS) technologies has led to a significant
reduction in sequencing cost with improved accuracy. In the area of liquid biopsy, NGS has been applied to
sequence circulating tumor DNA (ctDNA). Since ctDNA is the DNA fragments released by tumor cells, it can provide
a molecular profile of cancer. Liquid biopsy can be applied to all stages of cancer diagnosis and treatment, allowing
non-invasive and real-time monitoring of disease development. The most promising aspects of liquid biopsy in
cancer applications are cancer screening and early diagnosis because they can lead to better survival results and
less disease burden. Although many ctDNA sequencing methods have enough sensitivity to detect extremely low
levels of mutation frequency at the early stage of cancer, how to effectively implement them in population
screening settings remains challenging. This paper focuses on the application of liquid biopsy in the early screening
and diagnosis of cancer, introduces NGS-related methods, reviews recent progress, summarizes challenges, and
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Introduction

Cancer has a significant impact on public health world-
wide. One strategy to lower its burden is through cancer
screening and early diagnosis. It is well known that
patients have a higher cure rate and 5-year survival if
diagnosed at early stages [1]. Medical expense increases
dramatically with the stage [2, 3]. Tissue biopsy is the
most widely-used tool for cancer detection, staging, and
prognosis, but sometimes tumor tissue can be difficult
to obtain, especially in metastatic diseases like late-stage
lung cancer. Moreover, it is unrealistic to use tissue
biopsy for cancer screening and early diagnosis when the
tumors have not formed yet. Currently, there are some
screening methods proved to be useful for cancer pre-
vention. For example, the mammogram is the best way to
detect breast cancer; Pap test is used for early detection of
cervical cancer; regular colorectal cancer screening and
low-dose computed tomography are recommended to
reducing mortality from colorectal cancer and lung cancer,
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respectively [4]. However, all of these screening methods
have limited sensitivity and specificity and are only applic-
able to a unique cancer type. In order to perform large-
scale cancer screening among healthy individuals in the
future, a more general and cost-effective approach is
needed. In recent years, many scientists and companies
have cast their eyes on liquid biopsy [5-8]. Blood contains
many types of biological materials like circulating cells,
platelets, extracellular vesicles, mRNA, miRNA, protein,
and cell-free DNA (cfDNA) [9]. From the blood of cancer
patients, a portion of the cfDNA is released by tumor cells
through apoptosis, necrosis, or active release [10], and this
DNA is called circulating tumor DNA (ctDNA). The
tumor-specific mutations in ctDNA sequence can act as a
new type of cancer biomarker and help to identify cancer
patients from a group of healthy individuals. Compared to
traditional cancer diagnosis using tissue biopsy, liquid bi-
opsy is more feasible and less invasive and is more com-
prehensive than tissue biopsy to evaluate tumor
heterogeneity [11] because all tumor sites will release
ctDNA into the blood. Facilitated by the rapid develop-
ment of next-generation sequencing (NGS) technologies,
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nowadays, ctDNA sequencing can achieve much higher
sensitivity than tissue biopsy and can be designed for dif-
ferent purposes [12].

Applications

Screening and early diagnosis

Liquid biopsy is a powerful technique that can be
applied to different stages of cancer screening and treat-
ment. Among the asymptomatic population, it can be
used to identify cancer patients to improve early diagno-
sis and better intervention. Nevertheless, using ctDNA
sequencing for cancer screening and early diagnosis
faces great obstacles. Firstly, the concentration of ctDNA
is only about 1 to 10 ng/mL in asymptomatic individuals
[12]. Therefore, in order to achieve 95% sensitivity, it
was shown that around 150 to 300 ml blood sample per
test is needed for breast cancer screening [13]. Secondly,
apart from the tumor cells, normal healthy cells and
hematopoietic cells also contribute to the cfDNA in the
blood, resulting in increased false positives when apply-
ing ctDNA assays for cancer diagnosis [14]. Great efforts
are being made to meet the sensitivity and specificity
requirements for cancer screening and early diagnosis
[15-17]. Currently, several ctDNA assays can achieve
higher sensitivity and specificity than cancer-derived
antigens like prostate-specific antigen, carcinoembryonic
antigen, carbohydrate antigen (CA) 19-9, CA 15-3, and
CA-125 [18]. There are several lines of evidence sup-
porting the further application of ctDNA on screening.
Some cohort studies have shown that ctDNA can be
used for early lung cancer diagnosis (stage I or II) and
can achieve relatively high sensitivity and specificity [16].
Mutations like KRAS and TP53 may be detected in
stored sputum samples from individuals up to 1year
before cancer diagnosis [19]. In another prospective
study, KRAS and TP53 mutations were detected in the
cfDNA of healthy subjects up to 2 years before cancer
diagnosis [20]. Apart from DNA mutation, quantification
of cfDNA levels [21] and DNA methylation [22] can be
combined to provide robust and consistent results.
SEPT9 gene methylation detection is the first US Food
and Drug Administration (FDA)-approved blood-based
screening test for colorectal cancer (CRC) [23, 24]. It
exhibited higher sensitivity and specificity than protein
markers [25].

Treatment selection and prognosis

After cancer diagnosis, ctDNA sequencing enables
tumor-specific molecular profile of the patients to guide
targeted therapy for precision medicine. The half-life of
cfDNA in the circulation is between 16 min and 2.5h
[26]. That is why ctDNA can be considered “real-time”
snapshot to reflect the overall evolution of lesions [12].
This enables real-time and long-term monitoring of the
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treatment effect, allowing feasible treatment adjustment
and better prognosis. Moreover, ctDNA facilitates dy-
namic monitoring of the clonal evolution and helps to
identify the emergence of resistant subclones [12]. Up to
now, the European Medicines Agency [27] and the FDA
[28] have approved epidermal growth factor receptor
(EGFR) mutation testing using ctDNA for therapy guid-
ance among non-small cell lung cancer (NSCLC)
patients. Moreover, some newly approved immunother-
apies are known to produce different tumor response
patterns from other systemic treatments. Using the regu-
lar practice of monitoring therapeutic efficacy might not
be appropriate anymore. For patients treated with
immune checkpoint inhibitors for NSCLC, ctDNA was
shown to be an early marker of therapeutic efficacy and
could better predict survival outcomes [29].

Residual disease and risk of relapse

Even when treatment is successful, relapse is still a sig-
nificant threat to many cancer patients, and it is hard to
detect the residual disease in time using imaging or tis-
sue biopsy. Very few effective and reliable markers are
available currently. Recent studies demonstrated that
ctDNA assays were able to detect residual disease several
weeks earlier than radiologic imaging [30], and ctDNA-
positive patients were at higher risk of relapse and
exhibited worse outcome (like shorter overall survival
and disease-free survival time) compared to the ctDNA-
negative group [31]. In addition, it was shown that
phylogenetic ctDNA profiling could be used to track the
subclonal nature of lung cancer relapse and metastasis
[15]. With the collected profiles, cancer patients could
be stratified into different adjuvant therapies to prevent
overtreatment [12].

Sequencing techniques

The concentration of ctDNA in plasma has been shown
to correlate with tumor size [32] and stage [33]. Patients
having stage I disease with various cancer types had
fewer than 10 copies per 5ml of tumor mutations in
plasma. In contrast, the copy number increased 10 to
100 times among late-stage patients [34]. Thus, ctDNA
assays used for early cancer diagnosis should be highly
sensitive. However, highly sensitive assays are always ex-
pensive, making large-scale practical applications unreal-
istic. For late-stage cancer tumor typing, the sensitivity
can be moderate because the concentration of ctDNA is
much larger. At the same time, the cost of the ctDNA
assay is acceptable, and there are several commercial
platforms available (Table 1). There is always a tradeoff
between sensitivity and cost. Various methods have been
proposed to reduce cost, background noise, and errors
induced in the amplification step. Those methods can be
categorized in different ways. Based on the techniques,
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Table 1 List of liquid biopsy companies
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Company Product/study Usage/aim Reference
Grall The SUMMIT Study Evaluating a blood test designed to detect multiple types [35]
of cancer, including lung cancer
Guardant 360 Lunar-2 Early cancer detection among higher-risk asymptomatic individuals [36]
Freenome Screening test Using Al-based algorithm for early detection of colorectal cancer and [37]
precancerous lesions known as advanced adenomas
Biocept Target Selector™ EGFR mutation detection [38]
ctDNA EGFR Kit
Inivata InVisionSegq™ and Around 40 biomarkers (including mutations, CNV, SNV, fusions, indels) panel  [39]
InVisionFirst™- Lung for advanced cancers molecular profiling, monitoring, and diagnosis
Cynvenio The LiquidBiopsy® Platform  NGS-based techniques to detect mutations in as few as 1 target [40]
cell per mL/blood
CellMaxLife FirstSightCRC™ Using circulating tumor cells for colorectal cancer, adenomas, [41]
and colorectal cancer screening and profiling
Exosomedx Exosome-based Diagnosing non-small cell lung cancer and prostate cancer [42]
biomarker tests*
Biodesix GeneStrat® test Providing blood-based mutation results of EGFR, ALK, ROST, [43]

RET, BRAF, and KRAS for cancer diagnosis

Personal Genome Diagnostics  PlasmaSELECT™ -R 64

Cancer diagnosis using NGS with 64 Genes panel [44]

*Exosomes are extracellular vesicles (EVs) produced by cells. They contain RNA, proteins, lipids, and metabolites that are reflective of their origins [45]

there are PCR-based sequencing and NGS-based se-
quencing. Based on the assay panel size, there are single-
locus/multiplexed assays, targeted sequencing, and gen-
ome-wide sequencing. PCR-based sequencing can be
used for single-locus/multiplexed assays and targeted
panel, while NGS-based sequencing can be applied to
any panel size.

PCR-based methods
PCR-based methods are most widely used and can
achieve extremely high sensitivity. PCR-based methods
can be divided into three major categories: real-time
quantitative PCR (qPCR), digital PCR (dPCR), and the
mass-spectrometry-based method. qPCR is commonly
used since it is fast and relatively inexpensive [46].
However, it can only detect mutant allele fraction
(MAF) that is greater than 10% [47]. Several variations
have been developed to improve the sensitivity of
qPCR. For example, co-amplification at lower denatur-
ation temperature (COLD-PCR) can preferentially amp-
lify mutant sequences by controlling the denaturation
temperature. It was proved to be a robust method to
detect MAF of approximately 0.1% [48, 49].

dPCR has a similar principle as qPCR except it parti-
tions the sample into thousands of parallel PCR reac-
tions to reduce background noise. Thus, it can detect
MATF that is less than 0.1% [50]. The sensitivity can be
further enhanced by using multiplexed patient-specific
panels [51] or molecular barcoding [52] to reduce back-
ground sequencing error rates. Among variants of dPCR,
BEAMing (on the basis of four of its principal compo-
nents: beads, emulsion, amplification, and magnetics) is

considered to be the most sensitive approach with the
detection rate of 0.02% [53]. Nevertheless, the protocol
is complicated, and it is relatively expensive for routine
clinical usage. It uses primer-bound beads to combine
DNA template and distribute the mix in oil detergent to
create many aqueous compartments that contain no
more than one template or bead. Then, the whole sys-
tem undergoes conventional PCR. Since each template is
distributed into a separated reaction space, the amplifi-
cation of template is more specific and fewer errors are
induced. In the end, fluorescent hybridization and flow
cytometry are applied to distinguish and count different
templates.

Apart from qPCR and dPCR, the mass-spectrometry-
based method is an adaptation of the conventional PCR
method with a unique advantage in multiplex detection.
For example, UltraSEEK can detect mutant sequence
mixtures with MAF as low as 0.1%. It first applies multi-
plex PCR to amplify all mixtures at the same time. Then,
mutations are captured with the labeled chain termina-
tors for sing-base extension and identified using matrix-
assisted laser desorption/ionization time-of-flight mass
spectrometry [54].

NGS-based methods

Although PCR-based methods are sensitive and inexpen-
sive, they can only screen for known variants, and the
input and speed are limited. NGS has high throughput
and can screen unknown variants. Currently, NGS is
able to detect MAF < 1% [55]. Furthermore, many
methods like unique molecular identifiers [29] or unique
barcodes [16] can help to increase the sensitivity and
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reduce the false negatives. These methods are able to de-
tect 59% of stage I or II lung cancer patients with MAF
around 0.1% [16] and have good agreement between
ctDNA response and radiographic response [29]. NGS
can be applied to the targeted panel for specific and
highly sensitive detection of targeted ctDNA mutations.
Many methods are applying NGS to target panel, namely
Tagged-Amplicon deep sequencing (TAm-seq), Safe-Se-
quencing System (Safe-SeqS), CAncer Personalized Pro-
filing by deep sequencing (CAPP-Seq), and Ion Torrent.

For TAm-seq, researchers first design special primers
to amplify regions of interest. In order to control sam-
pling errors and allelic loss, the primers are first used to
bind to the template during a preamplification step to
amplify the original signal. Next, the templates undergo
individual amplification for purification. Benefiting from
this two-step amplification design, TAm-seq may able to
identify mutations ~2% MAF with sensitivity over 97%
[56]. The enhanced version of TAm-Seq, named eTAm-
Seq™ can detect MAF as low as 0.25% with a sensitivity
of 94%. In addition, it has been revised to identify single-
nucleotide variants (SNVs), short insertions/deletions
(indels), and copy number variants (CNVs) [57].

For Safe-SeqS, the key idea is adding a unique identifier
(UID) to each template. After amplification, if a mutation
does not appear in most of the same UID-connected
sequences, it is likely to be induced by other errors. In this
way, Safe-SeqS reduces the sequencing errors by at least
70-fold [58] and has sensitivity as high as ~98% for de-
tecting tumor mutations [59].

CAPP-Seq is a combination of the library preparation
method and a specialized bioinformatics workflow. The
library generates many hybrid affinity captures of recur-
rently mutated genomic regions from the population of
interest to create a “selector.” The “selector” is applied
on tumor DNA to identify individual-specific mutations
as prior knowledge. Then, it is applied ctDNA for quan-
tification [52, 60]. CAPP-Seq can detect MAF ~ 0.02%
with a sensitivity of nearly 100% among stage II-IV
NSCLC patients [61].

Ion Torrent is an NGS platform developed by Thermo
Fisher Scientific. It allows CNVs, single-nucleotide poly-
morphisms (SNPs), indels, and fusion detection with as
little as 1 ng DNA input [62]. One study applied this
platform covering 2800 COSMIC (the Catalogue Of
Somatic Mutations In Cancer) mutations from 50 cancer
genes to successfully identify 71% of metastatic breast
cancer patients [63]. Another study covered more than
6800 COSMIC mutations of 46 genes. About 97% of
mutations identified in metastasis biopsies were detected
in matched ctDNA in the study [64]. However, re-
searchers who compared dPCR with Ion Torrent
concluded that dPCR was more sensitive and can detect
smaller MAF for some targeted panels [65].
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Although targeted panels may be preferred for
their high sensitivity and low cost, they can only
detect point mutations and indels. One unique ad-
vantage of NGS is that it can be applied to the
untargeted panel to find genome-wide DNA vari-
ation. Whole-genome-sequencing (WGS) is usually
used to get the whole genomic profile of tumor
DNA including point mutations, indels, rearrange-
ments, and CNVs [46]. Although WGS provides us
with abundant information, it is expensive and less
sensitive. Whole-exome sequencing (WES) is a popu-
lar alternative of WGS. It is less expensive by only
sequencing the exons. Nevertheless, both WGS and
WES require high input sample volume, hindering
their application in screening and early diagnosis
when the concentration of ctDNA is considerably
low. Many genome-wide sequencing methods have
been proposed for different variation types like PARE
(personalized analysis of rearranged ends) for the
detection of rearrangement, digital Karyotyping for
DNA content quantification, and FAST-SeqS (Fast
Aneuploidy Screening Test-Sequencing System) for
the detection of CNVs.

PARE first uses next-generation mate-paired sequence
analysis to identify individualized rearrangements from
tumor tissue. Then, it applies PCR for quantitatively
monitoring the detected rearrangements. It is highly
sensitive for detecting ctDNA lower than 0.001% in
patient plasma samples [66]. Some studies suggested
that ctDNA at levels > 0.75% could be detected in cancer
patients with sensitivity over 90% and specificity over
99%. Even a single copy of rearrangement from ctDNA
can be detected without false positives [67].

Digital karyotyping is a quantitative approach to
detecting genome-wide abnormalities at high resolution,
including unknown chromosomal changes, altered re-
gions, and DNA sequences [68]. It uses two enzymes to
cut the DNA into short fragments around 10kb and
ligates each fragment with a tag. The tags help to align
the DNA fragments back to the genome and detect
abnormalities in DNA sequence through their density.
Orthodenticle homologue 2 (OTX2) amplification was
identified in medulloblastomas using digital karyotyping.
The overexpression of OTX2 was later confirmed to be
causal for certain medulloblastomas type [69].

FAST-SeqS (Fast Aneuploidy Screening Test-Sequencing
System) can discriminate as low as 4% of trisomy 21 DNA
from euploid samples. The key is simplifying the library
preparation steps by only using one designed single primer
pair to amplify the repeat regions of interest, so that the
cost can be controlled while increases the throughput [70].
There is an updated version of FAST-SeqS called modified
FAST-SeqS (mFAST-SeqS). Unlike methods like PARE
for quantification of target mutations predetermined
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by sequencing tumor tissue, mFAST-SeqS is an
untargeted method to monitor residual disease or
treatment response. Compared with the targeted
approaches that can detect MAF as low as 0.01% to
0.5%, untargeted approaches can only detect MAF >
10%. Nevertheless, untargeted approaches require no
prior knowledge and can develop genome-wide copy
number pattern or assess mutation spectra [71, 72].

Methylation sequencing

Cancer screening not only requires knowing whether the
person has cancer or not, but also needs to find the
cancerous site for follow-up diagnosis and treatment.
Somatic mutation alone may not provide adequate infor-
mation about the tumor site. Epigenetic information like
methylation [73] or protein biomarkers combined with
ctDNA [74] has been proved to help determine the
tumor origin at an early stage. It is especially useful
when the primary site of cancer is unknown. Re-
searchers found that the tumor- and-tissue-specific
pattern from methylome data can help with disease
classification [75, 76]. It has been shown that methyla-
tion profiles of hepatocellular carcinoma tumor DNA
and matched plasma ctDNA were highly correlated
[75] and could be used to differentiate breast, colon,
liver, and lung cancer in diagnosis and prognosis [77].

Methylation sequencing techniques usually have a
preprocessing step before sequencing. In addition to
DNA conversion, the intention of the preprocessing
step is enriching and selecting sequencing targets to
reduce the cost. For example, some protocols use
immunoprecipitation against 5-methylcytosine to
allow much lower levels of input DNA while maintain-
ing high sensitivity [73, 78]. In some other cases,
methylation-sensitive restriction enzymes are used to
analyze DNA methylation changes [79, 80].

Similar to DNA variants detection, the limited concen-
tration of methylation variants poses great challenges for
the balance between coverage, cost, and sensitivity while
controlling the technical errors introduced during se-
quencing. Various methods have been proposed to
address the trade-off. For example, the locus-specific
techniques like methylation-specific PCR [81] and
MethyLight [82] can achieve high sensitivity. However,
they can only provide semi-quantitative information for
a particular pattern of DNA methylation. PCR-based
target selection can achieve high accuracy with a low
level of input [81, 83]. However, it cannot be easily ap-
plied to the whole-genome level. On the other hand,
bisulfite sequencing facilitated by NGS [61, 84, 85] can
achieve genome-wide coverage. Adoptions of bisulfite
sequencing like Padlock probes can enrich arbitrary tar-
get set [86], and DREAMing can detect ultra-rare het-
erogeneously methylated epialleles variants [87].
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Challenges

Biological challenges

ctDNA is highly fragmented, ranging from 100 to 10,
000 bp. It is challenging to isolate ctDNA from the blood
for quantitation since the small fragments are easy to
lose or degrade [88]. Although the concentration of
ctDNA will increase with the stage and tumor size, the
total percentage of ctDNA in the blood is extremely low,
putting many requirements on the sample processing
procedure. Also, it has been shown that both concentra-
tion and stability of ctDNA could be influenced by the
form, release, degradation, and clearance of cfDNA [89].
Up to now, very few studies have discussed the clearance
rate and biological mechanism of ctDNA. Another sig-
nificant obstacle at present is the lack of biological
knowledge and experimental evidence to support the
quantitative relationship between ctDNA and early can-
cer development. The pathological evidence is hard to
find. Since by the time of using the ctDNA assay for
cancer screening or early detection, no knowledge of
tissue samples or symptoms of cancer is available. Much
remains for us to understand the fundamental biology of
ctDNA before we can further push forward the clinical
applications of liquid biopsy.

Panel design

It is challenging to find the optimal panel of biomarkers
(in most cases, this refers to genetic mutations) accord-
ing to different objectives, which may demand different
tests and impose different requirements [22]. For ex-
ample, screening requires high sensitivity and high
coverage, while monitoring will focus more on the speci-
ficity of given mutations. Traditionally, the candidate
gene mutation panel is decided on limited biological or
clinical knowledge. Nowadays, bioinformatics and bio-
statistics tools are broadly used to guide the panel
design. Information from databases like COSMIC [90]
or The Cancer Genome Atlas (TCGA) [91] can be inte-
grated to find differential expression genes or cancer-re-
lated mutants among cancer patients and healthy
controls. Nevertheless, published studies often applied
different methods to select the mutation panels, and
there are no systematic criteria on how to choose the
optimal combination.

Recently, some researches combined ctDNA mutations
with other biomarkers like protein or methylation to
improve the overall sensitivity. It was shown that the
combination of ctDNA and protein biomarkers could
dramatically increase the sensitivity [17]. However, it
could be difficult to find the optimal combination of
other biomarkers that can maximize the overall detec-
tion performance. Biostatistical approaches allow us to
effectively identify the relationship between biomarkers
like the correlation pattern to guide the panel selection.
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For example, a study has shown that using KRAS muta-
tions with four protein biomarkers can increase the
sensitivity from 30 to 64% and TP53 provided little im-
provement to the panel since it was highly correlated
with KRAS [74].

Sample processing

In a recent review [92], it was proposed that the pre-
analytical sample processing including collection, hand-
ling, transport, processing, and storage of a specimen is
crucial to the final result of ctDNA assay since they
would increase degradation of cell-free DNA or increase
contamination. The recovery of smaller DNA fragments
is particularly important in ctDNA analyses. Many
approaches have been explored to improve sample pro-
cessing quality. For example, plasma has been proven to
be the superior source of ctDNA [93]. Standard lavender
top tubes with anticoagulant EDTA are most suitable for
sample collection [94, 95]. To conclude, a standard oper-
ating procedure for ctDNA pre-analytical sample pro-
cessing is essential to allow more robust and comparable
results. However, many published studies were retro-
spective studies and used archived serum or plasma with
distinct pre-analytical procedures [96-98]. Little is
known so far on how those variables would influence
the accuracy of the test.

Data analysis

ctDNA sequencing, especially using NGS, will produce
large amounts of data. In addition, in the context of
disease monitoring, repeated measurements of clinical
variables and outcomes and sequencing data will be col-
lected. The large data size and complex date challenge
to statistical analysis. First, researchers need to decide
on the lower limits before conducting tests. However,
the optimal lower limits of detection may vary depend-
ing on the intended use of the ctDNA assay, and there
are no standard criteria for choosing the lower limits
[99]. Some articles found that ctDNA was highly
concordant with tumor DNA while others did not
[100-102]. It was suggested that the discordant
results might depend on the genetic tests applied
[100] apart from variation in biosource.

Another statistical challenge is building the classifica-
tion model. Since the sample size is usually small com-
pared to the number of biomarkers, selecting a subset of
most important biomarkers helps to avoid overfitting.
Different methods have been used for biomarker selec-
tion and model training in published studies [17, 75].
However, some of the procedures were not appropriate.
For example, one of the most commonly seen mistakes
is using all data for model training and testing, which
might induce bias and appear to have high accuracy.
Although many model selection methods are available,
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without appropriate training, testing, model comparison,
and diagnosis procedure, the results could be biased and
invalid.

The third problem is how to integrate data from differ-
ent resources. This is especially challenging for cancer
screening where we can collect longitudinal data regard-
ing ctDNA sequencing, other biomarkers like protein
and methylation, demographic data, medical record, liv-
ing habits, and so on. Combining available information
can help distinguish different populations and improve
diagnostic accuracy. A model like CancerSEEK uses both
mutation data and protein data to achieve high classifi-
cation accuracy [17]. One drawback of CancerSEEK is
that it transforms all ctDNA mutation data into a single
omega score and puts it into the model with other pro-
tein biomarker data instead of directly using all the
information contained in ctDNA mutations. There are
few methods available to build such a model that can
integrate different data types, track the change over time
with suitably selected predictors, and maximize the
usage of all available information.

Clinical applications

Two paradigms are proposed for demonstrating clinical
validity and utility using ctDNA [92]. First, prospective
clinical trials can be used to test ctDNA as an independ-
ent test. Alternatively, the information provided by
ctDNA and tissue samples can be assessed to compare
their similarity. Both paradigms face many challenges
especially in the context of disease screening and early
diagnosis. For the first one, the validation of the assay
quantitation of tumor burden is technically challenging
due to the sample processing issues discussed above. In
addition, absolute quantitation is hard to obtain. Most of
the methods only obtain relative measures, and few
studies conducted cross-platform comparisons. Even
when the accurate measure can be obtained, clinical
validation requires large-scale prospective trials includ-
ing both healthy people and cancer patients for treat-
ment guidance and outcome evaluation.

For the second paradigm, the concordance between
tumor tissue and ctDNA are not consistent across differ-
ent studies. A significant number of studies showed that
the correlation between plasma mutation status and
response rates to therapy was almost the same as that of
tumor tissue [103—108]. Nevertheless, other studies
showed covariates such as disease stage, tumor type, and
tumor heterogeneity and whether the variant was clonal
or subclonal could influence the concordance between
tissue and plasma mutation status [21, 92, 109, 110].
These observations suggest that although it is necessary
to develop the concordance between tissue and ctDNA,
directly relating ctDNA mutation profiles to clinical
measurements of cancer may be another strategy. Last
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but not least, there is the concern of false positives and
overdiagnosis brought by cancer screening. Some pa-
tients will not become symptomatic, or their tumors can
be benign even they are tested positive. Whether the
benefits overwhelm the additional cost and the medical
pressure brought by the practice of liquid biopsy re-
mains to be carefully examined [111].

Up to now, there are many liquid biopsy-based assays
designed for disease detection, diagnosis, profiling, and
treatment selection. Some of them have already been
used commercially on cancer patients (Table 1). How-
ever, most studies about liquid biopsy were observa-
tional, and some of them lacked healthy controls. To
date, no studies have shown any improvement in
patients outcomes or medical cost using liquid biopsy
compared with standard-of-care monitoring methods
[92]. Moreover, few studies have evaluated the treatment
outcome only based on ctDNA assay-guided targeted
therapy. Few of previous studies were intended for can-
cer screening and early diagnosis. Nevertheless, many
large-scale prospective studies are undergoing to demon-
strate the clinical validity and utility of ctDNA assays
rigorously. For example, powered by Illumina, a com-
pany named GRAIL planned to start the SUMMIT study
enrolling approximately 50,000 participants without can-
cer from a high-risk population. They aimed to develop
an affordable blood test to detect multiple types of
cancer at the same time (Table 1).

Conclusion

Up to now, ctDNA has shown many promising results
for cancer classification, monitoring, prognosis, and
treatment selection. However, using ctDNA for cancer
screening and early detection remained to be solved.
The biggest challenge is the low concentration of ctDNA
in the blood. Although some NGS-based protocols im-
prove the sensitivity of ctDNA assays in many different
ways, the trade-off between sensitivity and cost is still
the greatest concern in practice. In the future, other
sources of information apart from ctDNA should be
combined to increase sensitivity and specificity. More-
over, applying ctDNA sequencing to cancer screening
provides us with a good opportunity to collect longitu-
dinal data to create a better disease classification model.
As the price for sequencing continues to decrease, using
liquid biopsy for cancer prevention and treatment hold
promise in the future.
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