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Abstract

Stimulus presentation is believed to quench neural response variability as measured by

fano-factor (FF). However, the relative contributions of within-trial spike irregularity and trial-

to-trial rate variability to FF fluctuations have remained elusive. Here, we introduce a princi-

pled approach for accurate estimation of spiking irregularity and rate variability in time for

doubly stochastic point processes. Consistent with previous evidence, analysis showed

stimulus-induced reduction in rate variability across multiple cortical and subcortical areas.

However, unlike what was previously thought, spiking irregularity, was not constant in time

but could be enhanced due to factors such as bursting abating the quench in the post-stimu-

lus FF. Simulations confirmed plausibility of a time varying spiking irregularity arising from

within and between pool correlations of excitatory and inhibitory neural inputs. By accurate

parsing of neural variability, our approach reveals previously unnoticed changes in neural

response variability and constrains candidate mechanisms that give rise to observed rate

variability and spiking irregularity within brain regions.

Author summary

Mounting evidence suggest neural response variability to be important for understanding

and constraining the underlying neural mechanisms in a given brain area. Here, by ana-

lyzing responses across multiple brain areas and by using a principled method for parsing

variability components into rate variability and spiking irregularity, we show that unlike

what was previously thought, event-related quench of variability is not a brain-wide phe-

nomenon and that point process variability and nonrenewal bursting can enhance post-

stimulus spiking irregularity across certain cortical and subcortical regions. We propose

possible presynaptic mechanisms that may underlie the observed heterogeneities in spik-

ing variability across the brain.
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Introduction

While mean firing rate is widely used as a proxy of neural communication code, firing rate var-

iance is also shown to play a significant role in neural coding and to serve as a diagnostic tool

for distinguishing underlying neural mechanisms [1–7]. In particular, neural response vari-

ability is believed to change during development and to be correlated with behavioral perfor-

mance, stimuli conditions and to vary across different neural states [8–12]. Several studies

have shown that spike count variability changes across different conditions in several cortical,

subcortical, and cerebellar regions [1,3,4,10,13–17]. Importantly, numerous observations sup-

port a drop in neural response variability as measured by fano-factor (FF) in response to sen-

sory or motor stimuli across cortical regions [3,6,18]. The variation in neural spike count

when viewed as a doubly stochastic process may be due to two components parsed by the law

of total variance (1) the spike count variability within the trials, (2) the variability of spiking

parameters between the trials. The first component will be referred to as within trial spiking

irregularity (SI orC) and gives rise to the expected variance of the count (EVC) while the sec-

ond component can be driven by between trial rate variability (RV) and forms the variance of

the expected count (VEC) [1,4,19]. Despite this general understanding, a principled approach

for estimating these two components and tracking their concurrent changes in time is not

available. Consequently, the relative contributions of C and RV to the widely reported post-

stimulus reduction in FF in the brain is not known.

A previous attempt to estimate the RV component [4] (VarCE method) showed that FF

reduction is paralleled by the reduction in VEC (VarCE is an estimate of VEC). However,

this approach assumed C to be related to firing rate by a constant coefficient ϕ in time (see

S1 Text). Other more recent methods also followed the same assumption for spike count

variability decomposition [1,19]. Clearly, such an assumption can result in gross misestima-

tions of EVC and VEC (or equivalently C and RV) if ϕ also changes in time. Even in the

absence of such changes, VarCE only estimates the relative changes in VEC across time and

not its absolute value. Thus, the true nature and accurate estimation of ϕ remains

unaddressed.

Here, we present a principled approach that allowed us to find the absolute value of VEC

and track changes in ϕ. Briefly our approach works by explicitly relating FF to normalized RV

and C (nRV and nC). nC which is the same as ϕ is estimated by invoking minimal assump-

tions for a doubly stochastic point process and by adapting an existing method that allowed

relatively accurate estimation of nC [19]. Furthermore, it is shown that while nC is robust to

rate non-stationarities in time, it can be inflated beyond point process variability given certain

violations of renewal model such as bursting.

Indeed, results show that unlike what was previously assumed, nC could show robust

changes during the stimulus presentation across several subcortical and cortical regions.

However, while the post-stimulus nRV showed a ubiquitous reduction across all areas exam-

ined, post-stimulus nC change was more heterogenous: decreasing in some (mostly cortical)

areas and increasing in others (mostly subcortical). Moreover, while we found the post-stim-

ulus reduction in FF to be mostly due to nRV decrease, the concurrent change in nC was

shown to convey critical information regarding the changes in the spiking pattern within a

trial such as occurrence of bursting. Our results caution against strong claims about post

stimulus response variability quench across the brain. The heterogeneity in patterns of nRV

and nC during an event constrains and contrasts the underlying neural mechanisms across

different regions.
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Results

Parsing neural response variability components

A stochastic process with deterministic parameters would induce variability in the spike count,

i.e. point-process variability. Moreover, stochastic selection of such parameters between differ-

ent trials would impose variability across trials (doubly stochastic process). Let’s assume a dou-

bly stochastic process in which inter-spike interval (ISI) parameters change probabilistically

across trials. In this case, spike count variability can be decomposed into at least two compo-

nents using the law of total variance in the following form:

Var NTð Þ ¼ E Var NTi
jgi

� �h i

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
EVC

þVar E NTi
jgi

h i� �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
VEC

ð1Þ

Where NT denotes the spike count in the time-bin (T) and γi represent ISI parameters in trial.

Here the first term denotes the expected variance of spike count (EVC) due to spiking irregu-

larity (C) within a trial given constant parameters, and the second term denotes variance of

expected count (VEC) due to rate variability (RV) across trials. Total count variance or Var

(NT) is related to FF via a simple normalization by E[NT]. Eq 2. Reveals the contribution of C

normalized by E[NT] (nC) and RV normalized by T × E[NT] (nRV) to the total FF as follow-

ing:

FF NTð Þ ¼
VarðNTÞ

E NT½ �
¼ nCþ T � nRV ð2Þ

nC ¼
E Var NTjgið Þ½ �

E NT½ �
; nRV ¼

Var E NTjgi½ �ð Þ

T � E NT½ �

The motivation for defining nC and nRV in this way, comes by considering renewal pro-

cesses which has been widely used as models of spiking neurons [20–29] for sufficiently large

time-bins where we have:

nC ¼ lim
T!1

E Var NTi
jgi

� �h i

E NT½ �
¼

E l
3

i s
2
i

� �

E li½ �
; nRV ¼ lim

T!1

Var E NTi
jgi

h i� �

T � E NT½ �
¼

VarðliÞ
E li½ �

ð3Þ

Where li ¼
1

E½ISIi �
and s2

i ¼ Var ISIið Þ and ISIi is the random variable representing the inter-

spike intervals drawn from a given distribution whose parameters can vary across trials (see S1

Text for details). Simply put while nC affects the patterning of spikes resulting in more peri-

odic or more variable spike times, nRV is concerned with variability in the overall intensity of

spiking across trials (S1 Fig).

According to Eq 3, FF is asymptotically a linear function of time-bin. It includes an inter-

cept which represents normalized within trial spiking irregularity (nC aka ϕ) and a slope

which represents normalized between trials rate variability (nRV). For a simple stochastic

point process with no trial-to-trial variation in ISI parameters, FF should be constant for suffi-

ciently large time-bins. Fig 1a shows that indeed after a short transient, FF converges to the

theoretical prediction based on the parameters of the ISI distribution (i.e. it is 1 for Poisson

point process and is 1

k
for Gamma(κ, θ)). On the other hand, for a doubly stochastic process

with trial-to-trial variation in rate, FF increases in an asymptotically linear fashion as a func-

tion of time-bin. Note that in this case the intercept of the line which represents nC remains

unchanged as long as the spiking irregularity (κ in Gamma(κ, θ)) remains unchanged across

trials (Fig 1a). It can be shown that for a general renewal process nC is equal to the normalized
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point process variability (nPPV) which is measured by CV2

local (which can be derived from

CV2, see S1 Text) and shown to provide robust and unbiased estimation of κ−1 [13,23,30–33]

(not to be confused with coefficient of variation or CV2 which is essentially the same as FF in

the limit of large T). Notably, this equivalence holds for any renewal process regardless of the

shape of ISI distribution as illustrated for exponential, gamma and inverse gaussian probability

density functions (Fig 1a, for general proof see S1 Appendix). Also note that while in theory FF

asymptotic behavior is at infinity limits of time-bin, in practice the linear asymptotic behavior

may be observable with much smaller time-bins for neurons with sufficiently high firing rates

(S2 Fig).

Indeed, by examining the FF asymptote (FFA), one would be able to track the temporal

fluctuations in nC and nRV over time using a sliding time-bin. Fig 1b shows a simulated dou-

bly stochastic spike process with concurrent variations inC and RV across time. Each trial

was generated from a renewal point process with ISIs following a two-parameter Gamma(κ, θ)

distribution. The process had two sources of variability: Firstly, the rate in each trial was 50Hz

across trials with a variance that changed during the trial (Fig 1b top). This variation of rate

around the 50Hz mean is responsible for RV. Secondly, in each trial, spikes were generated

with the variability inherent to a gamma point process. In this case the parameter κ is inversely

proportional to spiking irregularity and was set to change in time (e.g. temporal changes in 1

k

from 2 to 0.25 and back to 2). Fig 1c shows spiking realizations of this doubly stochastic

gamma process across four example trials each corresponding to a given rate dynamic. Inter-

estingly, FF intercept and slope in a given 300ms time-bin closely paralleled the expected

changes in nC and nRV during the trial. That is, the slope showed a reduction concurrent

with the reduction of rate variability after time zero while the intercept independently followed

Fig 1. Parsing components of variability in doubly stochastic renewal processes in time. (a) Fano factor (FF) as function of time-bin for simple (solid lines) and

doubly stochastic (dashed lines) renewal processes with different ISI distributions (exponential, gamma and inverse gaussian). The asymptotic part of FF for large time-

bins (gray shaded area) is used for independent estimates of normalized spiking irregularity (nC) as the intercept and the normalized rate variability (nRV) as the slope.

Note the non-zero slopes for doubly stochastic processes (λi ~ N(μ = 50Hz, σ = 10Hz)). (b) Rate parameter (l ¼ 1

ky
) and inverse of shape parameter (1

k
) for a doubly

stochastic gamma process as a function of time. Rate parameter was variable across trials according to 50þ ni � 1 � 5tþe� 2tþ
� �

where ni ~ N(0, 30) and t+ is time for

positive values and zero otherwise. (c) top, raster plot shows multiple trial realizations from the stochastic gamma process (rate of each trial is indicated in panel b),

bottom, FF as a function of time-bin (0-300ms), blue curve represents FF estimates as a function of time. Dashed line shows extrapolation of fitted line to the linear

portion of FF; red dot represents intercept. Slopes of each line are indicated by bar plots. (d) nRV estimates made empirically by assuming access to a large number of

realizations of each trial with given parameters (black, empirical estimates see S1 Text) along with estimates using smoothed FFA (green) and Vinci (red) methods. (e)

same format as d but for nC estimates. Blue trace represents CV2

local. Error bars and shades indicate the sem.

https://doi.org/10.1371/journal.pcbi.1010256.g001
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changes in 1

k
that was delayed (onset asynchrony) compared to RV (going from 2 to 0.25 and

back to 2).

In practice, fitting the asymptotic behavior of FF, while intuitive, may not lead to minimum

variance estimators of nC and nRV (e.g. nC estimates can be noisy as small changes in slope

translate to large swings in the intercept). Therefore, we used a more robust estimator of EVC

using an existing nonparametric approach developed by Vinci et al 2016 (referred to hereafter

as the Vinci method, see S1 Text) [19]. Once the EVC is estimated one can normalize it by

hNTi which is the average of NT across trials (as one’s best estimate of E[NT]) to estimate nC.

Given FF and nC one can then estimate nRV using Eq 2. This method allows for a more robust

estimation of nC and nRV (Fig 1d and 1e). Note that both FFA and Vinci methods require

sufficiently large number of trials and spikes per time-bin to give accurate estimates of nC and

nRV. Obviously, the choice of the optimal time-bin also depends on how fast variability com-

ponents change in time (faster changes favor smaller time-bins to maintain sufficient temporal

resolution, S3 Fig) similar to any other time-histogram method [34,35]. However as noted, the

Vinci estimate is more robust compared to FFA across a range of parameters (S2 Fig) and will

be mainly used when analyzing neural data in this paper.

While Vinci and FFA estimates are obtained by having access to a single realization for

each rate pattern similar to the conditions of dealing with real neural data, in the case of simu-

lations one can afford to generate a large number of spiking rasters per each combination of

rate and κ to estimate nC and nRV (referred to as empirical estimate, see S1 Text). Such

empirical estimates give the best possible estimate for nC and nRV any method could hope to

acheive and serve as a benchmark to gauge a method’s performance on simulated data. As can

be seen, the empirical estimates show a good agreement with estimates using Vinci and FFA

methods (Fig 1d and 1e). Furthermore, CV2

local which measures the inherent randomness of

spike generation or nPPV also matches the nC estimate both tracking the changes in 1

k
(Fig

1e).

Decomposition of nC

Simulation results show that for renewal point processes, nC will be the same as nPPV mea-

sured by CV2

local regardless of particular ISI distributions used (Fig 2a and 2b), between trial

rate variability captured by nRV (Fig 2c) or firing rate non-stationarities during a trial (Fig 2d

and 2e). Both FFA and Vinci methods track the ideal values of nC and nRV with good accura-

cies in such cases (Fig 2a and 2e). On the other hand, bursting [30] which is a clear violation of

the renewal assumption (i.e. history dependance to previous spike occurrences beyond ISI

parameters) can be shown theoretically to inflate nC beyond nPPV (S1 Appendix) and accord-

ingly results in larger spiking irregularity beyond nPPV (Fig 2f). Notably, such inflation of

empirical nC is not observed even when there is significant non-stationarities such as rate

noise [36] or rate switching [7,37] (Fig 2d and 2e) consistent with theoretical predictions (S1

Appendix) [38]. Note however that while Vinci and FFA tolerate random rate noise, they seem

to slightly overestimate nC in rate switching with random and rapid changes from low to high

firing across trials.

The fact that nC is not simply distorted by firing rate fluctuations during a time-bin is for-

tunate for our methods which require relatively large time-bins during which firing rates

might change. Additional simulations confirm that as long as the nPPV remains unchanged

our estimates of nC is largely robust to non-stationarities during a time-bin (S4 Fig). Thus,

one may decompose nC into CV2

local which measures point process variability (nPPV) and

nC � CV2

local as a measure of spiking irregularity by sources such as bursting which is shown

to have multiplicative and additive effects to increase nC (S1 Appendix).
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Insufficiency of estimates that have a constant ϕ assumption

Given changes in nC, methods that assume a constant ϕ (i.e. constant nC or spiking irregular-

ity in time) can misestimate nRV. For instance, the VarCE method which attempts to estimate

VEC by finding the largest constant ϕ (nC) that keeps VEC positive during the trial, can

become error prone:

The VarCE method is also based on parsing sources of variability using the law of total vari-

ance in which VarCE and ϕ here are measures of VEC and nC, respectively.

VEC ¼ VarCE ¼ Var NTð Þ � �E½NT� ð4Þ

Note that even in cases when ϕ is constant, VarCE can only measure VEC up to additive

shifts (S5a Fig). More importantly, if the true ϕ changes and in the absence of changes in VEC,

VarCE erroneously reports changes in VEC (S5b Fig).

Post-stimulus enhancement of nC and reduction of nRV in cerebellum

Cerebellar neurons show sizeable changes in their variability in response to different condi-

tions [13,39–41]. We used our method to parse rate variability and spiking irregularity across

Fig 2. Normalized point process variability (nPPV) and bursting contribute to spiking irregularity (nC). Empirical estimations (by generating several samples from

each trial, see S1 Text) of nC and nRV along with estimations made by FFA and Vinci methods. Theoretical nPPV and its estimate using CV2

local is also shown. The red

box represents total empirical nC; blue box represents theoretical nPPV (1/κ); dark green box represents estimated CV2

local; light green box represents empirical estimate

of nRV; orange and blue dots represent Vinci and FFA estimates for nC and nRV in the corresponding plots; errorbars are sem. (a) Poisson process with rate 10Hz with

no rate variability. (b) Gamma process (κ = 2) with no rate variability. (c) same as b but doubly stochastic with rate variability. (d) same as b but with within trial white

noise added to the constant rate (~ N(0,3) and Δt 50ms, see S1 Text). (e) same as b but with within trial state switching between high and low-rates imposed (see S1 Text).

(f) An example ISI distribution with bursting imposed with probability 0.05 on a given spike; during generation of the process, each spike was replaced by 5 consecutive

spikes with 3ms ISI.

https://doi.org/10.1371/journal.pcbi.1010256.g002
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neurons (n = 268) recorded from Interposed Nucleus (IpN) of mice during the Pavlovian eye-

blink conditioning task [40]. Fig 3a shows peristimulus time histogram (PSTH) response of an

example IpN neuron time locked to the conditioned stimulus (CS) onset (LED light). 250ms

after the CS onset the unconditioned stimulus (US: air-puff) was delivered. As can be seen the

example neuron showed strong excitation following CS onset and just prior to the US delivery.

Fig 3b top shows an initial decrease in the average FF followed by a sustained increase. As can

be seen, this temporal pattern was largely due to very similar pattern of change in rate variabil-

ity (nRV). This pattern of change in nRV and in particular its rise after about 500ms from CS

can be easily verified by looking at the spiking raster plot (Fig 3a bottom). Interestingly, despite

the initial decrease in nRV and FF, nC showed a robust post stimulus increase. The increase in

nC was only partially due to the increase in nPPV as measured by CV2

local pointing to extra fac-

tors elevating the observed spiking irregularity which was predicted previously.

In the cerebellar neural example, VarCE estimated the trends of change in VEC accurately

but somewhat overestimated it particularly during the time when nC was changing (Fig 3c

top). More importantly, since estimated ϕ in VarCE was constant, it grossly misestimated the

component of variability that was due to spiking irregularity VEC (i.e ϕE[NT]) (Fig 3c

bottom).

Similar to the neural example shown, the pattern of FF reduction and subsequent increase

was also observable across the cerebellar IpN population and seemed to be driven primarily by

the temporal dynamics in nRV. Once again during the same period nC showed a robust post

stimulus increase which was accompanied by concurrent increase in nPPV which was never-

theless only partially explaining the increase observed in nC. The post stimulus reduction in

nRV and increase in nC can also be verified using the FFA method by looking at the linear

Fig 3. Post-stimulus changes in rate variability and enhancement of spiking irregularity in cerebellum. (a) Example IpN neuron PSTH with standard deviation as the

shaded area (top) and raster plot of 20 example trials (bottom) aligned to the conditioned stimulus (CS) onset (LED light) followed by unconditioned stimulus (US, air-

puff) in 250ms. (b) Post-stimulus FF and nRV showing an initial decrease followed by sustained increase (top) and post-stimulus nC showing a robust increase (bottom).

CV2

local also shows a moderate increase following stimulus onset. (c) VEC and EVC estimations using the Vinci vs VarCE method (top and bottom, respectively). VarCE

overestimates the rise in VEC (related to rate variability) and underestimates EVC (related to spiking irregularity). (d) Average PSTH of IpN neural population (n = 268)

neurons. Black and gray traces show PSTHs with 10ms and 300ms bin-widths, respectively. 300ms bin-width is equal to time-bin used for variability estimation in the

Vinci and FFA methods. (e) Average FF and nRV (top) and nC and CV2

local (bottom) as a function of time within the sliding time-bin (300ms, 50ms sliding). Dashed line

indicates CS onset, horizontal line indicates CS on period and arrow indicates US onset. (f) FF as a function of time-bin centered on pre- and post-stimulus onset periods

(-200 and 250ms respectively). Gray area indicates the linear zone at which asymptotic FF is estimated. The increase in intercept and the decrease in slope is consistent

with changes in nC and nRV respectively. Error bars and shades are sem.

https://doi.org/10.1371/journal.pcbi.1010256.g003
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asymptotic behavior of FF which showed intercept increase and slope decreased after the stim-

ulus onset.

Post-stimulus enhancement of nC canceling reduction of nRV in

substantia nigra

Next, we checked response variability in another subcortical area namely substantia nigra

reticula (SNr). This region was particularly informative for our analysis since here individual

neurons showed large dynamic range of excitatory or inhibitory responses to visual objects

based on their past value memory (excitation to low value objects and inhibition to high value

objects, [42]). Fig 4a and 4b show responses of example neurons to high value and low value

objects, respectively. For the neuron with inhibitory response a post stimulus reduction in FF

was observed as expected. Similar to what was observed in cerebellum this decrease was largely

due to a drop in post-stimulus rate variability (nRV) rather than spiking irregularity (nC)

which instead showed a robust post stimulus increase (Fig 4c). Interestingly, the neuron with

excitatory response also showed a drop in nRV. However, this drop was more than offset by

the increase in the spiking irregularity such that post stimulus FF in this neuron did not show

the expected quench in spiking variability (Fig 4d). Once again, the radical changes in nC in

both neurons meant that the estimates of VEC using VarCE were erroneous (Fig 4e and 4f).

Moreover, there was a gross misestimation of EVC using VarCE especially in the case of the

neuron with the inhibitory response. This is because constant ϕ assumption (or equivalently

constant nC), inevitably predicts a drop in C for inhibitory responses which is the opposite of

what was observed for this neuron (Fig 4e).

Fig 4. Post-stimulus drop in rate variability is compensated by concurrent rise of spiking irregularity in SNr. (a-f) Same format as Fig 3a and 3c but

for one example SNr neuron showing inhibition (a, c, e) and another example SNr neuron showing excitation (b, d, f) to object onset. Raster plots show

15 sample trials for each neuron. (g-i) Same format as Fig 3d and 3f showing population average of 302 SNr neurons. Black and gray traces show PSTHs

with 10ms and 200ms bin-widths, respectively. Sliding time-bin of 200ms with 50ms steps were used for estimators of spiking variability.

https://doi.org/10.1371/journal.pcbi.1010256.g004
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Across the population of recorded neurons, stimulus onset was associated with a drop in

nRV, on the other hand, nC showed a robust increase in response to the stimulus onset reveal-

ing enhanced spiking irregularity (Fig 4g and 4h). Similar to the cerebellar neuron, population

CV2

local also increased following the stimulus onset suggesting a concurrent increase in nPPV

which nevertheless again failed short of explaining the larger increase in nC (Fig 4h). The

decrease in nRV and increase in nC can be visualized by the FFA method as well (Fig 4i).

Interestingly, unlike the cerebellar IpN neurons, due to sizeable increase in nC, dynamics of

the FF and nRV was dissimilar for this region (S6 Fig). Indeed, SNr is one brain region which

also violates presumed reduction of post stimulus FF [3].

As shown in Eq 2, these results were obtained using normalized measures of between and

within trial variabilities to control for firing rate change during the stimulus. Nevertheless, and

to ensure robustness of our findings to firing rate changes during the trial as a possible con-

founder, we validated our results using two other approaches: (1) by using the mean-matching

method which chooses subsets of neurons at each time point with the constraint of similar rate

distributions [3] and (2) by repeating the analysis separately for neurons in different response

types of excitatory, inhibitory and null post-stimulus responses. Both scenarios resulted in

essentially the same behavior for nC and nRV and relatively stable FF during the trial for the

SNr population (S7 Fig).

Stimulus evoked changes in nC and nRV across cortical areas

It was previously shown that stimulus onset tends to reduce variability in cortical neural

responses [3]. However, as stated previously due to lack of reliable methods for parsing the

sources of spiking variability, it is not known how nC and nRV are affected by the stimulus

onset. Here, we applied our methods on multiple cortical regions including areas V1, V2, mid-

dle-temporal (MT), premotor cortex (PMd) and ventrolateral prefrontal cortex (vlPFC)

recorded in macaque monkeys by different groups [3,43,44]. As can be seen stimulus presenta-

tion or motor action caused a sizeable increase in average firing rate and a decrease in FF of all

examined areas (Fig 5a); notice that for V1 and V2 the stimulation phase happens at the begin-

ning of the trial and is turned off afterwards. In all cases the reduction in FF was concurrent

with stimulus related reduction of nRV (Fig 5b). However, almost all areas showed concurrent

changes in nC as well. With the exception of vlPFC, the spiking irregularity as measured by

nC decreased during stimulus presentation across cortical regions. In vlPFC a transient post-

stimulus increase in nC was observed. Note that despite the transient increase in nC in vlPFC,

its FF was still quenched during stimulus presentation due to the larger size of nRV compared

to nC (note the y-scales, S6 Fig). The changes in nC and nRV during stimulus on and off is

also evident by looking at the intercept and slope of the FF in the time-bin (Fig 5c). Note that

in regions with lower overall firing rate, larger time-bin is required for the asymptotic behavior

of FF to emerge (compare 1000ms time-bin in V1 with 200ms time-bin in vlPFC). It is thus

possible that for regions with low firing rate, fast temporal dynamics in nC and nRV are not

detectable with low number of trials and large time-bins (such as transient increases similar to

vlPFC). The relationship between nPPV and nC was more heterogenous between regions.

While nPPV hardly changed in V1 and V2, it decreased during stimulus presentation in MT

and vlPFC. Once again nPPV changes were relatively minimal and most of the changes in

spiking irregularity was not due to nPPV (Fig 5b).

These results were once again corroborated using mean matching across the full population

as well as separately within neurons showing excitatory, inhibitory or null responses across all

the cortical regions (S8 Fig mean-matching and S9 Fig response clustering). In particular, the

transient increase in nC in vlPFC was observed in all cases.
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To check whether, bursting is responsible for the observed inflation of nC beyond nPPV,

the burst count per spike was detected and plotted alongside nC for each region (Fig 6). Inter-

estingly, one observes similar temporal dynamics between nC and bursting in most regions

(except for MT and PMd) such that often increases in bursting is concurrent with inflations of

nC beyond nPPV. The application of our burst detection method showed a good agreement

with the ground truth in simulated data (S10 Fig). Note however that this analysis cannot

exclude the contribution of other factors which may increase nC beyond nPPV as the corre-

spondence between burst count and nC are only relative (i.e. they do not have the same units

thus difference cannot be calculated). Indeed, without including the effects of all other factors

on nC the effect of bursting cannot be readily transformed into nC units (S1 Appendix).

Different schemes for coordinated activity in the presynaptic network

induce independent changes in nC and nRV

As mentioned previously, accurate estimation of components of neural variability constrains

the viable neural mechanisms that underlie the observed neural responses and can serve as a

valuable tool for cross-region comparisons [4,7,45–48]. CV2 of ISIs was previously reported to

change as a function of correlations in pre-synaptic inputs both theoretically and using simula-

tions [49]. However, CV2 overestimates spiking irregularity in presence of rate fluctuations

[30]; in contrast, as shown previously nC is robust to rate fluctuations (see S4 Fig).

Fig 5. Concurrent changes in rate variability and spiking irregularity during stimulus presentation or movement execution across the cerebral

cortex. (a) Average population PSTH across 5 different cortical regions responding to the stimulus presentation (areas V1, V2, MT, vlPFC) or

movement execution (PMd). Black and gray traces show PSTHs with bin-widths equal to 10ms and matching time-bins used for estimation of FF and

variability components in each region, respectively (time-bin = 1000, 1000, 400, 400, 200ms sliding by 100ms for V1/2 and 50ms for the rest

respectively) (top) and FF dynamics for each region (bottom). Horizontal line indicates stimulus on period and arrow indicates stimulus onsets. (b)

Concurrent temporal changes in nRV (top) and in nC (bottom) across cortical regions. Temporal dynamics of CV2

local is plotted alongside nC. (c) Same

format as Fig 3f for each cortical area pre- and post- sensory or movement event.

https://doi.org/10.1371/journal.pcbi.1010256.g005
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Specifically, we aimed to find some of the characteristics in the presynaptic network which

control different sources of neural variability. This is critical since the differences in the tempo-

ral dynamics of nC in vlPFC compared to other cortical areas or between subcortical and cor-

tical areas, raise questions about underlying pre- and post-synaptic factors that derive spiking

in different regions. Presynaptic network characteristics of the neural models are shown to

have notable impact on the post-synaptic neuron variability [7,50,51]. Rate correlation [49,52]

as well as spiking synchrony [45,53–55] in presynaptic networks are among these characteris-

tics. Moreover, there are a wealth of studies suggesting a tight balance in cortical neurons

[53,56] which might also affect the variability of the post-synaptic neurons. Here, we showed

how statistical properties of balanced presynaptic network can reproduce some of the patterns

observed in nC and nRV for a simple current based leaky integrate and fire (LIF) neuron.

We first show that the degree of trial-to-trial rate correlation between balanced pools of

excitatory and inhibitory neurons (E and I Pools) in the presynaptic network can result in vari-

ations in nRV with minimal changes in nC in the post-synaptic neuron. Here we assumed two

presynaptic pools, one excitatory and the other inhibitory sending efference to one LIF neuron

(Fig 7a). The response variability of the LIF neuron was examined as a function of between

Fig 6. Increase of nC is concurrent with increased bursting across some cortical and subcortical regions. Peristimulus temporal changes in nC is plotted alongside

temporal changes in burst count per spike across regions. Burst probability for a spike was small between 5–10% across all regions. Period of stimulus on is before zero in

V1 and V2 marked by a line. Only nonresponsive neurons were used in this analysis to avoid confounding effects of firing rate changes (see S1 Text).

https://doi.org/10.1371/journal.pcbi.1010256.g006
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pool trial-to-trial correlation in firing rate parameter (see S1 Text). Fig 7b shows the firing ras-

ter of the LIF neuron for multiple scenarios from fully uncorrelated to fully correlated firing

rates (correlated λi across trials i) between E and I pools. While the firing rate was largely unaf-

fected by the degree of E/I pool firing rate correlation, quantitative analysis showed that indeed

nRV was high for zero correlation but decreased steadily for higher correlations (Fig 7c and

7d). On the other hand, rate correlation had little effect on nC or nPPV (Fig 7d). The reduc-

tion of nRV as a function of rate correlation among E/I pools in the simulation is consistent

with theoretical predictions (S1 Text eq.26). Further analyses, showed that increasing the bal-

ance toward excitatory pool generally results in increased firing rate and reduction of nC

across a range of input firing rates (S11 Fig).

Next, it is shown that the degree of spiking correlation between and within E/I pools can

result in reduction or enhancement of nC without affecting the nRV. Here, we assumed two

correlated sub-pools (sub-pool #1 and #2) within each excitatory and inhibitory pools. In the

first scenario, there was between pool spiking correlation for neurons in each subpool (i.e.

between excitatory subpool#1 and inhibitory neurons in subpool#1, etc) (Fig 8a). In addition,

a range of delays between spikes of excitatory and inhibitory neurons was considered (0, 2 and

4ms, aka tight balance [53]). The presynaptic E/I pools (50 neurons/pool) were generated

using correlated Poisson processes (Macke et al., 2009). We added a Laplace distributed noise

to the ISIs of the generated correlated neurons with mean zero and standard deviation of 2ms.

For the correlation delay we changed the mean to 2-4ms for inhibitory neurons in order to

shift inhibitory neurons after excitatory ones on average. Note that in this case the correlation

exists both within each E/I subpool and between corresponding E/I subpools. Fig 8b shows

simulated spiking realizations of E/I pools and the resulting spikes in the LIF neuron at 0.3

Fig 7. Firing rate correlation between balanced presynaptic excitatory and inhibitory pools controls post-synaptic nRV. (a) Schematic of the network model

including 50 Excitatory (E pool) and 50 Inhibitory (I pool) Poisson neurons. The synaptic current is modeled using the same kernel for E and I connections. (b) E/I

rate distributions of different trials (~ N(40,4)) with different correlation values (top) along with simulated sample rasters in three correlation conditions (correlations

equal to 0, 0,6 and 1). (c) The effect of E/I rate correlation on the firing rate of post synaptic neuron. (d) The effect of E/I rate correlation on the nRV (left) and nC

(right) of the post synaptic neuron. The effect on CV2

local is shown alongside nC. Higher rate correlation lead to lower nRV in the post-synaptic neuron but had

minimal effect on nC or CV2

local. Firing rate, nRV, nC and CV2

local for nonrandom presynaptic firing rate (deter) is shown alongside for comparison in c-d. Error bars

and shades are sem.

https://doi.org/10.1371/journal.pcbi.1010256.g007
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correlations [57] and 0ms (left) or 4ms (right) delays. As can be seen, the spiking irregularity

was higher at 0ms compared to 4ms delay in the post-synaptic neuron (Fig 8b top). Quantita-

tive analysis confirmed the reduction in nC as a function of between pool spiking correlation

for nonzero delays between E/I pools (Fig 8c). This manipulation did not affect the nRV and

minimally reduced CV2

local. In this scenario the firing rate was also increased as the function of

between pool spiking correlation. Similar results are found for nC, nRV, nPPV and rate by

increasing the number of sub-pools although the effect got weaker which is expected since

larger number of sub-pools result in smaller sub-pools and largely uncorrelated activity across

neurons within and between pools (S12 Fig).

A different method to impose synchrony is to assume spike correlation within each E and I

pools as well while excluding between pool correlation (Fig 8d). This scheme has been previ-

ously used to explain reduction of variability in response to partial inactivation of inputs from

visual cortex [45]. In this case increasing the within pool spiking correlation increased spiking

irregularity as shown in the example simulated rasters (Fig 8e). Consistent with previous

observations high correlations lead to bouts of excitatory activity which in the absence of

strong inhibitory activity, may lead to burst like activity in the post-synaptic neuron [45]. In

contrast to between pool correlation, this increase in nC showed was concurrent with an

increase in firing rate. This within pool correlation had almost no effect on nRV and resulted

in a modest increase in CV2

local.

Together these results show the plausibility of independent changes in nC and nRV as they

were controlled by different presynaptic mechanism (rate correlation in Fig 7 vs spiking corre-

lation in Fig 8). Notably in both cases nPPV as measured by CV2

local showed little changes simi-

lar to observations in the real data (Figs 3–5).

Fig 8. Spike correlation between and within balanced presynaptic excitatory and inhibitory pools controls post-synaptic nC. (a) Schematic of the network model

consisting of 50 Excitatory (E pool) and 50 Inhibitory (I pool) Poisson neurons. Each pool is further divided to two sub-pools. Between pool spike correlation is imposed

among sub-pools (between and within Inhibitory sub-pool#1 and excitatory subpool#2; example sub-pools are illustrated by the dotted squares). (b) Simulated spiking

pattern in the E/I sub-pools 1 and 2 and the resulting spiking in the postsynaptic neuron when there is a 0.3 spiking correlation between E/I sub-pools with zero delay

(left) and 4ms delay (right) between E/I neurons. (c) Stronger between pool spike correlation decreases nC for nonzero delays (2-4ms). nRV or CV2

local are less affected by

between pool spike correlations. A concurrent increase in firing rate is also observed for stronger between pool spike correlation for nonzero delays (2-4ms). (d) The

same network as a but with only within E and I pool spike correlation. (e) same format as b but for within pool correlations of zero (left) and 0.3 (right). (f) Stronger

within pool spike correlation increases nC. nRV or CV2

local are less affected by within pool spike correlations. A concurrent increase in firing rate is also observed for

stronger within pool spike correlation.

https://doi.org/10.1371/journal.pcbi.1010256.g008
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Discussion

Neurons across the brain often show variable spiking pattern in response to the same stimulus

or behavioral event [3,46,58,59]. This variability reflects both single cell level characteristics

stemming from noisy sensory inputs [60], stochastic synaptic transmission [61], plasticity [62],

and adaptation [63]; as well as network level properties including excitatory/inhibitory balance

[64], attention and arousal levels [65], and neuromodulation effects [66]. The total variability

from these sources can be formulated into two additive components: (1) variability arising

from random generation of spikes given ISI parameters which we referred to as spiking irregu-

larity (nC), and (2) the trial-to-trial variation in ISI parameters which in the case of renewal

processes stems from rate variability (nRV). By introducing a new approach for accurate esti-

mation of nRV and nC in time, we were able to reveal concurrent changes in both compo-

nents across multiple subcortical and cortical regions during the stimulus presentation in

comparison to the spontaneous activity. Importantly, we showed that the previously reported

quench in neural variability is solely due to the reduction of nRV which was observed across

all subcortical and cortical regions tested [3,4,10,17,45] (Figs 3–5). However, unlike what was

previously assumed spiking irregularity was not constant but showed robust and concurrent

changes with nRV. nC, unlike nRV, did not necessarily decrease during stimulus presentation.

For instance, IpN neurons in the cerebellum and SNr neurons showed robust increases in

post-stimulus nC (Figs 3 and 4). The increase in nC was also observable in the cortical neu-

rons in the vlPFC region (Fig 5). The increase in spiking irregularity in SNr was so prominent

that it canceled the reduction in rate variability resulting in the absence of the usual quench in

overall variability as measured by FF.

Accurate estimation of different components of spiking variability, allows one to reveal

neural strategies for encoding information beyond mean firing rate and on the decoding side

opens new possibilities to decipher information hidden in neural activity about external sti-

muli and internal processes by an ideal observer. For instance, observing between trial variabil-

ity across tasks and time periods has been discussed as another source of neural information

coding, besides the averaged neural response [1,3,4,6,11,17]. Also, different patterns of neural

variability in cortical and subcortical regions have been found recently [17] which may point

to different encoding strategies in these regions. Subcomponents of neural variability, also, has

been shown to convey information about the stimulus and neurons. For instance, nPPV has

been shown to separate neurons in terms of working memory coding efficiency in prefrontal

cortex [32].

nPPV, estimated by local measures of CV [23], has been previously used to explain the total

variance caused by spiking irregularity [3]. However, our results showed that nPPV estimated

by CV2

local is not able to explain the total spiking irregularity observed in neural data (nC). We

proposed one possible mechanism that could explain this extra portion of spiking irregularity

as bursting. Bursting was shown to inflate nC beyond predictions of nPPV (Fig 2f and S1

Appendix). In addition, between and within pool correlations in presynaptic E/I spikes were

also shown to change spiking irregularity beyond inherent point process variability (Fig 8).

This temporally correlated pre-synaptic activity has also been shown to be a way in which pre-

synaptic activity gives rise to post-synaptic spike irregularity [45,49]. Thus nC estimates rela-

tive to CV2

local can be used to gauge the influence of sources of spike irregularity in addition to

nPPV across brain regions. More research is required to both formulate the relation of these

two spiking irregularity components as well as the underlying mechanisms responsible for the

inflation of nC beyond nPPV and its possible role in neural processing and behavior.

Specifically, for IpN neurons FF showed a sustained post-stimulus increase after an initial

dip which was almost concurrent with the large post stimulus surge in nC (Fig 3). Purkinje
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cells (PC) which are presynaptic inputs to the IpN neurons are also shown to change their

spiking regularity pattern in response to the stimulus onset. They also showed enhanced spik-

ing irregularity due to inputs from molecular layer interneurons [13,39,41]. Although optoge-

netic manipulations in PCs have not shown sizable effects of nPPV on behavior [13], the

increase in nC beyond nPPV (as observed Fig 3b) by mechanism such as bursting may affect

behavior by increasing reliability of synaptic transmission [67]. The SNr neurons also showed

increased nC in response to the stimulus onset independant of the excitatory or inhibitory

rate changes such that post-stimulus FF remained almost constant despite the drop in nRV

(Fig 4).

It is important to note that cross area comparison of spiking variability should be done

with care as the meaning, the origin and the physiological function of spiking variability

across different regions could be different. While spiking irregularity can be considered

noise in the rate code scheme it may be the signal if a region is using temporal code. Tempo-

ral code is observed in many subcortical areas [68] including hippocampus [69], septum

[70], cerebellum [71] and superior olivary nucleus [72] while at least in some cortical areas

rate code may be dominant [46,73]. In addition, the role of variability in sensorimotor corti-

ces vs associative cortices and subcortical areas may be different as we do not know or can-

not always control what is considered the ‘true’ stimuli for such regions. In other words,

spiking variability observed as nRV and/or nC in associative cortices and subcortical areas

may well be sensitive to complex interactions between high level features of stimuli, internal

states, attention and motivation that are hard to observe and control but are nevertheless dif-

ferent from encoding noise.

We note that the method used for estimation of variability components nRV and nC

(Vinci or FFA) requires sufficient number of spikes per time-bin. S2 Fig shows that the need

for having a high temporal resolution in estimating nRV and nC should be balanced by the

requirement to choose a large time-bin with enough spikes (>5 spikes/bin) for estimation

accuracy and thus may not be readily useable for regions with very low firing rates if high tem-

poral resolution is required. Indeed, for regions with low firing rate, nRV and nC maybe

under and over-estimated respectively for small time-bins (S2 Fig). Most of the areas examined

in this study had sufficiently high firing rates but we may be prone to some misestimation for

area V2 which had low firing<5Hz during stimulus off time (Fig 5). Note that the requirement

for the sufficient number of spikes per time-bin is due to the nature of doubly stochastic

point process and exists even for idealized simulations with access to a large number of trial

repetitions with the same parameter (i.e. empirical estimate, S2 Fig). The problem of low

spike counts can be partially addressed by using model-based approaches and additional

assumption on smoothness of firing rate changes during a trial but with some loss of generality

[74].

The relatively large time-bins used for estimation of nC may raise a concern about the

changes in firing rate within a time-bin to affect the variability estimates. However, theoretical

analysis as well as simulation results show that the spiking irregularity estimates are robust to

such firing rate changes during the time-bin (S4 Fig and S1 Appendix). For different patterns

of firing rate fluctuations (S4b–S4f Fig) in comparison to the stationary rates (S4a Fig), the

CV2

local and nC remain largely unchanged. Nevertheless, in order to ensure the robustness of

our main conclusions on the real neural data, we have implemented two additional strategies

to control for variations in firing rate namely mean-matching and separately considering post-

stimulus excitation, inhibition and null-responses for the variability analysis (S7–S9 Figs).

Importantly, these additional controls resulted in virtually the same estimates of variability

components across all regions.
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In this work, we used LIF current based neural simulations to show differential effects of

network input properties such as rate correlations and spiking correlation on nC and nRV. In

particular higher rate correlations between excitatory and inhibitory pools were found to

decrease nRV but had minimal effects on nC (Fig 7). On the other hand, spiking correlation

within and between excitatory and inhibitory pools increased or decreased nC without chang-

ing nRV (Fig 8). However, conductance based models are recently gaining ground as the more

viable alternative to explain synaptic effects seen in real neurons [50,75]. The choice of synaptic

model (current or conductance based) affects the spiking irregularity sensitivity of the post-

synaptic neuron to the presynaptic firing rate [50]. We note that our main goal in this paper

was not to enumerate all possible mechanisms that control neural variability but to provide a

better understanding and an accurate methodology for estimation and parsing components of

variability. Obviously, while a more accurate estimation of neural response variability does not

by itself identifies a unique underlying neural mechanism, it constrains possibilities that give

rise to the observed temporal dynamics in each of nC and nRV.

In summary, our results revealed a ubiquitous quench in post-stimulus nRV (but not FF)

across many cortical and subcortical regions. Importantly, we also found significant and con-

current changes in nC which represents spiking irregularity in all areas examined. However,

unlike nRV the pattern of post-stimulus changes in nC was heterogenous across regions. Pre-

vious work [3] indicated a robust reduction in network noise and a constant private noise dur-

ing the stimulus. Our results do not address shared and private variability components across

a population. However, the fact that both nC and nRV components showed concurrent post

stimulus changes across neurons and had plausible network level implementations (Figs 7 and

8) suggest that they contribute to network level noise. On the other hand, nPPV seemed to be

resistant to change in real data and thus may represent the private noise component for each

neuron [23,30]. Interestingly, previous simulations and in-vivo experiments [76] have revealed

that the balanced networks of excitatory and inhibitory networks are plausible models explain-

ing the constant nPPV phenomena as seen in our simulations. Analysis of simultaneously

recorded neurons to address network level organization of nC and nRV across the population

can further address factors underlying event related changes in neurons response variability

components.

Materials and methods

MT and PMd data (n = 7031, 4264 sessions respectively) were recorded in behaving macaques

[3]. V1 and V2 datasets (n = 1272, 296 respectively) are from anesthetized macaque monkeys

in 5 different sessions [77]. We used the sessions with largest number of neurons for each of

these two regions and merged all different grating conditions. vlPFC (areas 8Av, 46v, and 45)

and SNr data are recorded in behaving macaques [42,44] and is available at [78]. The IpN data

is from deep cerebellar nucleus of mice [40] and is available at [79]. We only used the first 270

sessions which were recorded during conditioning. For all datasets, we removed neurons with

very low firing rates (less than 3 spike/bin average) for the given time-bin since such low firing

rates normally did not allow for accurate parsing of spike variability components (number of

used sessions are indicated in Fig 5). For supplemental methods see S1 Text.

Mean matching

Mean matching selects sub-population of neurons/conditions for each time-bin in a trial

period so as to the rate distribution remains constant for all time-bins. We used the code pro-

vided by the [3] for S7–S9 Figs.
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Response polarity clustering

We used pre- and post-stimulus periods of the tasks to compute the average spike count for

the two periods of each neuron. We then calculated the p-values for differences between pre-

and post-stimulus rate of each neuron using paired Student T-test to group them into (1)

excited (positive and p<0.05), (2) null (p>0.05), and (3) inhibited (negative and p<0.05)

groups. We then used these response types to calculate the average nC and nRV to test if the

observed changes are due to rate fluctuations (S7b–S7d and S9 Figs).

The data related to vlPFC and SNr and the code used in this work are deposited in Dryad [78].

Dryad DOI

https://doi.org/10.5061/dryad.0cfxpnw2c

Supporting information

S1 Fig. Effect of rate variability vs. spiking irregularity on spiking pattern of a simulated

neuron. (a) A case where there was rate variability from 10–30 Hz before the stimulus and

after 1 second from a stimulus onset at time zero. The rate variability collapsed to zero for 1

second after stimulus onset. Spiking irregularity was unchanged during this time (top) and the

raster plot of simulated spike trains sorted by baseline rate from low to high (bottom). (b) A

case where there was no rate variability during a trial but a reduction in spiking irregularity

from 2 to 0.5 for 1 second period after stimulus onset (top) and the raster plot of some simu-

lated trials. Spike generation was done with gamma inter-spiking interval where κ is the shape

parameter, θ is the scale parameter and firing ratel ¼ 1

ky
.

(PDF)

S2 Fig. Dependence of nC and nRV estimates using Vinci and FFA methods on the num-

ber of trials and the average number of spikes within the time-bin. (a) Each heat map

shows estimated nC values for a gamma processe (10Hz) for different nRV (columns) and nC

(1

k
) (rows) using the Vinci method. X-axis shows average number of spikes within time-bin and

y-axis shows number of trials. Color-code is adjusted such that color green means correct estima-

tion, while red and blue mean over- and under-estimation of the true nC values, respectively.

The heat bar over each square heatmap indicates the empirical estimates (best possible estimate

given access to many repetitions of each trial). (b-d) same format as a but for estimated nC values

using FFA, for estimated nRV values using the Vinci method and for estimated nRV using FFA,

respectively.

(PDF)

S3 Fig. Faster temporal fluctuations in variability favor smaller time-bins to minimize

overall estimation error. (a) Example of nRV during time with a single change from high to

low during the trial (black) and the estimated nRVs using the Vinci method with different

sizes of time-bins. (b) The mean sum of squared error (MSE) between the estimated nRV

using FFA and Vinci methods and the true nRV by varying time-bins for the nRV pattern

shown in a. The optimal time-bin (250ms) resulted in the smallest MSE compared to small

(150ms) or large (350ms) time-bins. The MSE for FFA was higher than Vinci but showed a

similar pattern. (c) Example of a rapidly fluctuating nRV during time from high to low during

the trial (black) and the estimated nRVs using Vinci method with different time-bins. (d) The

optimal time-bin (190ms) resulted in the smallest MSE compared to small (150ms) or large

(350ms) time-bins for the pattern shown in c. Note the smaller optimal time-bin in this exam-

ple compared to a.

(PDF)
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S4 Fig. nC estimates are robust to changes in firing rate during the time-bin. (a-f, top) fir-

ing rate pattern within a time-bin of 500ms for a gamma process with κ = 2. The shading

shows firing rate variation across trials which should only effect nRV not nC, as in Fig 2c. (a-f,

bottom) Empirical estimates of nC (red bar) and the CV2

local estimates (green bar) along with

nC estimates by Vinci method.

(PDF)

S5 Fig. VarCE can give erroneous estimations of VEC. (a) Similar to Fig 1b example with a

time varying nRV component but a constant nC component (constant κ) (top two rows). Empir-

ical estimates of VEC and nC (same as ϕ) along with estimates made by Vinci and VarCE meth-

ods. (b) same format as a but for a case when there is no rate variation (VEC = T2 × RV = 0) but

there is time varying spiking irregularity (changing κ). VarCE method assigns fluctuations caused

by nC to VEC while Vinci method correctly disentangles the two different sources.

(PDF)

S6 Fig. Relative size of nC and nRV × T in comparison to FF. Temporal dynamics of nor-

malized spiking irregularity nC and normalized rate variability nRV estimates and the fact

that they sum up to almost fully explain the FF dynamics (using the FFA method). Results are

shown for all subcortical and cortical regions analyzed in the main paper. The relative size and

contribution of nC and nRV in driving the fluctuations in FF can also be examined.

(PDF)

S7 Fig. Robustness of nC and nRV pattern in SNr to variations in firing rate. (a) Mean-

matching as well as clustering the SNr neurons to three groups with (b) excitatory response,

(c) inhibitory response, (d) and null response yield similar patterns in nC and nRV estimates

as shown in Fig 4. The gray curve in (a, top) plot shows the average and sem mean matched fir-

ing using a sub-selection of neurons for each time-bin. The gray curve in (b-d, top) is the

PSTH evaluated with the same time-bin (200ms) as used for variability estimates nC and nRV.

(PDF)

S8 Fig. Robustness of nC and nRV pattern across cortical regions by mean-matching.

Mean matching across cortical regions yield similar patterns in nC and nRV estimates as

shown in Fig 5. The gray curve in the PSTH plot shows the average mean-matched firing rate.

(PDF)

S9 Fig. Robustness of nC and nRV pattern across cortical regions within different

response types. Clustering cortical neurons to three groups with (a) excitatory response, (b)

null response, (c) and inhibitory response yield similar patterns in nC and nRV estimates as

shown in Fig 5.

(PDF)

S10 Fig. Burst detection method correctly estimates bursts/sp in simulated spike trains. (a)

Sample spike rasters with two different level of bursting activity during in 0-500ms period

after the stimulus onset at zero. Burst counts from a uniform distribution with mean 11 bursts

per spike (top raster) or 5 bursts per spike (bottom raster) were added with 0.5 probability to

normal spikes from a gamma point process with 20Hz rate and κ = 2 shape parameter. Similar

to real data, method parameters were estimated based on the spontaneous activity [–500, 0]

period on a pool of 20 neurons with mean firing rate of 20Hz with a baseline burst count of 3

burst/sp (b) Mean burst count /sp estimated by the method vs the actual mean burst /sp used

in generating the data. The gray line shows the unity line.

(PDF)
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S11 Fig. nC decreases as the network goes from balanced excitation/inhibition to the one

dominated by excitation. (a) Schematic of the network model including ne Excitatory (E

pool) and ni Inhibitory (I pool) Poisson neurons with rate λ. The synaptic current is modeled

using the same kernel for E and I connections. (b) nC decreases faster as a function of presyn-

aptic rate (λ) as the color-coded excitatory ratio
ne

neþni
approaches balanced network (i.e. 50%).

(c) Postsynaptic neuron’s firing rate increases faster as a function of the presynaptic firing rate

when the excitatory ratio increases.

(PDF)

S12 Fig. Effect of number of sub-pools on post-synaptic nC as a function of between pool

correlation. nC and rate sensitivity to between pool correlation decreases as we increase the

number of sub-pools (for constant number of neurons). nRV and CV2

local remain mostly

unchanged in all scenarios.

(PDF)

S1 Appendix. Proofs for the effects of bursting and lack of an effect for firing rate fluctua-

tions on nC.

(PDF)

S1 Text. Supplementary materials and methods.

(DOCX)
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9. Mišić B, Mills T, Taylor MJ, McIntosh AR. Brain noise is task dependent and region specific. J Neuro-

physiol. 2010; 104: 2667–2676. https://doi.org/10.1152/jn.00648.2010 PMID: 20844116

10. Lombardo JA, Macellaio M V., Liu B, Palmer SE, Osborne LC. State dependence of stimulus-induced

variability tuning in macaque MT. PLoS Comput Biol. 2018; 14: 1–28. https://doi.org/10.1371/journal.

pcbi.1006527 PMID: 30312315

11. Waschke L, Kloosterman NA, Obleser J, Garrett DD. Behavior needs neural variability. Neuron. 2021;

109: 1–16.

12. Voytek B, Kramer MA, Case J, Lepage KQ, Tempesta ZR, Knight RT, et al. Age-related changes in 1/f

neural electrophysiological noise. J Neurosci. 2015; 35: 13257–13265. https://doi.org/10.1523/

JNEUROSCI.2332-14.2015 PMID: 26400953

13. Payne HL, French RL, Guo CC, Nguyen-Vu TDB, Manninen T, Raymond JL. Cerebellar purkinje cells

control eye movements with a rapid rate code that is invariant to spike irregularity. Elife. 2019; 8. https://

doi.org/10.7554/eLife.37102 PMID: 31050648

14. Mitchell JF, Sundberg KA, Reynolds JH. Spatial Attention Decorrelates Intrinsic Activity Fluctuations in

Macaque Area V4. Neuron. 2009; 63: 879–888. https://doi.org/10.1016/j.neuron.2009.09.013 PMID:

19778515

15. Schölvinck ML, Saleem AB, Benucci A, Harris KD, Carandini M. Cortical state determines global vari-

ability and correlations in visual cortex. J Neurosci. 2015; 35: 170–178. https://doi.org/10.1523/

JNEUROSCI.4994-13.2015 PMID: 25568112

16. Mitchell JF, Sundberg KA, Reynolds JH. Differential Attention-Dependent Response Modulation across

Cell Classes in Macaque Visual Area V4. Neuron. 2007; 55: 131–141. https://doi.org/10.1016/j.neuron.

2007.06.018 PMID: 17610822

17. Poland E, Donner TH, Müller KM, Leopold DA, Wilke M. Thalamus exhibits less sensory variability

quenching than cortex. Sci Rep. 2019; 9: 1–12.

18. Rickert J, Riehle A, Aertsen A, Rotter S, Nawrot MP. Dynamic encoding of movement direction in motor

cortical neurons. J Neurosci. 2009; 29: 13870–13882. https://doi.org/10.1523/JNEUROSCI.5441-08.

2009 PMID: 19889998

19. Vinci G, Ventura V, Smith MA, Kass RE. Separating spike count correlation from firing rate correlation.

Neural Comput. 2016; 28: 2709–2733. https://doi.org/10.1162/NECO_a_00831 PMID: 26942746

20. Rajdl K, Lansky P, Kostal L. Fano Factor: A Potentially Useful Information. Front Comput Neurosci.

2020; 14. https://doi.org/10.3389/fncom.2020.569049 PMID: 33328945

21. Lansky P, Sacerdote L, Zucca C. The Gamma renewal process as an output of the diffusion leaky inte-

grate-and-fire neuronal model. Biol Cybern. 2016; 110: 193–200. https://doi.org/10.1007/s00422-016-

0690-x PMID: 27246170

22. Shinomoto S, Miura K, Koyama S. A measure of local variation of inter-spike intervals. BioSystems.

2005; 79: 67–72. https://doi.org/10.1016/j.biosystems.2004.09.023 PMID: 15649590

23. Nawrot MP, Boucsein C, Rodriguez Molina V, Riehle A, Aertsen A, Rotter S. Measurement of variability

dynamics in cortical spike trains. J Neurosci Methods. 2008; 169: 374–390. https://doi.org/10.1016/j.

jneumeth.2007.10.013 PMID: 18155774

24. Shimokawa T, Koyama S, Shinomoto S. A characterization of the time-rescaled gamma process as a

model for spike trains. J Comput Neurosci. 2010; 29: 183–191. https://doi.org/10.1007/s10827-009-

0194-y PMID: 19844786

25. Omi T, Shinomoto S. Optimizing time histograms for non-Poissonian spike trains. Neural Comput.

2011; 23: 3125–3144. https://doi.org/10.1162/NECO_a_00213 PMID: 21919781

PLOS COMPUTATIONAL BIOLOGY Stimulus presentation can enhance spiking irregularity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010256 July 5, 2022 20 / 23

https://doi.org/10.1016/j.neuron.2010.12.037
https://doi.org/10.1016/j.neuron.2010.12.037
http://www.ncbi.nlm.nih.gov/pubmed/21338889
https://doi.org/10.1523/JNEUROSCI.18-10-03870.1998
https://doi.org/10.1523/JNEUROSCI.18-10-03870.1998
http://www.ncbi.nlm.nih.gov/pubmed/9570816
https://doi.org/10.1523/JNEUROSCI.3762-05.2006
https://doi.org/10.1523/JNEUROSCI.3762-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16597724
https://doi.org/10.1371/journal.pcbi.1002395
http://www.ncbi.nlm.nih.gov/pubmed/22479168
https://doi.org/10.1371/journal.pcbi.1000106
http://www.ncbi.nlm.nih.gov/pubmed/18604265
https://doi.org/10.1152/jn.00648.2010
http://www.ncbi.nlm.nih.gov/pubmed/20844116
https://doi.org/10.1371/journal.pcbi.1006527
https://doi.org/10.1371/journal.pcbi.1006527
http://www.ncbi.nlm.nih.gov/pubmed/30312315
https://doi.org/10.1523/JNEUROSCI.2332-14.2015
https://doi.org/10.1523/JNEUROSCI.2332-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/26400953
https://doi.org/10.7554/eLife.37102
https://doi.org/10.7554/eLife.37102
http://www.ncbi.nlm.nih.gov/pubmed/31050648
https://doi.org/10.1016/j.neuron.2009.09.013
http://www.ncbi.nlm.nih.gov/pubmed/19778515
https://doi.org/10.1523/JNEUROSCI.4994-13.2015
https://doi.org/10.1523/JNEUROSCI.4994-13.2015
http://www.ncbi.nlm.nih.gov/pubmed/25568112
https://doi.org/10.1016/j.neuron.2007.06.018
https://doi.org/10.1016/j.neuron.2007.06.018
http://www.ncbi.nlm.nih.gov/pubmed/17610822
https://doi.org/10.1523/JNEUROSCI.5441-08.2009
https://doi.org/10.1523/JNEUROSCI.5441-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19889998
https://doi.org/10.1162/NECO%5Fa%5F00831
http://www.ncbi.nlm.nih.gov/pubmed/26942746
https://doi.org/10.3389/fncom.2020.569049
http://www.ncbi.nlm.nih.gov/pubmed/33328945
https://doi.org/10.1007/s00422-016-0690-x
https://doi.org/10.1007/s00422-016-0690-x
http://www.ncbi.nlm.nih.gov/pubmed/27246170
https://doi.org/10.1016/j.biosystems.2004.09.023
http://www.ncbi.nlm.nih.gov/pubmed/15649590
https://doi.org/10.1016/j.jneumeth.2007.10.013
https://doi.org/10.1016/j.jneumeth.2007.10.013
http://www.ncbi.nlm.nih.gov/pubmed/18155774
https://doi.org/10.1007/s10827-009-0194-y
https://doi.org/10.1007/s10827-009-0194-y
http://www.ncbi.nlm.nih.gov/pubmed/19844786
https://doi.org/10.1162/NECO%5Fa%5F00213
http://www.ncbi.nlm.nih.gov/pubmed/21919781
https://doi.org/10.1371/journal.pcbi.1010256


26. Ostojic S. Interspike interval distributions of spiking neurons driven by fluctuating inputs. J Neurophysiol.

2011; 106: 361–373. https://doi.org/10.1152/jn.00830.2010 PMID: 21525364

27. Fisch K, Schwalger T, Lindner B, Herz AVM, Benda J. Channel noise from both slow adaptation cur-

rents and fast currents is required to explain spike-response variability in a sensory neuron. J Neurosci.

2012; 32: 17332–17344. https://doi.org/10.1523/JNEUROSCI.6231-11.2012 PMID: 23197724

28. Pipa G, Grün S, van Vreeswijk C. Impact of spike train autostructure on probability distribution of joint

spike events. Neural Comput. 2013; 25: 1123–1163. https://doi.org/10.1162/NECO_a_00432 PMID:

23470124

29. Koyama S, Kostal L. The effect of interspike interval statistics on the information gain under the rate

coding hypothesis. Math Biosci Eng. 2014; 11: 63–80. https://doi.org/10.3934/mbe.2014.11.63 PMID:

24245680

30. Ponce-Alvarez A, Kilavik BE, Riehle A. Comparison of local measures of spike time irregularity and

relating variability to firing rate in motor cortical neurons. J Comput Neurosci. 2010; 29: 351–365.

https://doi.org/10.1007/s10827-009-0158-2 PMID: 19449094

31. Miura K, Tsubo Y, Okada M, Fukai T. Balanced excitatory and inhibitory inputs to cortical neurons

decouple firing irregularity from rate modulations. J Neurosci. 2007; 27: 13802–13812. https://doi.org/

10.1523/JNEUROSCI.2452-07.2007 PMID: 18077692

32. Pachitariu M, Brody C, Jun P, Holmes P. Probabilistic models for spike trains of single neurons. Marius

Pachitariu. Citeseer. 2015. http://www.gatsby.ucl.ac.uk/~marius/papers/SpikTrainStats.pdf

33. Holt GR, Softky WR, Koch C, Douglas RJ. Comparison of discharge variability in vitro and in vivo in cat

visual cortex neurons. J Neurophysiol. 1996; 75: 1806–1814. https://doi.org/10.1152/jn.1996.75.5.1806

PMID: 8734581

34. Shimazaki H, Shinomoto S. A method for selecting the bin size of a time histogram. Neural Comput.

2007; 19: 1503–1527. https://doi.org/10.1162/neco.2007.19.6.1503 PMID: 17444758

35. Ambroggi F, Ghazizadeh A, Nicola SM, Fields HL. Roles of Nucleus Accumbens Core and Shell in

Incentive-Cue Responding and Behavioral Inhibition. J Neurosci. 2011; 31: 6820–6830. https://doi.org/

10.1523/JNEUROSCI.6491-10.2011 PMID: 21543612

36. Ermentrout GB, Galán RF, Urban NN. Reliability, synchrony and noise. Trends Neurosci. 2008; 31:

428–434. https://doi.org/10.1016/j.tins.2008.06.002 PMID: 18603311

37. Song S, Lee JA, Kiselev I, Iyengar V, Trapani JG, Tania N. Mathematical Modeling and Analyses of

Interspike-Intervals of Spontaneous Activity in Afferent Neurons of the Zebrafish Lateral Line. Sci Rep.

2018; 8: 11–13.

38. Gerhardt I, Nelson BL. Transforming renewal processes for simulation of nonstationary arrival pro-

cesses. INFORMS J Comput. 2009; 21: 630–640.
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