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Abstract

While many decisions rely on real time quantitative PCR (qPCR) analysis few attempts have hitherto been made to quantify
bounds of precision accounting for the various sources of variation involved in the measurement process. Besides influences
of more obvious factors such as camera noise and pipetting variation, changing efficiencies within and between reactions
affect PCR results to a degree which is not fully recognized. Here, we develop a statistical framework that models
measurement error and other sources of variation as they contribute to fluorescence observations during the amplification
process and to derived parameter estimates. Evaluation of reproducibility is then based on simulations capable of
generating realistic variation patterns. To this end, we start from a relatively simple statistical model for the evolution of
efficiency in a single PCR reaction and introduce additional error components, one at a time, to arrive at stochastic data
generation capable of simulating the variation patterns witnessed in repeated reactions (technical repeats). Most of the
variation in Cq values was adequately captured by the statistical model in terms of foreseen components. To recreate the
dispersion of the repeats’ plateau levels while keeping the other aspects of the PCR curves within realistic bounds,
additional sources of reagent consumption (side reactions) enter into the model. Once an adequate data generating model
is available, simulations can serve to evaluate various aspects of PCR under the assumptions of the model and beyond.
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Introduction

Since its inception in the mid 1980s, the polymerase chain

reaction (PCR) has revolutionized biomedical research. As little as

a single DNA molecule can be specifically amplified to detectable

levels. Fluorescent dyes make it possible to monitor this

amplification process in real time, allowing relative quantification

of the initial amount of template DNA. Due to its unprecedented

accuracy and sensitivity, real time quantitative PCR (qPCR) has

found widespread application in a wide array of research fields.

For a review see [1,2].

With growing experience, one has recognized that an appre-

ciable degree of uncertainty could accompany stated PCR results.

Analysis results are therefore best complemented with an

appropriate estimate of precision: an indication of the range

within which the true value may be found, given the observations.

However, many publications pertaining to real time PCR results

forgo uncertainty measures. Although in theory every reaction’s

outcome should be an exact representation of its initial number of

target copies, in practice, several mechanisms introduce variation

between repeated reactions (i.e. technical repeats: each reaction’s

volume is pipetted from a single aliquot of reagent mix.

Henceforth referred to as ‘repeats’). This variance is not readily

explained by measurement error and copy number variation.

Even though the use of exponential models is fairly well

characterized as a valid approximation to the initial PCR stages

of constant and maximal amplification (the so-called ‘exponential

phase’), much less is known about the kinetic differences between

such repeats as they approach their plateau. Here, we aim to

recreate between repeat fluorescence variability by adding

probable sources of variation to a statistical model of the PCR

process.

The more straightforward models of PCR assume that efficiency

(i.e. the fold change in target copies after each cycle) is constant

during all cycles of the process, or at least up until the

quantification cycle (Cq, the fractional cycle in which the reaction

fluorescence reaches a set threshold). The DDCq method [3]

assumes theoretically maximal efficiency (i.e. E = 2) while others

allow for reaction specific efficiencies [4,5]. Such models seek

validity only for a specific region of the reaction (i.e. the

exponential phase) and have limited use in explaining the

underlying processes that drive a PCR reaction towards its

plateau.

More detailed models and simulations are available that take

the different sub-processes of each cycle of amplification into

account (denaturing, annealing, elongation, etc.), either stochas-

tically or deterministically. And although there is a consensus

among the majority of these models about the overall inverse-S

shaped profile of the efficiency decline [6–13], they may differ in

the identification of the dominant processes behind the attenuation

of efficiency. Some models focus on the thermal inactivation of the

polymerase enzyme [14] whereas others argue that this doesn’t
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contribute significantly to the efficiency decline [9,15]. Others

center around saturation of the enzyme activity [7], reagent

depletion [6,10] or primer extension [15–17] to model the

probability of replication. A number of recent studies point to

competition between template-template reannealing and primer-

template annealing as the driving force behind efficiency

attenuation [9,11,13].

Under such a scenario template-template reannealing is initially

minimal due to the very high concentration of primers in the

mixture. Yet, as primers are consumed and template copies are

produced the thermodynamically more favorable reannaeling

process starts to dominate over the primer-template hybrid

formation. This increasing presence of double stranded DNA

(dsDNA) during each successive cycle may cause additional

inhibition of the polymerase [18]. Furthermore, as the reaction

progresses, the changes in concentration of both primer and

template may increase the difference in melting temperature

between them [19] which may in turn further promote template-

template reannealing [11]. In addition, other processes may

contribute to the decrease in reaction efficiency: primer and

template damage due to denaturing [14,20], pyrophosphate

poisoning of the polymerase [21,22], polymerase errors (muta-

tions) [23,24] and the formation of non-target PCR products [25].

Due to the large number of possible reactions involved and the

complexity of the overall process, a bottom-up approach to

investigate the leading causes of between-repeat variation was not

attempted. While deterministic models are valuable in capturing

various detailed specifics of the underlying mechanisms of the

PCR process, they lead to approximations of actually observed

fluorescence and do not formally account for residual variation. As

an alternative, when targeting specific features of the process, we

model the fluorescence evolution from a macroscopic perspective,

involving global kinetic properties and structured variance

components. Formalization of the relationship between the

observable variables then allows for inference about the variation

of reaction kinetics between repeats. This is accomplished by

statistically modeling the efficiency in function of the (baseline

subtracted) fluorescence. Initially we will assume that (A) the single

amplicon fluorescence is constant and that (B) reagent consump-

tion due to non-amplification events (so-called side reactions) is

negligible, so that the fluorescence is a direct function of the

concentrations of both reagents and reaction products. Additional

sources of reagent consumption are subsequently brought into the

model in order to evaluate their impact on the fluorescence

accumulation.

Empirical observations will guide the development of a data

generating setup. We start from a large dataset which contains

high numbers of repeats of several combinations of reaction

conditions (e.g. template copies and inhibitor levels). To these data

we fit a bilinear model that allows for variable efficiency [26] and

then use the observed parameter distributions as the starting point

of a simulation approach, allowing to explore the differences

between repeats. By adding known and probable sources of

variation to the simulation backbone and by exploring their

impact on the generated fluorescence curves, an evaluation of the

plausible contribution of each source to the total variation is made.

Once such a data generation model is reached, the simulation

model will be used to evaluate two aspects of the polymerase chain

reactions under the assumptions of the model: (I) the number of

cycles during which the efficiency is approximately constant, since

it is key to Cq-based PCR analysis and (II) the position of the

second derivative maximum (SDM) which is often quoted as the

end of the exponential phase [27,28]. Furthermore, the model will

be used as a means of inspecting the accuracy and precision of the

Full Process Kinetics-PCR (FPK-PCR) parameter estimates

through comparison with the simulation input.

Materials and Methods

The goal of the data generating model is to simulate reactions

and their observed variation in fluorescence output by adapting

parameter values based on empirical observations. To obtain a

realistic set of joint parameter values, a real time PCR dataset was

produced from which the model’s parameter distributions and

responses to changes in initial target copies (i0) and initial reaction

efficiency (Emax) could be estimated. Changes in i0 were

introduced by varying the input amount of target DNA, changes

in Emax stemmed from adding an inhibitor to the reaction mix.

Practically, a two dimensional array of soybean (Glycine max)

DNA with initial target concentrations and maximal efficiencies

was created: a fourfold dilution series (ranging from approximately

96000 copies to about 375) was run at various inhibitor levels.

Inhibitor free reactions were repeated 96 times each, inhibited

reactions were repeated 48 times each.

DNA Samples and PCR reactions
Genetically modified Glycine max event GTS-40-3-2 (Roundup

Ready Soybean) was grown in house using a growth chamber and

standard conditions (250C, 16 h/8 h day/night regime, 80%

humidity, 20,000 lux). Genomic DNA was isolated from leaf tissue

using a CTAB based method [29] (all chemicals were obtained

from Merck or Acros organics). All DNA extracts were quantified

spectrophotometrically (Biorad Smartspec plus). The amount of

template copies was calculated from the DNA quantities using

haploid genome weights [30].

Inhibited reactions were created by adding isopropanol (Merck),

which is a known PCR inhibitor [31], to the reaction mix in

various concentrations. A total of 6 different isopropanol

conditions were used: 0% (inhibition free), 1%, 1.5%, 2%, 2.5%

and 3% (v/v, final concentration). See table 1 for an overview of

the resulting Emax estimates.

Five point serial dilutions were created with a high number of

repeats per dilution point (96 for the inhibitor free reactions, 48 for

the inhibited reactions), starting at approximately 96 000 target

copies and using four-fold dilution (initial target copies per

reaction: S1&96 000, S2&24 000, S3&6000, S4&1500 and

S5&375).

All PCR reactions were performed in 25 ml using primers

targeted against the soybean Lectin endogene (see table 2). The

main reaction array was constructed using the Sltm primers only.

SYBRgreen mastermix (Diagenode) was used with primers at a

standard final concentration of 260 nM (1|), certain experiments

used multiples of that standard concentration and are mentioned

accordingly in the text (e.g. 4| primer concentration means a

concentration of 4|260~1040 nM). All reactions were amplified

in 96-well plates using a Biorad IQ5. A single protocol was used

for all reactions: 10 min 950C, 60| (15 sec 950C, 1 min 600C).

Statistical Model
The data generating setup assumes that the evolution of a single

reaction’s efficiency over the different cycles behaves as a

Gompertz type equation [32]. The double log of the cycle

efficiency (ln2En) is modeled in function of the cycle fluorescence

(Fn) using an adaptation of the bilinear model from [33] as the

efficiency decline has been observed to happen in two phases: an

initial phase of gentle decline and a final phase of accelerated

decline where fluorescence approaches its plateau.

Simulation of PCR Variability
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The systematic part of the bilinear model (equation 1) takes six

parameters: three ‘slopes’ (a1 and a2 which together describe the

curve of the first phase and a3 describing the slope of the second

phase), a constant (x) for shifting along the vertical axis, a

parameter (g) for adjusting the abruptness of transition between

the two phases and a constant (Fc) corresponding to the horizontal

(x-axis) position of the phase-change in efficiency decline (also see

figure 1 for a graphical representation of the model parameters).

Parameter Fc is the fluorescence value at which a first phase of

gradual efficiency decline comes to a halt, when the reaction no

longer sustains amplification due to primer depletion. Parameter

a1 determines the slope of efficiency decline during this first phase

and can be thought of as the speed with which efficiency initially

proceeds to its minimum. Parameter a2 regulates the curvature of

efficiency decline during this phase and can be thought of as the

acceleration of the decline: the more curvature there is the more

the decline speeds up over the course of the reaction. Parameter a3
represents the steepness of decline during second phase of: the

speed with which efficiency then drops to its minimum.

For the model to function as a data generating setup some

modifications need to be made. Reaction efficiency is defined as

the fold increase in target molecules after each cycle: En~
Fn

Fn{1

with both Fn and Fn{1 baseline subtracted fluorescence values

[26,34,35]. Corollary, by definition, Fn{1
:En~Fn. Thus, in order

for the simulation to work sequentially, the bilinear model should

be fitted by regressing ln2En on Fn{1, rather than on Fn (as

described in [26]), so that En may be calculated from Fn{1. This

yields:

En~eef (Fn{1)
zen ð2Þ

where f (Fn{1) represents a function of Fn{1. The obtained chain

of cycle efficiencies can subsequently be converted to fluorescence

values using the following equation of PCR kinetics:

Fn~a:i0 P
n

j~1
Ejzen ð3Þ

where Fn is the total amplicon fluorescence of cycle n, a is the

fluorescence emitted by a single amplicon, i0 is the initial amount

of target copies and Ej is the reaction efficiency of cycle j. For the

application of Gompertz curves in the direct modeling of reaction

fluorescence see [36].

Origins of variation
The goal of the data generating model is not only to simulate

the systematic outcome of a given reaction setup, but also to

investigate the variation between cycles of single reactions and

Table 2. Primer pairs used in this study.

Name Sequence Tm Length Reference

Sltm1 59-AACCGGTAGCGTTGCCAG-39 59 81 [52]

Sltm2 59-AGCCCATCTGCAAGCCTTT-39 58,6

Lec1 59-CATCCACATTTGGGACAAAG-39 54,1 96 [53]

Lec2 59-TCTGCAAGCCTTTTTGTGTC-39 56,2

Lectin-F 59-TCCACCCCCATCCACATTT-39 55,8 81 [54]

Lectin-R 59-GGCATAGAAGGTGAAGTTGAAGGA-39 57,9

GmaxLecFor 59-CTTTCTCGCACCAATTGACA-39 57,2 102 [55]

GmaxLecRev 59-TCAAACTCAACAGCGACGAC-39 60,2

GM1-F 59-CCAGCTTCGCCGCTTCCTTC-39 63,3 74 [56]

GM1-R 59-GAAGGCAAGCCCATCTGCAAGCC-39 66,5

Primer melting temperature is given under Tm (as calculated by the wEMBOSS [57] program ‘dan’). ‘Length’ denotes the length of the amplicon in basepairs, ‘Reference’
indicates from which publication the respective primers were taken.
doi:10.1371/journal.pone.0047112.t002

Table 1. mean Emax estimate pm standard deviation as obtained using FPK-PCR for every level of inhibitor and initial template
concentration.

S1 S2 S3 S4 S5

0% 1,89+0,02 1,89+0,01 1,91+0,01 1,91+0,02 1,91+0,02

1% 1,84+0,01 1,86+0,02 1,88+0,01 1,85+0,03 1,84+0,02

1,5% 1,85+0,01 1,86+0,02 1,88+0,01 1,85+0,03 1,84+0,02

2% 1,70+0,04 1,72+0,03 1,71+0,02 1,73+0,03 1,72+0,02

2,5% 1,55+0,04 1,60+0,02 1,61+0,03 1,64+0,02 1,64+0,03

3% 1,49+0,03 1,50+0,04 1,52+0,04 1,55+0,03 1,59+0,03

Dilution S1 contains&96 000 initial target copies per, S2&24 000, S3&6000, S4&1500 and S5&375.
doi:10.1371/journal.pone.0047112.t001

Simulation of PCR Variability
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between repeats of a single reaction. There are several possible

sources of variation involved in the PCR amplification process

even when, from the point of the experimenter, the initial

conditions of template input and inhibition are fixed:

Initial copy variation. This is perhaps the most obvious

source of variation between repeats. Differences in the number of

initial target copies between repeats mainly arise from pipetting

errors and the stochastic distribution of low concentrations of

target molecules. Assuming that the target sequences are evenly

distributed in the solution, the probability of a certain number of

molecules pipetted into a reaction can be modeled by a Poisson

distribution [37,38].

Maximal efficiency variation. The between-repeat stan-

dard deviation (sd ) of the efficiency estimates in our dataset is

about 0.025 (or 2.5% efficiency), but is larger in the case of

inhibition (e.g. 0.068 or 6.8% when Emax%1.63). However, true

variation in maximal efficiency between repeats is suspected to be

much lower: the observed between-repeat variance is the sum of

the variance on the estimates and the variance on the ‘true’ Emax.

The former can be estimated using a bootstrap approach and is of

the same order of magnitude as the estimated between repeat

variance (standard deviation of about 0.03 when no inhibition is

present). This indicates that the true variability of Emax is likely to

be very small (i.e. less then one percent). These findings are in line

with results reported in [39] where the authors also conclude that

variation in individually determined amplification efficiencies

primarily represents random error and does not reflect true intra

assay variation. In the simulation, random normal variation is used

to generate differences in the true Emax.

Baseline. The level of base fluorescence may differ between

repeats. The simulation uses a ‘modular’ approach to total

fluorescence: it assumes base fluorescence change to be an

independent parallel process, whose value is simply added to the

amplicon fluorescence. This may very well be an oversimplifica-

tion of the actual process, but the current level of the insight in the

origin of base fluorescence does not support the development of an

algorithm suitable for more accurate baseline simulation. A linear

model is used, its values are seen as individual base fluorescence

values for each cycle. Intercept and slope of the model are

independently and randomly determined. Both are normally

distributed with mean 0.7 and standard deviation 0.2 for the slope

and with mean 200 and standard deviation 70 in case of the

intercept (all values based upon empirical observations in the

reaction database).

Camera noise. Almost all instruments display measurement

error to some degree, a symmetric error term can thus be expected

on the fluorescence measurement of every cycle within a reaction.

Camera noise is simulated as additive error (normally distributed,

standard deviation of 1.75 Fluorescence Units (FU ) based on

empirical observations).

Data processing
All calculations and curve fitting were done using R version

2.13.0 [40]. The raw data were exported from the thermocycler

and imported into R. Parameter modeling was accomplished using

the standard linear modeling function (lm) in combination with

nonlinear curve fitting using the Levenberg-Marquardt algorithm

[41,42] available through the package ‘minpack.lm’ version 1.1–5.

The final simulation algorithm used in this publication is available

as additional material and can be inspected for more detail on the

exact methods used. See Algorithm S1.

Cq estimation

Cq values were estimated using two methods. (I) Cq values are

calculated as the cycle at which a fixed fluorescence threshold is

reached for the baseline subtracted data. Interpolation is

performed using the Forsythe, Malcolm and Moler spline [43].

Figure 1. Illustration of the function of each of the six parameters of the bilinear model. a1 and a2 together describe the curve of the first
phase, a3 describes the slope of the second phase, x determines the y-axis intercept (the intercept itself is ln2(Emax)), g controls the abruptness of
transition between the two phases and Fc corresponds to the horizontal (x-axis) position of the phase-change. The table on the right provides an
overview of the physical interpretation of the model parameters.
doi:10.1371/journal.pone.0047112.g001

Simulation of PCR Variability
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(II) Cq values are calculated as the position of the first positive

maximum of the second derivative (SDM ) of a five parameter

logistic model (5PLM) [44]:

Fn~Fmaxz
Fmax{F0

(1z(2
1
g{1)e

b(n{nflex)
)g

zen ð4Þ

where n is the cycle number, F0 is the base fluorescence value,

Fmax is the maximal fluorescence value which defines the plateau

of the reaction, nflex is the inflection point of the curve. Parameter

b is the ‘growth rate’ and affects the slope of the curve at nflex

whereas g determines the asymptote where maximum growth

occurs.

Results and Discussion

In an initial step each separate reaction in the concentration-

inhibition array of reactions (see materials and methods) was

analyzed using the FPK-PCR approach. Efficiency estimates and

bilinear model parameters were thus obtained, these estimates are

treated mostly as close approximations of the true values: few

aspects of their distribution are supposed to differ from the true

parameter distribution.

We proceed by first discussing the distribution and properties of

each model parameter. Second, the simulation of PCR reactions

using parameter values drawn from these distributions is reviewed.

Then, the addition of other sources of variation and their effect on

the simulated curves is discussed. Finally, some aspects of the

polymerase chain reaction are evaluated under the assumptions of

the model.

Parameter distributions
There are two aspects to consider: (I) the distribution of each

parameter per se (for a given combination of i0 and Emax) and (II)
how the parameters change in response to a shift in either i0 or

Emax both jointly and separately (table 1 summarizes the

combinations of i0 and Emax). The former is limited to the

observation that each distribution is symmetric and quasi normal.

For the latter aspect, inspection of the physical meaning of each

parameter helps to guide the interpretation of the observations.

The bilinear model has six parameters and each response in

changes to both Emax and i0 was examined. Some parameters

were observed to be strongly affected by these changes (i.e. a1, a2

and x). However, x corresponds to the intercept of the bilinear

model and can be obtained via a complex transformation of Emax,

which itself is not explicitly present as a model parameter. Other

parameters behaved more independently (a3, g and Fc), which is

not surprising if we review their physical role (also see figure 1).

Considering that parameter Fc is the fluorescence value at

which the transition from slower to rapid efficiency decline

happens and taking into account that there are compelling

indications that this second phase is caused by depletion of the

primers in the reaction mix (see figure 2), it makes sense that the

distribution of Fc is constant with respect to changes in Emax and

i0. As all reactions have the same initial concentration of primers it

takes the same number of amplicons to deplete each reaction’s

supply. Corollary, every reaction starts its second phase of decline

at approximately the same baseline subtracted fluorescence value.

The distribution of parameter a3 is also constant with respect to

changes in Emax and i0. Indeed, as the second phase of decline is

supposed to stand for efficiency decline under primer depletion, its

value can be expected to be relatively constant. a3 can be seen as

the speed with which efficiency drops to its minimum when there

are no more primers to sustain any form of amplification.

In summary, the near absence of response in changes to i0 is

consistent with the concept that the efficiency is predominantly a

function of the concentration of reagents and reaction products

and that other processes contribute only marginally to the main

mode of efficiency attenuation. Essentially this means that for a

given Emax reactions should have identical ln2En versus Fn profiles

whereas the number of cycles it takes to reach a certain

fluorescence threshold would only be determined by its initial

amplicon fluorescence (i.e. its initial target copy count as a is

presumed constant).

In response to changes in initial efficiency (i.e. increasing

amounts of inhibitor) the values for a1 and a2 show a clear trend

(figure 3, panels A and B). Parameter a1 decreases as Emax reaches

lower values: the overall attenuation of efficiency proceeds faster

when the initial efficiency is lower. Parameter a2 on the other hand

increases from negative values for high values or Emax to positive

values for low levels of initial efficiency: the curvature of the

efficiency decline shifts from convex over straight to concave

(figure 3, panel C). This means that, at least for isopropanol

inhibition, the efficiency of reactions with a high Emax declines first

slowly and then more rapidly, while for low values of Emax this

behavior is reversed. Also note that due to the slower accumu-

lation of amplicons the more inhibited reactions do not reach the

point of primer depletion during the 60 cycles of the reaction.

Mathematically, parameter g governs the speed of transition

between the two phases. This transition is more difficult to fit so

the amount of measurement error on this parameter is expected to

be elevated. The fact that its value does not significantly change in

response to differences in either i0 or Emax confirms that it takes a

certain concentration or primer-to-template ratio for the poly-

merization to stall due to lack of primers, and that this ratio is

fairly constant.

This leaves only two parameters (a1 and a2) which determine

most of the efficiency behavior. First we investigate their response

to changes in i0. As can be seen from figure 4 panels A and B, the

median values of both a1 and a2 vary little over nearly three orders

of magnitude in initial target copies. Indeed, no significant

difference was found between the mean a1 values of each dilution.

For a2 on the other hand, significant differences were found but a

pairwise t-test showed that, in fact, only the two highest

concentrations (i.e. i0 = 96 000 and 24 000) differ significantly

from both each other and the rest. As a consequence we cannot

rule out that this shift in mean a2 value is caused by unspecific

amplification: reactions with low i0 suffer from a more than

proportional increase in fluorescence leading to an overestimation

in En during the later cycles (figure 4, panel C). This makes sense

as reactions with high initial copy numbers have a numerical

advantage over any possible side processes when it comes to

competition for reagents.

Joint parameter distribution. There is considerable co-

variance between the estimates of parameters a1 and a2 (spearman

correlation: r = 20,698) thus they cannot be considered indepen-

dent for simulation purposes. As figure 5 illustrates the estimated

values of a1 and a2 show a systematic non-linear association. Most

of this effect is likely due to their mutual changes in response to

increased levels of inhibition. Spearman correlations [45] between

the variables Emax-a1-a2 (see table 3) suggest a stronger linear

association between Emax-a1 than between Emax-a2 (also see

figure 5), suggesting that the initial efficiency (Emax) determines the

overall speed of efficiency decline (a1), while the acceleration of the

decline (a2, curvature) changes more in function of a1 rather than

Simulation of PCR Variability
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Emax. Indeed, incorporating Emax as a parameter in the a2 on a1

regression did not result in a better model (data not shown).

Limit of a reaction. As the number of initial target copies is

known for each reaction in our dataset, it is possible to calculate

the amount of amplicons that have accumulated at the phase

change (Fc): since the FPK-PCR analysis returns an estimate of i0
in terms of FU (i.e. a:i0, its product with the single amplicon

fluorescence) one can calculate a by dividing this estimate by the

known template input (see table 4).

With a known, any baseline subtracted fluorescence value can

be readily transformed into a number of template copies. This

yielded an average of %4:36:1012+3:6:1011 copies at Fc (mean +
standard deviation), which is remarkably close to the total number

of primers initially present in the reaction (260 nM in 25 ml yields

3:91:1012 primers per reaction). Indeed, Fc can be changed by

changing the primer concentration (figure 2 panel A) suggesting

that the onset of the second phase of efficiency decline is indeed

caused by depletion of the primers.

In the original FPK-PCR publication the attenuation of

efficiency was described to take place in two phases [26].

However, these findings now suggest that the second phase may

not always be present (i.e. only in the case of reagent depletion).

Indeed when running the reaction with an excess of primers (4|

the standard concentration) the second phase does never occur

and the reaction dies out more slowly under the influence of other

processes (see figure 2 panel B). In such cases the complex bilinear

equation model (equation 1) can be exchanged for a much simpler

single phase equivalent:

ln2En~a0za1
:Fnza2

:F2
n ze ð5Þ

This indicates that, when a PCR reaction does not hit the hard

limit of reagent depletion, it is essentially self limiting. The results

from an experiment in which the primer concentration was varied

between 1| and 8| the standard concentration seem to agree

with this concept. When primer conditions are not limiting,

further increasing their concentration does not appear to shift the

plateau accordingly (see figure 2 panel A).

When inspecting different primer pairs for the same target (see

table 4 it is notable that the primer pair that produces the highest

number of template copies (i.e. GM1) also has the highest primer

melting temperatures (see table 2). It is indeed likely that the

maximal attainable copy number (self limiting conditions) of a

primer pair is determined by a combination of amplicon

characteristics and primer attributes, e.g. melting temperature,

amplicon length, GC content, etc.

Simulation Engine
The main purpose of the simulation is to explore plausible

origins of variation between repeats and their impact on the

observed dispersion in fluorescence; it will also allow us to

investigate certain aspects of the PCR reaction (e.g. length of the

initial phase of maximal efficiency). The core of the data

generating setup predicts the systematic outcome of a reaction

based on the initial amount of target sequences and the initial

efficiency. Subsequently, variation is introduced at several levels to

obtain differences in cycle fluorescence and plateau level between

repeats. Resulting amplification curves should be representative

for observations in the data set.

For the systematic part, simulation of real time PCR reactions

can be reached by sequential application of the mathematical

model. The simulation process starts with the initial number of

target sequences (i0) and the single amplicon fluorescence (a).

Their product (a:i0) equals the initial amplicon fluorescence or F0.

Figure 2. The effect of primer concentration. Panel A shows plateau values in response to changes in primer concentration (Glycine max Le1
gene at approx. 24000 copies, 24 repeats per primer concentration). Panel B shows PCR reactions (average baseline subtracted Fn measurements
over 24 repeats) of the same target (Glycine max Le1 gene) at approx. 24000 copies. The black reaction uses 8| standard primer concentration
(1040 nM) as opposed to the 1| concentration of the red reaction (260 nM). The dashed line represents the calculated ‘‘ceiling’’ of the 16primers
reaction (i.e. a multiplied by the number of primers in the reaction).
doi:10.1371/journal.pone.0047112.g002
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Using equation 5 the initial efficiency value (E0:Emax) can be

calculated from F0. Since F0
:E0~F1 we advance one cycle. By

iterating this process fluorescence values for every cycle can be

obtained (see figure 6 for a schematic overview of the process).

To take into account the possibility of primer limiting conditions

the simulation has been divided into two independent modules or

phases (see figure 6) which model the fluorescence path over two

modes of amplification decline: self limiting (phase I) or primer

depletion (phase II). The switch from phase I to phase II is

governed by the concentration of primers (which is updated after

every cycle). When 90% of the initial primers have been consumed

transition to the second phase is initiated. This percentage was

emperically found (data not shown) and produces simulation

results in close approximation with the observations from the

dataset (i.e. plateau level). Figure 7 demonstrates the results of

switching from equation 5 to equation 1.

Before a simulation can start the model has to be populated with

parameters. Only a1 and a2 need to be determined in function of

the simulation’s starting conditions (i.e. i0 and Emax), g and a3 are

constants (based on their estimated values in the real data; 28.5

and 20.04 respectively), Fc is the fluorescence value of the cycle in

which 90% of all primers are consumed and is determined on the

fly. The joint distribution of the parameters is most usefully

decomposed in the following order: Emax (user input), next a1 is

found using equation 6 and finally a2 follows from equation 7.

Both equations were determined by regressing the parameter

values observed in the reaction dataset taking into account the

heteroskedastic nature of the error structure (weighted least

squares). Note that a1 and a2 are assumed to be independent of

i0: the initial efficiency determines the type of decline curve

whereas the initial number of target copies determines at which

position of the curve the reaction starts (also see figure S1 in the

supplemental material).

a1~{0:0105z0:0102:Emax{0:0026:E2
maxze ð6Þ

a2~{3:9678:10{08z4:0561:10{05:a1z1:1657:10{01:a2
1ze ð7Þ

When primers are not limiting the simulated amplification

curves show a gradual transition from linear amplification to

plateau phase, resulting in a ‘‘round’’ or obtuse amplification

profile (e.g. the dashed line in panel A of figure 7). In case of primer

depletion the reaction is suddenly stopped over the course of a few

cycles as primer concentration reaches critical values. As a result,

the simulated fluorescence values have a more ‘‘angular’’ or acute

profile, depending on the stage of the reaction when the primers

become limiting (e.g. the solid line in panel A of figure 7).

Panel B and C of the same figure further illustrate both

scenarios: in bilinear form (ln2E vs. fluorescence, panel B), and in

more standard form (efficiency vs. cycle, panel C). The differences

between primer depletion and self limiting conditions are most

obvious from panels A and B, while the standard efficiency vs.

cycle plot (C) illustrates how relatively small differences in cycle

efficiency have a strong impact on the reaction’s overall profile due

to the cumulative nature of the amplification process.

Evaluation of the sources of variation
For the simulation model to be deemed plausible, its observable

consequences should match what is seen in the data. Four

elements were considered when evaluating the variation patterns

of the simulated reactions: (I) for any given initial number of

target copies the Cq values should be close to the respective values

observed in the dataset, (II) the DCq between two simulations with

a different number of initial targets should be very close to its

theoretical value taking into account the input Emax, (III) the

spread of Cq values between repeated simulations should

approximate the spread observed in the dataset and (IV) the

spread of the fluorescence plateau between repeated simulations

should also approximate the spread observed in the dataset.

Of these four elements, the first two (acceptable Cq and DCq)

are embedded in the model for the systematic outcome of the

reaction and did not pose any problem: none of the tested

combinations of i0 and Emax resulted in simulated Cq values that

were either far from the observations in the dataset or incorrectly

spaced with regard to the initial number of target copies. The two

other criteria are discussed per source of variation:

Baseline variation. Since variation of the baseline is

considered in a purely additive form, there are only minimal

differences in plateau level when adding baseline variation alone to

the simulated reactions and there is no kinetic variation. The

resulting dispersion in Cq values is very small indeed

(sd = 4:10{06), as is the dispersion of the plateau values (coefficient

of variation: cv~1:07:10{16 after baseline subtraction). Hence,

baseline variation does not explain the actual variation seen in

plateau levels.

Camera noise. On its own, as sole source of variation,

camera noise adds little plateau differentiation (cv~2:29:10{3),

the standard deviation of the Cq values is 4:10{03.

i0 variation. At high numbers of initial target copies

(§50 000) the variation introduced through the Poisson distribu-

tion into the amplification curves is minimal in both plateau level

(cvv0.005) and Cq estimates (sd = 7:10{03). When lowering the

copy number, the contributed variation becomes more consider-

able (at 500 copies sdCq = 0.05; at 50 copies the plateau cv&0.01

and sdCq = 0.2). However, the standard deviation of the Cq values

in the dataset is on average 0.12 (without inhibition) and the

plateau cv is about 0.09. This indicates that only a small

percentage of the total variation witnessed in Cq and plateau

level may be due to i0 differences between repeats.

Emax variation. Of all four sources of variation tested, this is

the only factor that introduces significant overall variation between

the curves. Now however, the amount of diversity also rapidly

increases in function of the variation added: with a true Emax of

1.9 and sdEmax of 0.01 (1 percent of efficiency) the standard

deviation of the Cq estimates is about 0.2 and cv of the plateau is

0.012, at a true sdEmax of 0.05 the sdCq and cv,plateau are about 0.9

and 0.012 respectively. At a true sdEmax of 0.1 the sdCq has

increased to 1.75 whereas the cv,plateau remains relatively constant

(i.e. 0.011). In the observation dataset, the sdCq never exceeds

0.175 (for reactions without inhibition). Since the latter is the result

of all sources of variation combined it is most likely that the true

Emax variation between repeats is below 1 percent of efficiency

Figure 3. Variation of estimated parameters a1 and a2 in response to changes in Emax (i.e. changes in inhibitor concentration). Panels
A and B show box and whiskers plots for the values of a1 and a2 as estimated from the dataset. Each boxplot corresponds to repeats with the same
concentration of inhibitor and maximal number of initial target copies (96 000). Panel C shows the resulting bilinear profiles, the reactions with
highest inhibitor concentrations do not reach the plateau within the 60-cycle range (solid line) their theoretical continuation is shown as a dotted line
in order to illustrate their general trend.
doi:10.1371/journal.pone.0047112.g003
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(v0.01). Thus, differences in initial efficiency between repeats

does not seem likely as main cause of plateau variation.

None of these sources alone introduces diversity between

repeats comparable to the observations in the dataset and neither

does their cumulative effect. When all of the above are combined

in an additive fashion, even though they do cause an amount of Cq

variation comparable to the dataset, there still is considerably less

plateau variation in the simulated amplification curves (cv is 0.02

compared to the 0.09 in the dataset). Therefore, two further

sources of variation were inspected: (I) random error on the cycle

efficiency within a single reaction (departures from the theoretical

En values), and (II) small differences in the profile of efficiency

attenuation between repeats (departures from the theoretical a1

and a2 values). These two sources represent further kinetic

differences between repeats besides differences in initial efficiency.

En variation. Addition of random error with a constant

standard deviation to every En resulted in very unstable

amplification curves. Instead, random error with a constant relative

standard deviation was used. This way, the absolute deviation of

the cycle efficiency from its theoretical value becomes smaller as

efficiency declines. Even so, the addition of En error could not

produce the necessary plateau variation without resulting in overly

unstable amplification profiles and inflated Cq standard deviation.

Therefore, such random error on En error is neither considered to

be the main explanation of differences between the plateau levels

of repeats.

a1–a2 variation. This was found to be the only source of

random variation that induces considerable differences between

the curves and plateau levels of simulated repeats. However, it

proved to be impossible to inflate the plateau variance without

causing a large discrepancy in variation between Cq values as

calculated using the SDM and using a standard threshold.

Normally these two values are in close approximation of each

other and their standard deviation is very similar. The Cq,SDM has

been reported to be more stable than Cq values calculated using a

threshold [28,46]. The Cq,SDM is based on parameters from the

5PLM (4) and its standard deviation is an indicator of the overall

shape diversity between curves which is considered very stable.

Indeed, parameter comparison has been successfully used for the

detection of outlier reactions [47,48]. Therefore, the simulated

repeats’ sd(Cq,SDM ) should not surpass the sd(Cq,threshold ) and the

use of kinetic differences between repeats to drive plateau variation

is not considered to contribute to a more realistic simulation of

between reaction variation.

In summary, the final result of all these variation sources

combined does still not reproduce the observed dispersion in

plateau levels (also see figure 8 panel A). The main reason behind

the large variation in plateau levels thus appears to stem from

Figure 4. Variation of estimated parameters a1 and a2 in response to changes in i0. Panels A and B show box and whiskers plots for the
values of a1 and a2 as estimated from the datasets. Each boxplot corresponds to repeats with the same number of initial target copies and maximal
initial efficiency (no inhibitor present). Panel C shows the resulting bilinear profiles.
doi:10.1371/journal.pone.0047112.g004

Figure 5. Scatterplot of estimates of parameters a2 and a1. Panel A shows separate scatterplots per inhibitor level whereas Panel B includes all
available data (i.e. data for all copy numbers and all inhibitor concentrations) with the strongest outliers marked in red. Above and right of panel B the
density plots per inhibitor level are shown. The tick marks beneath the density plots represent the median value per inhibitor level.
doi:10.1371/journal.pone.0047112.g005
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differences between repeats in Fc, the point at which primers

become limiting, rather than kinetic asymmetries. This either

implies a large variation in primer concentration between the

repeats, which is unlikely in view of the experimental setup, or a

primer consumption that is not only driven by template

amplification but also by side processes which differ among

repeats.

The original simulation updates the current primer concentra-

tion after every cycle by subtracting the number of amplicons

formed from the number of primers at the start of the cycle.

Primer consuming side processes can now be simulated by further

Table 3. Spearman correlation coefficients for the parameter
estimates of Emax, a1 and a2.

Pairwise correlation

r Emax a1 a2

Emax 1,000 0,814 20,640

a1 0,814 1,000 20,698

a2 20,640 20,698 1,000

doi:10.1371/journal.pone.0047112.t003

Table 4. Estimated single amplicon fluorescence for a
number of PCR methods targeting the Glycine max Le1 gene
(average estimate + standard deviation).

primer a copy limit

Sltm 1,17:10{09+3,10:10{10 5,25:10z12

Lec 9,64:10{09+3,01:10{09 5,44:10z11

GMaxLec 6,96:10{10+2,42:10{10 7,69:10z12

Pauli 9,08:10{10+2,60:10{10 3,08:10z12

GM1 2,44:10{10+4,23:10{11 1,11:10z13

Their approximate maximum attainable copy numbers are also given (as
estimated from their plateau value under 4| standard primer concentration).
doi:10.1371/journal.pone.0047112.t004

Figure 6. Schematic representation of the simulation process. The upper panel of the figure represents the error structure of the model as
discussed under ‘evaluation of the sources of variation’. Arrows represent deterministic relations whereas e represents the introduction of random
variation (represented as an additive process for the sake of simplicity). The middle panel of the figure illustrates how the number of primers in
cycle n (Pn) is calculated from the initial number of primers (P0) using the cycle efficiencies (Ej ) and the loss due to side processes (s). The lower
panel of the figure represents the sequential application of the mathematical model. Within each phase the simulation repeats the same three steps:
(1) the number of template copies accumulated during the n previous cycles (in) is converted to fluorescence (Fn) by multiplication with a. (2) the
fluorescence level yields the efficiency by which the template will by duplicated during the current cycle (Enz1) by using either equation 5 or 1
depending on the phase. In step (3) the actual amplification takes place: in is multiplied by Enz1 yielding inz1. This marks the end of the (nz1)th
cycle.
doi:10.1371/journal.pone.0047112.g006
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diminishing the primer concentration through subtraction with a

fixed percentage of the current primer count. i.e. each cycle x% of

the primers available at the start of the cycle are lost to the side

process (with x normally distributed around 2.27 with a standard

deviation of 0.47). This indeed increased plateau variance

significantly (see figure 8 panel B). However, a striking feature of

the actual data is that the amplification curve that emerges first

(lowest fractional Cq) has the highest plateau level and vice versa (see

the red lines in panel C, same figure). But when assigning side

process greediness at random this relation is abandoned and the

plateau-Cq relation is randomized too. Indeed, there is an amount

of correlation between the estimates of paramters a2 and Fc

(correlation: 0.46) which has to be respected: the lowest a2 values

should also have the lowest Fc (i.e. the highest side reaction

activity, see figure 6, middle panel) to obtain a similar result in the

simulated repeats (see figure 8 panel B).

The model that is thus suggested by these observations is one

where the efficiency decline is a strict function of the concentration

in reagent and reaction products (one set of bilinear parameters for

a given Emax, irrespective of i0.) whose profile is modulated by one

or more side processes that bring about repeat-specific changes to

the reaction kinetics through the additional consumption of

reagents (variation in a2 and Fc) that add to the random variation

inherently present in the PCR process (random error on Emax, En

and i0, baseline variation, etc.).

Analysis of the outliers (figure 5B, red dots) supports this view.

Reactions with outlying a1{a2 pairs indeed have outlying plateau

levels (z-score on average&24). Such low plateau levels could not

be recreated using extreme a1{a2 combinations alone. Only

when combined with the corresponding levels of exceptional

primer loss such outlying amplification profiles could be generated.

Aspects of PCR
An achievement of the current model is that it reliably predicts

the systematic outcome and variation within & between reactions

given a set of Emax and i0 conditions. It can therefore be used to

investigate a number of aspects of the PCR reaction and derived

estimates that are inaccessible in real data. There is, however, no

guarantee that the model components represent physical reality

apart from their ability to simulate realistic patterns of observa-

tions as witnessed in the dataset.

Number of cycles with constant efficiency. The statistical

model does not allow for a phase of truly constant efficiency, it

rather contains a phase of ‘minimal decline’ during which the

efficiency changes very little, followed by a period of rapid

attenuation (see figure 7 panel B). To be able to calculate the

length of the ‘exponential phase’ we will therefore consider the

efficiency constant until the model reaches a decrease of 0.01 or

one percent of efficiency with respect to its initial value. At 50 000

initial target copies and an Emax of 1.90 this point is reached

during the 21st cycle (fractional cycle: 20.3). During the following

two cycles, the efficiency begins to drop more rapidly (1.88 and

1.86 in cycles 21.3 and 22.3 respectively). For a reaction with those

initial conditions, the FPK-PCR considers the ground phase to

Figure 7. Simulation of the systematic outcome of a reaction.
The simulation starts from 50 000 initial target copies and Emax = 1.95.
The results are shown in various representations: fluorescence versus
cycle (panel A), ln2(E) versus fluorescence (panel B), and efficiency
versus cycle (panel C). The dashed line represents self limiting
conditions, the solid line represents primer depleting conditions. The
vertical dotted line in panel A represents the phase switch criterion:
0:9:Pr. The two arrows in panel C mark the position of the second
derivative maxima, the arrows in panel B mark the corresponding
positions in the efficiency vs. cycle plot.
doi:10.1371/journal.pone.0047112.g007
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end by cycle 18 (i.e. the point at which amplicon fluorescence

becomes discernible from the base fluorescence) and the approach

published in [28] indicates fractional cycle 17.8 as the starting

point of the exponential phase. These results indicate that the

phase of constant efficiency may be drawing to its end by the time

amplicon fluorescence can be distinguished from the background.

This questions the existence of a true phase of exponential

amplification in the data.

Second Derivative Maximum. Figure 7 panels B and C

indicate the position of the SDM on the reaction curves, which is

several cycles beyond the final cycle of constant efficiency

(SDM = 25.6 or 26.7 when primers are limiting). Due to its

dependence on the form parameters of the 5PLM (4) its position is

influenced by the primer conditions and does not per se correspond

to a fixed moment in reaction kinetics. The exponential phase has

indeed ended by the SDM but using it as a marker to define a

window of application for an exponential fit may lead to the

inclusion of several cycles of decreased efficiency and ultimately to

a biased efficiency estimate.

When inspecting the position of the SDM for different values of

i0 we noted that the lower the initial copy number, the higher the

SDM is situated on the amplification curve. Due to the steepness

of the amplification curve there is relatively little x-axis shift so that

this displacement is not obvious from the Cq values, but it might

suffice to bias the conclusions of an assay.

There is no strict mathematical ground for this effect: the x-axis

position of the inflection point (nflex) plays no role in the

calculation of the y-axis position of the SDM . Therefore, the

assumption that the growth parameters b and g remain constant,

not only between repeats of a single reaction but also over all

values of i0, may not be entirely correct. Although first observed in

the simulations, this upward displacement of the SDM was

confirmed in the reaction dataset (figure 9) as well as in other

dilution series that used different template DNA and primers (data

not shown). In this light, calculating Cq values using a fixed

fluorescence threshold, for instance placed at the SDM with the

lowest y-axis position, seems more appropriate than using each

curve’s individual SDM value.

FPK-PCR estimates. The statistical model behind the

simulation engine is also the principle by which the FPK-PCR

approach analyzes reactions and thus a certain amount of bias can

be expected when using this for its evaluation. Nevertheless,

inspection of its general performance on the detection of

systematic effects is useful. For this purpose a twofold dilution

series ranging from 100 000 down to 390 copies was simulated at

an initial efficiency of 1.95 with all sources of variation present.

The resulting set of 800 reactions was subsequently analyzed using

the FPK-PCR algorithm presented in [26].

The FPK-PCR Emax estimates are stable over the entire dilution

series and were not affected by changes in input i0. The dilution

factor obtained from the i0 estimates is correct (i.e. 2.01). The Emax

estimates were on average 1.997+0.025 over all 800 reactions.

This overestimation of efficiency is persistent with regard to

changes in both input Emax and input i0. Corollary, these elevated

efficiency estimates do not preclude their use in comparing

Figure 8. Observed and simulated between-repeat variation.
Panels A and B show simulated repeats of a reaction with i0 = 96 000,
Emax = 1.95. Panel C shows the baseline subtracted amplification curves
of 96 actual repeats of a similar reaction (targeting the Glycine max Le1
gene at approximately 96000 copies, mean estimated Emax = 1.97). In
panel B additional loss of primers due to unspecific processes has been
simulated, whereas in panel A target amplification is the sole source of
primer consumption.
doi:10.1371/journal.pone.0047112.g008
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reactions and the ability of the FPK-PCR approach to detect

kinetic outliers is not compromised. However, the variation in the

FPK-PCR initial copy number estimates is more than twice the

variation in copy number estimates based on Cq values (cv 0.25

and 0.12 respectively). The FPK-PCR i0 estimator relies heavily

on the assumption that all changes in reaction fluorescence are due

to the amplification process. Any alternative process that adds

variation to the final observed fluorescence (i.e. plateau variability)

thus translates into additional variation of these i0 estimates. An

advanced i0 estimation method capable of discounting this extra

source of variation is under development and one element of a

planned update of the FPK-PCR algorithm.

These results for the FPK-PCR approach are in line with the

findings from a recent comparison of real time PCR analysis

methods (Ruijter et al., in publication): slight overestimation of the

initial efficiency and increased variability of the estimates of the

number of initial target sequences. The study further acknowl-

edges the FPK-PCR’s suitability in detecting kinetic outliers

(inhibition) and its performance on a complex biological dataset.

Conclusions

To enable study of the variance of key estimates in a highly

complex setting, we have developed a novel approach that does

not merely simulate data from a postulated model. Our approach

is designed to minimize the risk of missing true residual variation

in the data, and we would like to coin the counterfactual ‘data’

involved: ‘Simurealizations’. These start from a well balanced,

especially constructed dataset of observations, providing real

responses in function of varying key input parameters. The data

generating model is then adapted through various cycles of

comparison to the real data. This allows stepwise addition of

variance components to the model, until the resulting simulated

data are close enough to reality from the perspective of the key

targeted features in the analysis. The model can subsequently be

used to evaluate results and properties from the original model

fitting technique in this more complex setup. Such strategy could

prove useful more generally in high dimensional arrangements.

In the present setup, starting from a relatively simple statistical

model for the evolution of efficiency in a single PCR reaction we

have added one error component at a time to arrive at a data

generation setup for repeats which produces simulated data whose

between- and within-reaction variation has realistic features. The

outcome of the simulations is a realistic reproduction of the

observations from a large dataset: The DCq between reactions is

accurate given the input Emax, the size of the Cq values with

respect to the initial number of targets is in line with our

observations, as is the spread of the Cq values.

The early stages of PCR reactions were found to be largely

independent of primer and amplicon sequence. It seems, however,

that this does not hold for the later stages of the reaction and the

specifics of efficiency attenuation, in particular the self limiting

properties of the reaction were found to differ between primer-

pairs.

Most of the variation in Cq values could be adequately captured

by the statistical model in terms of random error. However, to

recreate a dispersion of plateau level equal to that in the reference

dataset, while keeping the other aspects of the PCR curves within

realistic bounds, additional sources of reagent consumption

needed to enter the model. These results are consistent with an

Figure 9. Upward displacement of the SDM. This figure illustrates the increase in y-axis position of the 5PLM second derivative maximum with
decreasing i0 . The amplification curves are the average fluorescence measurements of a Glycine max dilution series (96 repeats per dilution point, Le1
gene target).
doi:10.1371/journal.pone.0047112.g009
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efficiency that behaves foremost as a function of the concentrations

in reagents and reaction products, while the large variation in

fluorescence between repeats during the later cycles is caused by

differences in the amount of reagents lost to unspecific processes.

In order to arrive at simulations with a realistic dispersion of

fluorescence among repeats, the true variation in initial efficiency

had to be kept minimal. These findings are in accordance with

among others [39,49] where the authors indicate that sample

specific efficiency correction increases the random error. There-

fore, approaches like Kinetic Outlier Detection (KOD)

[47,48,50,51] seem the best strategy in using the efficiency

estimates to ensure similarity of kinetics between reactions.

Little evidence could be found that the SDM is an appropriate

marker for the end of the exponential phase. Its increase in y-axis

position with decreasing initial target copies may introduce bias

when Cq values are calculated at individual SDM positions. It has

also been shown that primer concentration may influence the

position of the second derivative maximum on the amplification

curve. While primer concentration is not likely to vary over

repeats, it is a factor to keep in mind when using second derivative

maxima in the kinetic analysis of PCR.

Based on these findings we are able to formulate a number of

guidelines for minimizing between repeat variation in a qPCR

setup. Firstly, the use of the SDM is discouraged (A) as a kinetic

marker, as it may not always correspond to the same stage of

reaction kinetics, and (B) to calculate Cq values for individual

reactions. A classical ‘fixed’ threshold may be preferable in view of

the latter. However, the SDM y-axis position is a useful criterion

for selecting a user-independent threshold position (e.g. using the

SDM with the lowest y-axis position in the reaction set). Second,

we would like to stress the importance of minimizing side reactions

when possible (e.g. through primer selection) in order to avoid

excess variation between repeats. Finally, increasing the primer

concentration and running additional cycles may help obtain more

data for analyzing reaction kinetics with models like FPK-PCR

and LRE.

Further use can be derived from the simulation engine: by

adjusting key parameters it can be tailored to emulate specific

reactions. This allows then to gauge the amount of variation that

can be expected under certain conditions of i0 and Emax. The

presented results serve as input for future design of PCR analysis

methods or the improvement of existing approaches. A better

captation of sources of variation in the data leads to an improved

distinction between signal and noise and hence diminishes bias

and increases precision. This may ultimately allow to control the

risk of claiming absence of particular DNA species in settings

where such detection is of prime importance.

In summary, we developed a simulation tool that proved to be

useful in evaluating reliability and precision of qPCR results. It

allowed us to discover hitherto unrecognized sources of error and

propose method improvements accordingly. As it stands, the

approach can be quite generally used and, if needed, naturally

adapted to new settings.

Supporting Information

Figure S1 Scatterplot of estimates of parameters a2 and
a1. Separate subplots per level of initial target copies are shown,

each subplot contains data from all levels of inhibitor concentra-

tion. In each subplot the curve of equation 7 is shown as a red line.

These plots indicate that the assumption that a1 and a2 are

independent of i0 (and solely dependent on the initial efficiency) is

justified.

(EPS)

Algorithm S1 The algorithm provided (genera-
tor_v6X_15.r) is written in R, a free software environ-
ment for statistical computing and graphics (http://
www.r-project.org/). The file is intended to be loaded as

‘source R code’ into the algorithm and contains a single function

(generate.pcr()) with the following arguments:

N mu.i: numerical. The desired average initial targets per

reaction.

N output: character. The type of algorithm output to be

returned: ‘‘i’’ for cycle target copies, ‘‘e’’ for cycle efficiencies,

‘‘f’’ for cycle fluorescence values or ‘‘p’’ for the bilinear model

parameters (default is ‘‘i’’).

N Emax: numerical. The desired initial reaction efficiency

(default is 1.95).

N cycles: numerical. The desired number of PCR cycles (default

is 60).

N primers: numerical. The desired primer concentration in the

final reaction volume, in mM (default is 260).

N vol: numerical. The desired reaction volume in mL (default is

25).

N plots: logical. If true, the plots are produced that visualize the

output (default is FALSE).

N variation: The desired types of variation to be used in the

simulation process. Its value shoudl be either 0 or ‘‘E’’ for Emax

variation, ‘‘En’’ for En random error, ‘‘i’’ for i0 variation

(pipetting error), ‘‘p’’ for primer variation, ‘‘s’’ for side

reactions, ‘‘a’’ for kinetic variation or a vector with any

combination of these (e.g. c(‘‘E’’,‘‘i’’)). Default is c (‘‘En’’, ‘‘E’’,

‘‘i’’, ‘‘p’’, ‘‘s’’, ‘‘a’’).

N baseline: logical. If true, a random baseline is added to each

generated curve (default is FALSE)

N Cq: logical. If true, an additional Cq analysis is performed on

the simulated reactions and the results are reported (Default is

FALSE).

Output

A matrix of 100 columns and as many rows as there are cycles

in the simulation (default is 60). Each column contains a

single simulated reaction. The actual output depends on the

user input (argument output): if ‘‘i’’ was specified the number

of amplicons present at the end of each cycle is returned, if

‘‘e’’ was specified the efficiency value of each cycle is

returned, if ‘‘f’’ was specified the fluorescence values are

returned, and if ‘‘p’’ was specified the bilinear model

parameters for each simulated reaction are returned yielding

a 6 by 100 matrix. By default the amplicon accumulation is

returned.

Examples

## A minimal function call generate.pcr(10000)

## Producing graphical output generate.pcr(15000,

plots = T)

## Fluorescence output with baseline added and using only

pipetting error generate.pcr (20000,variation = ‘‘i’’,baseli-

ne = T, plots = T).

(R)
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