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A B S T R A C T   

The rapid growth of spatially resolved transcriptomics technology provides new perspectives on spatial tissue 
architecture. Deep learning has been widely applied to derive useful representations for spatial transcriptome 
analysis. However, effectively integrating spatial multi-modal data remains challenging. Here, we present 
ConGcR, a contrastive learning-based model for integrating gene expression, spatial location, and tissue 
morphology for data representation and spatial tissue architecture identification. Graph convolution and ResNet 
were used as encoders for gene expression with spatial location and histological image inputs, respectively. We 
further enhanced ConGcR with a graph auto-encoder as ConGaR to better model spatially embedded represen
tations. We validated our models using 16 human brains, four chicken hearts, eight breast tumors, and 30 human 
lung spatial transcriptomics samples. The results showed that our models generated more effective embeddings 
for obtaining tissue architectures closer to the ground truth than other methods. Overall, our models not only can 
improve tissue architecture identification’s accuracy but also may provide valuable insights and effective data 
representation for other tasks in spatial transcriptome analyses.   

1. Introduction 

Characterizing tissue architecture is crucial for understanding the 
biological functions and mechanisms in spatial transcriptome analysis. 
Recent technologies for generating spatial transcriptomics data using 
platforms such as Visium from 10X Genomics [1,2] and MERFISH [3,4] 
are effective for studying tissue architecture heterogeneity in the spatial 
context. Morphology images, RNA-seq gene expression, and various 
other multi-modal data profiles provide complementary information on 
tissue architecture. However, using computational methods to properly 
integrate spatial multi-modal data for identifying tissue architecture is 
still challenging in spatial transcriptome analysis. 

Recently, several computational methods have combined gene 
expression, spatial location, and morphology information to identify 
spatial tissue architecture. BayesSpace [5] employs a Bayesian statistical 
method using prior knowledge to cluster spots into distinct domains. 
SpaGCN [6] integrates gene expression, spatial location, and histology 
to identify spatial domains by deriving spatial dependency through 
graph convolution. stLearn [7] applies gene expression normalization to 
incorporate tissue morphology information into spatial clustering 
analysis. stMVC [8] uses attention-based multi-view graph collaborative 
learning to analyze spatial tissue heterogeneity by leveraging histology, 
spatial location, and gene expression. DeepST [9], a flexible deep 
learning model, offers various graph neural networks to integrate 
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morphological images, gene expression, and spatial location data for 
spatial transcriptome analysis. These methods integrate spatial 
multi-modal data using a deep learning model to derive spatially 
embedded features that capture underlying biological functions and 
spatial tissue patterns. A common strategy of these methods is to 
construct distances or adjacency relationships between spots by refer
encing features from morphology images for training models. However, 
current spatial transcriptomics technologies still have limitations and 
cannot generate comprehensive data covering the entire transcriptome 
and capturing the complete tissue area [10,11]. Spots on the spatial 
transcriptomic slide with a lower resolution cannot perfectly map the 
morphological image’s corresponding position, such as the inconsistent 
alignment between panels (A) and (B) in Fig. 1 and Figs. S1–S3. This may 
lead to poor performance in related analyses. Such inconsistent align
ments often result from low-quality staining images, spot shifting, or low 
capture efficiency. 

One potential method to address this challenge is contrastive 
learning, an efficient self-supervised learning method for various rep
resentation learning tasks, such as image classification and natural 
language processing. This method is effective for learning representa
tions through self-supervision [12]. SimCLR [13,14] employs data 
augmentation and learnable nonlinear transformations of the input’s 
two views to learn embedding for image classification. MoCo [15,16] 
builds a large and consistent dictionary with a queue using a momentum 
updating mechanism for unsupervised representation learning. There 
are also clustering-based contrastive learning methods, such as 

DeepCluster [17] and SwAV [18]. Distillation-based methods like BYOL 
[19] and SimSiam [20] have also been proposed for self-supervised 
learning of effective visual representations. Because contrastive 
learning has a strong feature representation capacity that may better 
tolerate noises in mapping among multiple input modalities, exploiting 
a contrastive learning framework model to learn embeddings by inte
grating spatial multi-modal data is a promising approach for spatial 
domain identification. 

This study presents a contrastive learning-based model, contrastive 
learning with convolutional neural network (GCN) and ResNet, short for 
ConGcR, for identifying spatial tissue architecture. Graph convolutional 
neural network is used as the encoder for learning features from gene 
expression [21]. ResNet [22] is used as the encoder for the 
hematoxylin-eosin (H&E) stained image patch. We also integrate 
ConGcR with a graph auto-encoder (GAE), resulting in a new method 
called contrastive learning with GAE and ResNet (ConGaR, for short), to 
further generate spatially embedded representations. Sixteen human 
brains, four chicken hearts, eight breast tumors, and 30 human lung 
spatial transcriptomics samples [1,23–25] involving multi-modal data 
are used to validate our method. According to the experimental results, 
the proposed contrastive learning-based models, ConGcR and ConGaR, 
can effectively integrate spatial multi-modal data, including gene 
expression, spatial location, and morphology images, to produce 
embedded representations for accurate spatial tissue architecture iden
tification. The results also highlight our models’ potential value in 
integrating multi-modal data into other spatial transcriptome analyses. 

Fig. 1. Comparison results of (A) histology image, (B) spatial transcriptome spots colored by ground truth labels, (C) RGB image of original preprocessed gene 
expression with PCA method, (D) RGB image of ConGcR embedding with PCA method, and (E) RGB image of ConGaR embedding with PCA method in the subfigures 
(1), (2) and (3) of samples 2–5, 151509 and 151675, respectively. 
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2. Materials and methods 

The main workflow of ConGcR and ConGaR is used to accurately 
identify tissue architecture by integrating spatial multi-modal data, 
including tissue morphologies and transcriptomes. Fig. 2 shows 
ConGcR’s and ConGaR’s frameworks for generating spatially embedded 
representations by integrating morphological image, spatial location 
information, and gene expression. ConGcR and ConGaR identify the 
spatial domains in three steps: (A) data preprocessing on histological 
images, spatial locations, and gene expressions as the inputs, (B) 
generating proper embedding with effective spatial information using 
multi-modal data, and (C) identifying tissue architecture by clustering 
spatially embedded representations. The clustering result is applied to 
the comparison of different models for performance evaluation. 

2.1. Data preprocessing 

Our models take three types of spatial multi-modal data as input, that 
is, gene expression, spatial location, and morphology image. For gene 
expression data generated by different technologies, we use raw or log- 
transformed counts per million reads (LogCPM) [26] normalized 
expression to transform the data dimension and select the top 2000 
variable genes as done in RESEPT [27]. The selected top 2000 highly 
variable genes can remove the most inessential gene expression and 
keep the most important gene information to generate an effective 
representation at the gene level. The spatial location data are used to 
create a spatial GCN graph by selecting the k-nearest neighbors to create 
edges. For each morphological image, we crop the image patches with 
the spot diameter in the full resolution provided by the technology 
platform before implementing ResNet. A square RGB (red, green and 
blue) patch with the same height and width is generated to match each 

spot for conducting contrastive learning. 

2.2. Gene expression and image encoders 

We use a classical GCN [28] as the gene expression encoder to extract 
features from the preprocessed gene expression X ∈ ℝn×d, where n is the 
number of spots and d is the selected highly variable gene number. The 
gene expression encoder employs a two-layer GCN with message passing 
to derive a high-order graph representation Zgene as follows: 

Zgene = GCN
(
GCN

(
Xgene,A

)
,A
)

(1)  

where Xgene is the gene expression of highly variable genes, and A is the 
spatial adjacency matrix of the KNN graph. The GCN part is denoted as 
follows: 

GCN
(
Xgene,A

)
= tanh

(
ÂXgeneW(l)) (2)  

where Â is the normalized adjacency matrix by D− 1/2AD− 1/2. D is a 
degree matrix generated from the KNN graph, and W(l) is the weight 
matrix of the l-th layer. For the learned graph embedding from gene 
expression, a simple fully connected (FC) neural network is applied to 
map the graph embedding into a shared space for contrastive learning, 
which is denoted as follows: 

Hgene = FC
(
Zgene

)
(3) 

The image encoder is used to learn the morphological features from 
the cropped image patch of each spot. We adopt ResNet-18 as the image 
feature extractor. Other different architecture ResNet models are also 
optional in our model setting. We modify the convolutional configura
tions of the first convolutional layer in ResNet, such as kernel size, stride, 

Fig. 2. The workflow of the proposed models ConGcR and ConGaR for tissue architecture identification with integrating spatial multi-modal data. The process details 
of the three experimental steps are shown in panels (A), (B), and (C), respectively. (A) is the data preprocessing on the three types of spatial multi-modal data, that 
are histology image, spatial location, and gene expression. ConGcR and ConGaR take the preprocessed spatial multi-modal data in panel (A) as inputs. (B) shows the 
model architecture of our models to generate spatially embedded representations for identifying spatial domains. (C) details the downstream analysis tasks. The 
clustering method is applied to the generated embedding for tissue architecture identification, and ARI is used as the metric to evaluate the performance. 
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and padding settings, to better extract image feature details. Similarly, 
the output dimension of the last FC layer in ResNet is the same as the 
gene expression encoder for taking morphological features into the 
shared contrastive learning space. 

2.3. Loss functions 

To learn the joint embeddings that extract features from two mo
dalities of gene expression and morphological image simultaneously, we 
employ NT-Xent loss in SimCLR [13] to conduct contrastive learning on 
the shared hypersphere space. Contrastive learning aims to pull together 
positive pairs between RNA and H&E representations of the same spot 
and push away negative pairs that do not match each other. NT-Xent 
loss, also called normalized temperature-scaled cross-entropy loss, 
guides the projected representations from the two modalities to learn the 
joint features. The mini-batch of M spots’ gene expressions and M 
morphological features of the spots’ corresponding cropped image 
patches are used to calculate each loss value. When a positive pair is 
defined in one batch, the other 2(M-1) spots’ gene expressions or pro
jected image features are taken as the negative samples. Then, the 
contrastive loss function for a positive pair of gene and image features of 
the same spot can be formed as follows: 

LHi
gene ,H

j
image

= − log
exp

(
sim(Hi

gene ,H
j
image)

τ

)

Σ2N
k=11[k∕=i]exp

(
sim(Hi

gene ,Hk
image)

τ

) (4)  

where 1[k∕=i] ∈ {0,1} is an indicator function evaluating to 1 if k ‡ i, and τ 
is a temperature parameter used to control the degree of pushing away 
negative samples. sim(Hi

gene,H
j
image) means the dot product between l2 

normalized projected gene and image features, and it is denoted as 
follows: 

sim

⎛

⎜
⎝Hi

gene,Hj
image

⎞

⎟
⎠ =

(
Hi

gene

)T
Hj

image
⃦
⃦
⃦Hi

gene

⃦
⃦
⃦
⃦
⃦Hj

image

⃦
⃦

(5) 

The final contrastive loss is calculated using all positive pairs with 
Hi

gene,H
j
image andHj

gene,H
i
image within batch data. 

To better learn the spatial topology and location relationship, we 
apply GAE on the graph embedding in the decoder part, resulting in a 
new ConGaR model. ConGaR formulates the model by not only using the 
morphological features for distillation learning but also making learned 
embeddings to maintain spatial adjacency relationships. The graph 
decoder is an inner product between graph embeddings by a sigmoid 
activation function: 

Ã = sigmoid
(

Zgene
(
Zgene

)T
)

(6)  

where Ã is the reconstructed adjacency matrix, and the decoder aims to 
minimize the cross-entropy L between the spatial adjacency matrix and 
the reconstructed adjacency matrix: 

L(A, Ã) = −
1

N × N
∑N

i=1

∑N

j=1

(
aij ∗ log

(
ãij
)
+
(
1 − aij

)
∗ log

(
1 − ãij

))
(7)  

whereaijandãijare the spatial and reconstructed adjacency matrix ele
ments, respectively. N is the total number of spots in the KNN graph. 

Then, the final total loss of our model is defined as follows: 

Lfinal = λ1Lcontrastive + λ2Lgraph− auto (8)  

where λ1 and λ2 are the hyper-parameters to control the weights of 
contrastive learning and GAE losses in the final loss. ConGcR or ConGaR 
is iteratively trained to obtain the final graph embedding Z for the 

downstream analysis. 

2.4. Dataset and experimental settings 

This study uses 12 published and four private spatial multi-modal 
samples generated from the human brain [29–31] to validate our 
models. To further test model generalizability, four chicken heart spatial 
multi-modal samples are applied. The 12 published samples are named 
from 151507 to 151676. Four private samples are divided into non-AD 
cases at Braak stages I–II (samples 2–5 and 18–64) and early-stage AD 
cases at Braak stages III–IV (samples 2–8 and T4857). Four chicken heart 
samples (D4–D14) are profiled at four development stages from day 4 to 
day 14. The 16 human brain and four chicken heart datasets are 
generated from the 10X Genomics Visium platform. Table S1 provides 
more details. To enhance the model usage scenario, we also conduct 
experiments on a HER2-positive breast tumor dataset generated using 
spatial transcriptomics [32] and a human lung dataset generated using 
CosMx Spatially Molecular Imaging (SMI) [33,34]. The spatial tran
scriptomics dataset includes eight spatial multi-modal samples (A1–H1) 
with annotation labels. Tables S2 and S3 show the specific dataset de
tails. The CosMx SMI dataset includes 30 spatial multi-modal samples 
(Fov1 to Fov30) with cell labels. Tables S4 and S5 provide further de
tails. The proposed models, ConGcR and ConGaR, are implemented by 
Python 3.8.5 and Pytorch 1.13.0. They are trained on an NVIDIA TU102 
[TITAN RTX] GPU. All the methods are conducted on a computing 
server running Ubuntu 18.04 operating system with 2.2 GHz, 144-core 
CPU, and 503 GB RAM. 

For the 16 human brain multi-modal samples, GCN’s gene expression 
encoder architecture has a dimension of 512 for the first layer, a 
dimension of 128 for the second layer, and an FC layer with two mo
dalities with a dimension of 128. The number of k in the KNN graph is set 
as eight. For the four chicken heart samples and enhancement of the 
model usage scenario using spatial transcriptomics and CosMx SMI 
dataset, the hyper-parameter settings are kept the same as those used for 
the 16 samples—except that the first-layer dimension of GCN is 256 and 
the number of k in the KNN graph is four. Our model is trained by the 
Adam optimizer with a learning rate of 0.001. The temperature 
parameter in NT-Xent loss is 0.1, the weight of λ1 is 1, and the weight of 
λ2 is 100 in the final loss. We implement several training batch sizes, 
such as 64, 128, and 256. 

To better show the potential spatial domain information in the em
beddings of different methods, three embedding dimensional reduction 
methods of PCA, t-SNE, and UMAP [35–37] are applied to transform the 
embeddings into three-dimensional features used to generate RGB im
ages in RESEPT. The parameter settings are all set as the default in the 
Python package sklearn. Differential expression gene (DEG) analysis is 
conducted using Python package scanpy and the cluster labels of 
ConGcR. Based on these differentially expressed genes, the enrichment 
analysis of GO terms (Biological Process) is performed by the R package 
clusterProfile using the enrichGO function. 

2.5. Evaluation metrics 

We apply the K-means algorithm [38] for clustering on the embed
dings learned from different methods to identify spatial tissue archi
tecture. K-means is the most widely used clustering algorithm in spatial 
transcriptome analysis, and it has been widely used in spatial methods, 
such as BayesSpace, SpaGCN and RESEPT [5,6,27]. The number of 
spatial domains is set as the number of ground truth labels in each 
sample. After clustering, we use the adjusted Rand index (ARI) [39] to 
evaluate clustering results. ARI is used to measure the similarity be
tween two partitions. This index reflects the consistency between the 
clustering labels and the ground truth spatial domains as follows: 
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ARI =

∑
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2

)

(9)  

where nij means the common samples in both i-th predicted label and j-th 
ground truth label, and ai and bj are the number of samples in the i-th 
predicted label and the j-th ground truth label, respectively. The index 
range of ARI is [− 1,1], and a larger ARI means a higher consistency. nij 
means the common samples in both i-th predicted label and j-th ground 
truth label. ai and bj are the number of samples in the i-th predicted label 
and the j-th ground truth label, respectively. The index range of ARI is 
[− 1,1], and a larger ARI means a higher consistency. 

To evaluate RGB image quality, the three metrics of mean square 
error (MSE), peak signal-to-noise ratio (PSNR), and structure similarity 
index measure (SSIM) are used [40–42]. MSE is applied to calculate the 
pixel difference at each position of two RGB images. A smaller MSE 
value means a higher RGB image quality. PSNR is commonly used to 
assess the similarity between the color distribution of two RGB images 
based on the MSE metric as follows: 

PSNR = 10 ∗ log10
L2

MSE
(10)  

where L is the maximum pixel value in an RGB image, and the larger the 
PSNR value, the higher the RGB image quality. SSIM is another useful 
RGB image quality assessment metric to consider all three image as
pects, that is, luminance, contrast, and structure. It focuses more on the 
influence of structural information, especially the local image informa
tion of each region, to assess the RGB image quality. When SSIM cal
culates the difference between two images at each location, it uses the 
pixels from a region in the image rather than taking a single pixel from 
each position to derive the evaluation metric, as done in PSNR and MSE. 
A larger SSIM value means a higher similarity between two RGB images. 

2.6. Benchmark methods 

For the 16 human brain samples, we compare ConGcR and ConGaR 
with the original clustering methods, the baseline methods of inte
grating spatial multi-modal data, and the models of BayesSpace, 
SpaGCN, DeepST, and conST [43]. For the raw gene expression, we 
adopt the same experimental procedures as the data preprocessing in 
ConGcR and ConGaR. For the raw morphological image, the pixel values 
in a cropped square patch are flattened into one dimension, and we 
project them into 2000 dimensions using the PCA method. Then, 
min-max normalization is used to map the features of the two modalities 
into the same scale. We use K-means clustering directly on these features 
of the two modalities. We add and concatenate the preprocessed gene 
expression and morphological features as the baseline integration 
methods. We consider gray-scale and RGB images for each piece of H&E 
data in this study. For the BayesSpace, SpaGCN, DeepST and conST 
models, we keep the default hyper-parameter model settings, use the 
same data preprocessing in ConGcR and ConGaR, and apply K-means as 
the initial method in the training process for BayesSpace and SpaGCN to 
identify spatial domains. For testing the model’s generalizability on four 
chicken heart samples, the original and baseline method settings are 
kept the same as those used in the model validation on 16 sam
ples—except that the number of selected highly variable genes and PCA 
projected dimensions are both 500. For enhancing model usage scenario 
on eight HER2-positive breast tumor and 30 human lung samples, all the 
default hyper-parameter model settings are used for the BayesSpace, 
SpaGCN, DeepST, and conST models. 

3. Results 

We evaluate our models’ effectiveness and generalizability using 16 
human brains’ and four chicken hearts’ multi-modal data from 10X 
Genomics Visium. An eight ST breast tumor and 30 CosMx SMI lung 
multi-modal dataset are used to enhance model usage scenarios. The 
experimental results show that ConGcR and ConGaR not only can suc
cessfully integrate spatial multi-modal data but also can be applied and 
generalized to the new test data for spatial tissue architecture 
identification. 

3.1. Model validation using 16 human brain spatial multi-modal samples 

Table 1 and Table S6 show the tissue architecture identification 
comparison results of different methods on the spatial multi-modal 
dataset of 16 human brain samples using raw and LogCPM normalized 
gene expression, respectively. To better show our models’ identification 
capacity, we conduct the ConGcR and ConGaR experiments with 
different hyper-parameter settings for batch size and epoch number. 
Tables S7 and S8 show the comparison results. Tables S9 and S10 show 
the experimental results of GCN as a gene expression encoder for our 
contrastive learning model. Table S11 shows the comparison results of 
the individual encoders of ResNet on morphological image patches and 
GCN on spatial gene expression. Tables S12 and S13 show the compar
ison results of GAE and ConGaR to demonstrate the effectiveness of 
using histological image data. Tables S14 and S15 compare the Bayes
Space, SpaGCN, DeepST, conST, ConGcR, and ConGaR models. 

As Tables 1 and S6 show, our mdoels ConGcR and ConGaR have a 
higher ability to identify spatial tissue architecture than the methods of 
original clustering on the features of gene expression or H&E data and 
the baseline integration methods of adding or concatenating the features 
of two modalities. The contrastive learning-based models can be useful 
for integrating multi-modal data of morphological images and gene 
expressions with spatial locations in this study. ConGcR can obtain 
competitive ARIs higher than 0.5, such as sample 2–5. After integrating 
the GAE framework and the spatial location information, ConGaR out
performs ConGcR in most cases. Adding or concatenating the two mo
dalities’ features can effectively help with spatial domain identification. 
This demonstrates that the preprocessed features of the two modalities 
contain the potential information for mutual assistance and benefit. 
Compared to the integration method of adding features, concatenating 
features can be more helpful in both cases of adopting a morphological 
image in gray-scale or RGB format. On sample 151507, the performance 
of concatenating features can improve by at least 10% compared to that 
of the original gene expression in all cases. The performance is also 
better than that of both original features of gene expression and H&E 
data. The features in RGB images are more effective for integrating gene 
expression to generate embeddings. As for the original H&E features, 
their ability to identify spatial tissue architecture is weaker. Some 
original H&E features contain mostly noises, such as samples 151670 
and 151671. 

Tables S7 and S8 compare several batch sizes (64, 128, and 256) 
where models are trained for different numbers of epochs. According to 
the overall average ARI, ConGcR obtains the optimal value when the 
batch size is 64 and 128 using raw and LogCPM normalized gene 
expression, respectively. ConGaR has the highest capacity to identify 
spatial domains when batch size is 256 or 128 in two corresponding 
cases. ConGaR can obtain superior performance compared to ConGcR. 
As for ConGcR, some samples (151508, 151509,151510, 2–5, and 
T4857) benefit from the smaller training batch size and can obtain the 
highest ARI at batch size 64. As Tables S9 and S10 show, ConGcR can be 
superior to the contrastive learning model (ConMR) using MLP as the 
gene expression encoder. ConGcR outperforms ConMR in identifying 
spatial domains when different batch sizes are applied in most cases. 
This shows that the GCN model involving spatial location information 
can be more suitable for extracting features from gene expression for 
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contrastive learning. 
As Table S11 shows, compared to individual ResNet or GCN en

coders, better identification results can be obtained when contrastive 
learning is applied in our models. The GCN encoder using spatial gene 
expression has a higher capacity than the ResNet encoder in regard to 
using morphological image patches for spatial domain identification. 
ConGaR is the best method in both cases of using raw and LogCPM 
normalized gene expression. Even if the overall average ARI of GCN 
encoder is higher than ConGcR in the case of using LogCPM normalized 
gene expression, ConGcR has higher ARIs than the GCN encoder in more 
samples. The better capacity of ConGcR to identify spatial domains can 
be shown when using other hyper-parameter settings in Table S8. 
Tables S12 and S13 show GAE’s comparison results with the weight of λ1 
being 0. When histological image data are applied to the contrastive 
learning-based model, ConGaR has a higher capacity to identify spatial 
domains, and the highest overall average ARI can be obtained when the 
batch size settings are 256 and 128 in the case of using raw and LogCPM 
normalized gene expression, respectively. The histological image is 
effectively used in our model to integrate spatial multi-modal data. As 
Tables S14 and S15 show, ConGaR outperforms the BayesSpace, 
SpaGCN, DeepST, conST, and ConGcR models. Compared to other 
models, it obtains the highest overall average ARI and has more samples 
with higher identification ability in both tables. Further, ConGcR has a 
higher ability than SpaGCN and DeepST to identify spatial tissue ar
chitecture. In seven samples, ConGaR obtains the highest ARI among six 
comparison models. 

3.2. Application of spatially resolved transcriptomics samples to the new 
test dataset 

To further evaluate our models’ spatial domain identification ca
pacity on the new test dataset, we conduct the same experimental 

comparisons using 16 human brain samples on the new spatial multi- 
modal dataset consisting of four chicken heart samples. Table 2 and 
Table S16 show the tissue architecture identification comparison results 
of different methods on the new test dataset using raw and LogCPM 
normalized gene expression, respectively. Tables S17 and S18 show the 
experimental results of ConGcR and ConGaR with different hyper- 
parameter settings of batch size and epoch number. 

Tables 2 and S16 show that our models can be effectively applied to 
the new test 10X Visium dataset to integrate spatial multi-modal data 
and develop a higher capacity to identify spatial domains than other 
comparison methods. ConGcR obtains the highest ARI among compar
ison methods on sample D7 in Table 2. After integrating the GAE 
framework with learning spatial location information, ConGaR out
performs ConGcR in most cases. The baseline methods can still improve 
the identification performance based on the two original features of 
gene expression and H&E data. Compared to adding features, concate
nating features of the two modalities is more useful for downstream 
analysis. The baseline methods of adding and concatenating features are 
more effective when the morphological images of gray-scale and RGB 
formats are used, respectively. As for the original preprocessed features, 
a single H&E feature of the morphological image has no obvious use
fulness, and the LogCPM normalized feature of gene expression con
tributes more significantly than the raw feature to identifying spatial 
domains. 

As Tables S17 and S18 show, our models can obtain the optimal 
value when the batch size is 256, and the highest overall average ARI 
can be obtained by ConGaR in both tables. The larger training batch size 
is helpful for ConGcR and ConGaR on the four chicken heart samples. 
Like the 16 human brain samples, ConGaR also has a higher capacity 
than ConGcR to identify spatial tissue architecture when different batch 
sizes are used in most cases. 

Table 1 
Tissue architecture identification comparison results of original preprocessed gene expression and H&E methods, spatial multi-modal data integration baseline 
methods, ConGcR and ConGaR using raw gene expression on 16 human brain samples. The best performances of each sample and overall average ARI are marked in 
bold.  

Sample RNA_Original H&E_Original 
(Gray/RGB) 

RNA_H&E_Add 
(Gray/RGB) 

RNA_H&E_Concatenate 
(Gray/RGB) 

ConGcR ConGaR 

151507 0.109 0.111/0.148 0.145/0.124 0.143/0.149 0.374 0.477 
151508 0.118 0.267/0.267 0.218/0.215 0.204/0.216 0.304 0.399 
151509 0.164 0.193/0.297 0.204/0.240 0.231/0.202 0.412 0.432 
151510 0.131 0.220/0.240 0.199/0.225 0.219/0.221 0.335 0.481 
151669 0.125 0.069/0.093 0.118/0.115 0.113/0.118 0.330 0.285 
151670 0.139 0.000/0.000 0.147/0.151 0.142/0.155 0.346 0.284 
151671 0.151 0.000/0.000 0.157/0.152 0.154/0.150 0.392 0.431 
151672 0.130 0.000/0.015 0.130/0.131 0.130/0.131 0.398 0.488 
151673 0.170 0.160/0.163 0.193/0.204 0.199/0.205 0.337 0.472 
151674 0.170 0.154/0.156 0.185/0.188 0.184/0.190 0.325 0.388 
151675 0.174 0.190/0.191 0.211/0.231 0.234/0.230 0.297 0.430 
151676 0.190 0.171/0.163 0.225/0.220 0.223/0.220 0.427 0.406 
18_64 0.088 0.209/0.209 0.124/0.127 0.127/0.126 0.396 0.406 
2_5 0.548 0.301/0.257 0.541/0.539 0.540/0.539 0.714 0.654 
2_8 0.315 0.103/0.097 0.348/0.343 0.341/0.349 0.324 0.538 
T4857 0.206 0.133/0.135 0.235/0.238 0.234/0.235 0.445 0.513 
Ave±Std 0.183 ± 0.11 0.143 ± 0.09/0.152 ± 0.09 0.211 ± 0.10/0.215 ± 0.10 0.214 ± 0.10/0.215 ± 0.10 0.384 ± 0.10 0.443± 0.09  

Table 2 
Model generalizability test by tissue architecture identification comparison results of original preprocessed gene expression and H&E methods, spatial multi-modal 
data integration baseline methods, ConGcR and ConGaR using raw gene expression on the new dataset of four chicken heart samples. The best performances of 
each sample and overall average ARI are marked in bold.  

Sample RNA_Original H&E_Original 
(Gray/RGB) 

RNA_H&E_Add 
(Gray/RGB) 

RNA_H&E_Concatenate 
(Gray/RGB) 

ConGcR ConGaR 

D4 0.227 0.124/0.112 0.171/0.165 0.171/0.173 0.137 0.143 
D7 0.109 0.078/0.078 0.113/0.113 0.117/0.116 0.371 0.267 
D10 0.043 0.067/0.070 0.086/0.094 0.089/0.096 0.243 0.275 
D14 0.055 0.111/0.114 0.094/0.088 0.089/0.090 0.212 0.380 
Ave ± Std 0.108 ± 0.08 0.095 ± 0.03/0.093 ± 0.02 0.116 ± 0.04/0.115 ± 0.03 0.116 ± 0.04/0.119 ± 0.04 0.241 ± 0.08 0.266 ± 0.08  
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3.3. Analysis of case study results 

We select samples 2–5 and 151509, which show promising results, 
and samples 151675 and 2–8, which show poor results, to further 
analyze the effectiveness and limitations of integrating methods using 
spatial multi-modal data. Fig. 3 shows the tissue architecture identifi
cation results of model ConGcR with the hyper-parameter settings of raw 
gene expression and 64 batch sizes for the four samples. Fig. S4 shows 
the same identification results for the 16 samples. In Fig. 1, we select 
samples 2–5, 151509 and 151675, which are the best, general, and worst 
identification results in the four samples, to illustrate the comparison 
results of the original histological image, spatial transcriptome spots 
colored by ground truth labels, RGB image of original preprocessed gene 
expression with PCA method, and RGB images of ConGcR and ConGaR 
embeddings from the gene expression encoder with the PCA method. For 
samples 2–8, Fig. S1 shows the relatively poor identification results for 
the four samples. The same comparison results using t-SNE and UMAP 
methods on these four samples are shown in Figs. S2 and S3, respec
tively. To select the most effective dimensional reduction method, we 
evaluate the RGB image quality between model embedding and original 
preprocessed embedding using the PSNR, SSIM, and MSE assessment 
metrics. Tables S19–S22 detail the RGB image quality comparison re
sults of using PCA, t-SNE, or UMAP for transforming different embed
dings into three-dimensional features on samples 2–5, 151509, 151675, 
and 2–8, respectively. 

As Fig. 3 illustrates, the tissue architecture identifications of samples 
151509 and 2–5 are significantly more accurate than those of samples 
151675 and 2–8. ARI improves gradually as the number of training 
epochs on samples 2–5 and 151675 are increased. Within several 
epochs, the highest ARI can be obtained, after which the changes 
become stable in the training process for samples 151509 and 2–8. 
Additionally, when ConGcR is trained for five epochs on samples 2–5, it 
can generate representative embedding with spatial domain identifica
tion of ARI higher than 0.7. Most of the 16 samples have the same overall 
trend: that is, the results become relatively stable after five epochs. 
Meanwhile, a few samples have a decreasing trend, as Fig. S4 shows. 

As Fig. 1 shows, the degrees of consistency between the original 
morphological image and the spatial transcriptome spot with the ground 
truth labels in panels (A) and (B) are stronger on samples 2–5. The 
general and low consistency degrees between panels (A) and (B) are 
illustrated on samples 151509 and 151675, respectively. The color and 
texture changes align with some spot labels at the layer levels on the 
samples with promising results, such as in the layer of L1 and WM on 

samples 2–5 and in the layer of L1 on sample 151509. However, the 
ground truth spot labels cannot be appropriately aligned with the image 
color and texture changes on sample 151675 with poor identification 
results. For example, there is a vertical texture in the middle part of the 
H&E image. Generally, there are some blank areas across the tran
scriptome layer labels in panel (B) of the spot ground truth. As panels (A) 
and (B) of Fig. S1 show, the blank areas are large and continuous at the 
intersection of L5, L6, and WM on samples 2–8. The promising identi
fication results benefit from the higher alignment of the color and 
texture layout in the histology and ground truth labels of the tran
scriptome layer, which allows for different data integration methods to 
extract mutually supportive and effective features from the two mo
dalities. The data qualities of the morphological images and the gene 
expression of spatial transcriptome spots in some cases limit our current 
models, requiring further research. 

As panels (C), (D), and (E) of Figs. 1 and S1 show, the RGB images of 
original preprocessed embedding, ConGcR embedding, and ConGaR 
embedding contain roughly similar patterns and texture layouts with the 
transcriptome spots colored by the ground truth. Compared to the 
original RGB image, our models’ RGB images have less noise and frag
mented areas with smoother color contrast and clearer patterns. They 
benefit from the contrastive learning framework by integrating histol
ogy information and gene expression, as well as the encoder architecture 
of GCN with message passing. The more accurate spatial domain iden
tification of generative embedding with higher ARI is, the more obvious 
the pattern the RGB image contains (e.g., the images in panel [E] of 
sample 2–5). These figures achieve similar results using dimensional 
reduction methods of t-SNE and UMAP. 

Tables S19–S22 show that RGB images generated using the PCA 
method to transform embeddings into three-dimensional features have 
the highest quality among the RGB images generated by three different 
dimensional reduction methods. The PSNR and SSIM values between the 
original RGB and our models’ RGB of PCA are larger than the t-SNE or 
UMAP values. The MSE values between the RGB images using PCA are 
smaller than the values using t-SNE or UMAP. By applying PCA, the RGB 
images generated from ConGcR and ConGaR are closer to the original 
embedding RGB images. Although the embeddings of our models inte
grate the features of the two modalities, they preserve more original 
information when PCA is used. Therefore, PCA is the most effective 
dimensional reduction method for transforming embedding into three- 
dimensional features to generate RGB images in this study. 

3.4. Model usage comparison on spatial transcriptomics and CosMx SMI 
datasets 

To enhance our model usage scenario, we compare the spatial 
domain identification performances of ConGcR and ConGaR with the 
other four models (BayesSpace, SpaGCN, DeepST, and conST) on the 
HER2-positive breast tumor dataset of spatial transcriptomics technol
ogy and human lung dataset of CosMx SMI technology. The details of the 
dataset and different model hyper-parameter settings are provided in 
Section 2.4 Dataset and experimental settings. Tables S23 and S24 show 
the specific identification comparison results for eight HER2-positive 
breast tumor and 30 human lung samples. Figs. S5–S7 show the 
learned labels with spatial coordinates for the tissue architecture iden
tification results of the six comparison models on the three spatial 
transcriptomics samples. We also conduct the DEG analysis based on 
these labels of ConGcR and list the differentially expressed genes of each 
cluster label in Supplementary Data 1–3. The enrichment analysis results 
based on the DEG lists are detailed in Supplementary Data 4–6. Both 
DEG and enrichment results are filtered out if the adjusted p-value is 
greater than 0.05. 

As Table S23 shows, by adopting contrastive learning to integrate 
gene expression, morphological image, and spatial information, ConGcR 
has the highest capacity to identify spatial domains. The highest overall 
average ARI and more stable results with lower standard deviation can 

Fig. 3. Tissue architecture identification comparison of ARI changes with a 
number of epochs in the hyper-parameter setting of batch size 64 using raw 
gene expression on samples 151509, 151675, 2–5 and 2–8. 
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be obtained by our models among all comparison models. Compared to 
the BayesSpace and conST models, ConGaR demonstrates better iden
tification capacity. Even if the overall average ARI of ConGaR is lower 
than SpaGCN, ConGaR can obtain a higher identification capacity on 
five samples of A1, E1, F1, G2, and H1. The highest ARI among all 
comparison models can be obtained by ConGaR on two samples of F1 
and G2. Our models’ superiority in identifying spatial domains can also 
be demonstrated in Table S24. ConGaR can outperform other compari
son models and obtain the highest overall average ARI. ConGcR has a 
better capacity than BayesSpace, SpaGCN and conST. It can obtain the 
highest ARI among all comparison models, and the ARI values are larger 
than 0.2 in the samples of Fov9, Fov15, and Fov25. 

As Figs. S5–S7 illustrate, compared to other models, the spatial 
patterns detected by ConGcR and ConGaR are closer to the ground truth 
categories. The connective tissue region in ground truth can be depicted 
well by the labels of L2 in ConGcR, whereas most of the other models fail 
to distinguish connective tissue and invasive cancer regions according to 
Fig. S5. Fig. S6 demonstrates that the labels of ConGcR can obtain a 
similar cluster pattern to the invasive cancer region in the ground truth. 
There are six ground truth categories with corresponding regions in 
sample H1. Our models identify similar biological regions and accurate 
layouts, such as the breast glands region in the ground truth of Fig. S7. 

Supplementary Data 1–6 show the identified differentially expressed 
genes and enriched descriptions. As for the connective tissue regions in 
sample D1, the most significantly expressed gene based on the ConGcR 
labels of L2 is ACTG1, which participates in various types of cell 
movements [44]. As for the immune infiltration region in sample E1, the 
gene ERBB2 identified by the ConGcR labels of L3 demonstrates the 
malignancy of cancer cells, especially in breast cancer [45]. Addition
ally, breast cancer patients generally have a higher proportion of B cells, 
but this is highly variable [46]. In the invasive cancer region of sample 
E1, the results show that B cell-related functions are intensively 
enriched, such as B cell-mediated immunity and B cell activation. 
Therefore, the learned cluster label of our model can help further 
interpret the biological region functions in spatial transcriptome 
analysis. 

4. Discussion and conclusions 

This study proposes a contrastive learning-based model, ConGcR, 
that integrates spatial multi-modal data to accurately identify tissue 
architecture in spatial transcriptome analysis. Graph convolutional and 
ResNet neural networks are used as the encoders for gene expression and 
morphological image data, respectively. NT-Xent loss is applied as the 
model loss function in ConGcR. After integrating the cross-entropy loss 
of GAE into ConGcR, a new contrastive learning-based model, ConGaR, 
is used to further identify the spatial domain. Both ConGcR and ConGaR 
can generate effective embeddings containing promising spatial infor
mation for domain identification. Sixteen human brain spatial multi- 
modal samples are used to validate our models. Directly clustering, 
addition, and concatenation of the preprocessed features of the two 
modalities are used as original clustering and baseline integration 
methods for comparison purposes. We also compare ConGcR and Con
GaR with the four models of BayesSpace, SpaGCN, DeepST and conST. 
Further, four chicken heart spatial multi-modal samples are used to 
further test model generalizability on the new dataset. In the case study, 
we conduct a detailed analysis of method effectiveness and limitations in 
integrating spatial multi-modal data by the application of our models on 
four samples with promising or poor results. Eight breast tumor and 30 
human lung spatial multi-modal samples are used to enhance the model 
usage scenario. 

The study demonstrates that our models can obtain superior per
formance compared to the original clustering method, the baseline 
integration methods, and the four models of BayesSpace, SpaGCN, 
DeepST, and conST on 16 human brain samples. After employing the 
cross-entropy loss of GAE, ConGcR further learns spatial location 

information, and higher ARIs can be obtained. Compared with the 
original preprocessed features of gene expression and morphological 
image in the original method, adding and concatenating two modalities’ 
features in baseline methods can generate more useful features in most 
cases. In terms of the two baseline methods, the concatenation method 
obtains the more accurate predicted labels with ground truth. These 
results suggest that concatenated features are better suited for identi
fying spatial tissue architecture. Compared with BayesSpace, SpaGCN, 
DeepST, and conST, ConGaR can achieve the most superior perfor
mance. The competitive results can also be demonstrated in the test of 
model generalizability on the four chicken heart samples, where our 
models, as well as the baseline methods, can effectively integrate mul
tiple profiles of spatial transcriptomics data for tissue architecture 
identification. Our models obtain the highest ARI in most cases. Addi
tionally, our models can be effectively used for the HER2-positive breast 
tumor dataset of spatial transcriptomics technology and the human lung 
dataset of CosMx SMI technology. They can outperform the other 
comparison models and better help identify the biological regions. The 
learned spatial domain label is useful for further interpreting the bio
logical function of each region through DEG and GO enrichment ana
lyses. In conclusion, ConGcR and ConGaR can generate more accurate 
embeddings using spatial multi-modal data to identify tissue architec
ture in spatial transcriptome analysis. 

Most existing data integration methods use the extracted histology 
features to establish adjacency relationships without updating the 
trained model to adopt the two modalities of morphological image and 
gene expression simultaneously for identifying spatial domains, such as 
SpaGCN and DeepST. This study’s main novelty lies in its use of three 
profiles—that is gene expression, spatial location, and morphological 
image—and applying contrastive learning to distill features from gene 
expression and H&E data for training our models. The encoders of GCN 
and ResNet are used to extract the representative features for the com
mon space of gene expression and morphological image. Two modal
ities’ features can be fully integrated, and the explicit noises in gene 
expression can be efficiently removed in the shared hypersphere space 
through contrastive learning. The RGB images generated from three- 
dimensional features are useful for better displaying the potential 
spatial architecture and pattern in different embeddings and showing 
the effective function of contrastive learning in our models. 

In ConGcR and ConGaR, the types of image encoders and the number 
of k-nearest neighbors of the spatial graph in GCN can be adjusted ac
cording to different cases. Compared to the individual encoders of GCN 
or ResNet, ConGcR and ConGaR achieve a higher identification capacity 
by implementing contrastive learning. Compared to GAE, ConGaR can 
effectively involve histological image data to learn more accurate fea
tures for identifying spatial domains. Compared to ConGcR, ConGaR can 
enhance the spatial location relationship by using the loss function of 
GAE, but it has a more complex model and requires more computational 
resources. ConGcR model is more suitable when the morphological 
image and transcriptome slide are better aligned; otherwise, ConGaR 
model can be a better choice. Because of the comprehensive represen
tation of spatial multi-modal data and model flexibility, ConGcR and 
ConGaR can be extended to various applications using different types of 
spatial transcriptomics data. 

Although ConGcR and ConGaR obtain competitive performance in 
identifying spatial domains compared to the other multi-modal data 
integration methods in this study, the best ARIs of the two models are 
not superior enough and some cases show poor results, such as samples 
151672, 151675, and 2–8. There is still potential to improve the model’s 
capacity to learn valuable features with spatial information for identi
fying spatial domains. The limitation of existing models is that the 
alignment and consistency of the morphological images and spatial 
transcriptome spots with some missing parts influences the exploration 
of the spatial domain, which may reduce the effectiveness of extracting 
and learning features from both modalities. To address this limitation, 
methods to sufficiently apply the morphological image with complete 
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modality information need to be explored. Future research will improve 
the model design in mutual learning features using gene expression and 
H&E data. 
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