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Abstract: Water pollution by dyes is a huge environmental problem; there is a necessity to produce
new decolorization methods that are effective, cost-attractive, and acceptable in industrial use. Mag-
netic cyclodextrin polymers offer the advantage of easy separation from the dye solution. In this work,
the β-CD-EPI-magnetic (β-cyclodextrin-epichlorohydrin) polymer was synthesized, characterized,
and tested for removal of the azo dye Direct Red 83:1 from water, and the fraction of non-adsorbed dye
was degraded by an advanced oxidation process. The polymer was characterized in terms of the parti-
cle size distribution and surface morphology (FE-SEM), elemental analysis (EA), differential scanning
calorimetry (DSC), thermal gravimetric analysis (TGA), infrared spectrophotometry (IR), and X-ray
powder diffraction (XRD). The reported results hint that 0.5 g and pH 5.0 were the best conditions to
carry out both kinetic and isotherm models. A 30 min contact time was needed to reach equilibrium
with a qmax of 32.0 mg/g. The results indicated that the pseudo-second-order and intraparticle
diffusion models were involved in the assembly of Direct Red 83:1 onto the magnetic adsorbent.
Regarding the isotherms discussed, the Freundlich model correctly reproduced the experimental
data so that adsorption was confirmed to take place onto heterogeneous surfaces. The calculation of
the thermodynamic parameters further demonstrates the spontaneous character of the adsorption
phenomena (∆G◦ = −27,556.9 J/mol) and endothermic phenomena (∆H◦ = 8757.1 J/mol) at 25 ◦C.
Furthermore, a good reusability of the polymer was evidenced after six cycles of regeneration, with a
negligible decline in the adsorption extent (10%) regarding its initial capacity. Finally, the residual dye
in solution after treatment with magnetic adsorbents was degraded by using an advanced oxidation
process (AOP) with pulsed light and hydrogen peroxide (343 mg/L); >90% of the dye was degraded
after receiving a fluence of 118 J/cm2; the discoloration followed a pseudo first-order kinetics where
the degradation rate was 0.0196 cm2/J. The newly synthesized β-CD-EPI-magnetic polymer exhibited
good adsorption properties and separability from water which, when complemented with a pulsed
light-AOP, may offer a good alternative to remove dyes such as Direct Red 83:1 from water. It allows
for the reuse of both the polymer and the dye in the dyeing process.

Keywords: β-cyclodextrins; porous adsorbent; adsorption kinetics; organic contaminants; advanced
oxidation process
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1. Introduction

The constant development of industrial companies and the excessive employment
of chemical compounds have led to environmental pollution. Due to this trend, a large
amount of colored wastewater is discharged into aqueous effluents from textile indus-
tries [1,2]. Wastewaters rich in dye entities are complicated to handle since dye molecules
are nonbiodegradable, recalcitrant contaminants incompatible with aerobic digestion, and
resistant to oxidizing agents. In addition, dyes are persistent and might lead to mutagenic
precursors including teratogenic and carcinogenic agents [3]. Their release into the envi-
ronment produces serious problems in ecosystems such as a reduction in photosynthetic
pathways, a reduction in oxygen levels, and even suffocation of fauna and flora [4].

The classification of dyes includes cationic, anionic, and nonionic based on the proper-
ties they impart to water solutions. Azo dyes are especially toxic because of the presence of
amine groups in the structure. These azo dyes might induce damage to both the environ-
ment and human health, and their levels should be diminished as much as possible before
releasing them into water effluents [5].

Numerous techniques including chemical oxidation [6], adsorption/biosorption [7,8],
coagulation/precipitation/flocculation [9], oxidation processes, ion exchange, biological
degradation, and membrane filtration have been proposed for dye removal from wastewa-
ter. Unfortunately, most of these approaches are not practicable in industrial frameworks
because of several main drawbacks such as high operational costs, constricted environmen-
tal conditions or the production of toxic by-products. In practice, there is no single process
that can provide a successful treatment, and the simultaneous use of different processes is
required (e.g., coagulation-precipitation associated with an adsorption/filtration process is
implemented) to economically reach the required water quality. Thus, there is a need to
generate new decolorization strategies that are effective, cost-attractive, and acceptable in
industrial use [10,11].

Adsorption is considered as a suitable technique for dye removal. The major pros
of this technique rely on its simplicity of design, high efficiency, low cost, nontoxic by-
products, fast adsorption rate and wide adaptability. Recently, many approaches have
attempted to produce cheaper and effective adsorbents containing biopolymers for dye
removal. Indeed, it is now well-known that adsorption methods based on biopolymers
are effective and economic alternatives for cleaning water [5]. Among them, cyclodextrin-
based polymers have attracted considerable attention because they have better adsorption
capacities and stereoselectivities than the parent cyclodextrin because of their particular
macromolecular structure and larger number of cavities in the polymeric network, pro-
viding more interaction sites. Cyclodextrins (CDs) are obtained through the enzymatic
degradation of starch and are composed of an internal cavity that is hydrophobic and can
contain a different number of glucose units joined together by glycosidic bonds [12,13].

The hydrophobic cavity of CDs permits the formation of inclusion adducts through
host–guest interactions. Due to these properties, CDs can provide the formation of stable
complexes with different compounds such as dyes. These special properties attributed to
CDs can be used in many areas and industries. The ability of CDs to yield stable complexes
with many wastewater pollutants has been extensively demonstrated [12,14,15].

In general, the formation of insoluble CD-based materials depends on polymerization
with a cross-linking agent. However, CD polymers are almost nonporous structures
and possess low adsorption rates. In this study, CDs are green extractants and were
selected as compounds to be used in the preparation of magnetic polymers, and the
polymerization of CDs was achieved by using epichlorohydrin (EPI). EPI is a flexible cross-
linking agent that permits the production of insoluble, biodegradable, and environmentally
friendly polymers [16]. Nevertheless, the problems associated with the separation of
adsorbent polymers from water solution hinder their application in water treatments.
Magnetic nanoparticles (Fe3O4) have been extensively adapted to environmental uses
(e.g., for the elimination of pollutants and the separation and purification of analytes of
bioactive ingredients) due to their unique magnetic characteristics and rapid and efficient
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properties in the reduction of pollutants from wastewater by implementing an exogenous
magnetic field [17]. Indeed, wastewater treatment and the design of CD-based magnetic
adsorbents for pollutant removal have a main advantage: magnetic materials possess the
characteristics of convenient separation and high extraction capacity for pollutants (they
are easily separated by an external magnetic field since they have a magnetic core), which
reduce the cumbersome and time-consuming filtration, sedimentation, or centrifugation
steps [18–27]. Another interesting feature is the fact that Fe3O4 particles are biocompatible
and are used in biological applications such as drug delivery and molecular imaging. For
these reasons, we prepared and evaluated β-CD-EPI-magnetic polymers as adsorbents for
dye removal [19–28].

The reduction of dyes by adsorbent polymers is not completely efficient. While some
adsorbents can retain high levels of contaminants, a problem still exists regarding the
amounts of contaminants that are not retained and can eventually reach the environment.
To cope with this problem, the degradation by a novel pulsed light/H2O2 process of the
amounts of contaminants that are not retained by the polymers might be useful. In the
pulsed light/H2O2 process, hydroxyl radicals are produced photolytically from H2O2 by
means of a pulsed light system, which provides a new light source to use in advanced
oxidation processes (AOPs) and a new application of pulsed light technology. Pulsed light
generates very intense light that includes UV emissions, which can give rise to a process
much faster than those driven by conventional UV lamps, with the additional advantage of
using mercury-free lamps [29].

The present manuscript analyses the adsorption phenomena of Direct Red 83:1 dye on
β-CD-EPI-magnetic polymers as an adsorbent and evaluates the potential application of
this polymer. Thus, the experimentally recorded data were fitted to various kinetic and
isotherm models to analyze the adsorption properties of magnetic polymers. To understand
the adsorption process, the adsorbent was fully characterized, and the spontaneity of
adsorption was calculated by determining the thermodynamic parameters. In this way, a
novel polymer, a novel light source for AOPs, a novel use of pulsed light technology and a
novel array of complementary methods was tested and characterized.

2. Results and Discussion
2.1. Characteristics of the Polymer Material

The β-CD-polymer-modified Fe3O4 beads showed a specific surface area of 0.0126 m2/g
(smaller than that of the nonmodified Fe3O4 beads (β-CDs-EPI), 0.0963 m2/g), a narrow
size distribution (1.439 of span value), lower than β-CD-EPI (2.256 of span value), and pos-
sessed a higher particle volume D[4,3] = 641.1 µm versus D[4,3] of 136.6 µm for β-CD-EPI,
expressed as the mean volumetric size D[4,3]; the results are shown in the Supplementary
Materials (Figure S1A,B). The corresponding carbon, hydrogen, nitrogen, and sulfur con-
tents were also obtained, revealing that considering the elemental content of β-cyclodextrin
(C = 45.47%; H = 7.25%), the results after polymerization showed a slight increase of 2%
in carbon content due to the EPI crosslinker (C = 47.80%; H = 7.11%). However, when
polymerization was carried out in the presence of Fe3O4 nanoparticles, the carbon content
dropped by almost half (β-CD-EPI polymer-modified Fe3O4 nanoparticles: C = 25.26%,
H = 3.88%). FE-SEM was used to characterize the morphology of iron containing the β-CD
polymer. Two different samples were examined, the raw polymer (Figure 1A), and the
powder reduced sample (Figure 1B) used for X-ray diffraction.

Both samples appeared with a heterogeneous surface morphology and size distribution
(Figure 1A,B). No defined shapes could be drawn from the images obtained, suggesting an
irregular structure for the polymer.

The corresponding EDX spectra were also taken, and are shown in the Supplementary
Materials (Figure S2). The coating of the epichlorohydrin-β-cyclodextrin polymer on the
surfaces of the Fe3O4 particles was verified by IR spectroscopy (Figure 2B). The results
showed a wide band centered at approximately 3400–3300 cm−1 in the iron-containing and
non-containing polymer, corresponding to the stretching modes of vibration for the O–H
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bonds of the primary, secondary, and isopropyl nonbonding hydroxyl groups of glucopy-
ranose and the aliphatic side chains generated during polymerization (Figure 2A, B, D).
An additional band at approximately 2870 cm−1 appeared in both polymeric materi-
als (Figure 2 B, D) with respect to the band at ca. 2920 cm−1 in the single cyclodextrin
(Figure 2A), all stretching C–H modes in the CH and CH2 groups of the native rings and
the new backbones bonded to them.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 21 
 

 

  
(A) (B) 

Figure 1. (A) Surface morphology structure of the β-CD-EPI polymer-modified Fe3O4 nanoparticles 
(2.0 kV; magnification 100×). (B) Surface morphology and structure of the powder of the β-CD-EPI 
polymer-modified Fe3O4 nanoparticles (2.0 kV; magnification 150×). 

The corresponding EDX spectra were also taken, and are shown in the Supplemen-
tary Materials (Figure S2). The coating of the epichlorohydrin-β-cyclodextrin polymer on 
the surfaces of the Fe3O4 particles was verified by IR spectroscopy (Figure 2B). The results 
showed a wide band centered at approximately 3400–3300 cm−1 in the iron-containing and 
non-containing polymer, corresponding to the stretching modes of vibration for the O–H 
bonds of the primary, secondary, and isopropyl nonbonding hydroxyl groups of gluco-
pyranose and the aliphatic side chains generated during polymerization (Figure 2A, B, D). 
An additional band at approximately 2870 cm−1 appeared in both polymeric materials 
(Figure 2 B, D) with respect to the band at ca. 2920 cm−1 in the single cyclodextrin (Figure 
2A), all stretching C–H modes in the CH and CH2 groups of the native rings and the new 
backbones bonded to them. 

 
Figure 2. The IR spectra of the(A) β-cyclodextrin, (B) β-cyclodextrin-epichlorohydrin, (C) Fe3O4 na-
noparticles, and (D) β-CD-EPI polymer-modified Fe3O4 nanoparticles. 

Figure 1. (A) Surface morphology structure of the β-CD-EPI polymer-modified Fe3O4 nanoparticles
(2.0 kV; magnification 100×). (B) Surface morphology and structure of the powder of the β-CD-EPI
polymer-modified Fe3O4 nanoparticles (2.0 kV; magnification 150×).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 21 
 

 

  
(A) (B) 

Figure 1. (A) Surface morphology structure of the β-CD-EPI polymer-modified Fe3O4 nanoparticles 
(2.0 kV; magnification 100×). (B) Surface morphology and structure of the powder of the β-CD-EPI 
polymer-modified Fe3O4 nanoparticles (2.0 kV; magnification 150×). 

The corresponding EDX spectra were also taken, and are shown in the Supplemen-
tary Materials (Figure S2). The coating of the epichlorohydrin-β-cyclodextrin polymer on 
the surfaces of the Fe3O4 particles was verified by IR spectroscopy (Figure 2B). The results 
showed a wide band centered at approximately 3400–3300 cm−1 in the iron-containing and 
non-containing polymer, corresponding to the stretching modes of vibration for the O–H 
bonds of the primary, secondary, and isopropyl nonbonding hydroxyl groups of gluco-
pyranose and the aliphatic side chains generated during polymerization (Figure 2A, B, D). 
An additional band at approximately 2870 cm−1 appeared in both polymeric materials 
(Figure 2 B, D) with respect to the band at ca. 2920 cm−1 in the single cyclodextrin (Figure 
2A), all stretching C–H modes in the CH and CH2 groups of the native rings and the new 
backbones bonded to them. 

 
Figure 2. The IR spectra of the(A) β-cyclodextrin, (B) β-cyclodextrin-epichlorohydrin, (C) Fe3O4 na-
noparticles, and (D) β-CD-EPI polymer-modified Fe3O4 nanoparticles. 
Figure 2. The IR spectra of the (A) β-cyclodextrin, (B) β-cyclodextrin-epichlorohydrin, (C) Fe3O4

nanoparticles, and (D) β-CD-EPI polymer-modified Fe3O4 nanoparticles.

Deformation C–O–H modes were present at 1500–1200 cm−1, stretching C–O–C modes
at 1200–850 cm−1 and other nonspecific C–H deformation peaks below 800 cm−1 completed
the spectrum for cyclodextrin, epichlorhydrin polymerized cyclodextrin, and the iron oxide
epichlorhydrin cyclodextrin polymer (Figure 2A,B,D). The incorporation of metallic parti-
cles in the core of the β-CD-EPI polymer was proven by the appearance of the most relevant
band of the uncoated iron oxide spectrum, the octahedral Fe–O stretching vibration band
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at 532 cm−1 (Figure 2C) in the fingerprint region of the polymer at 549 cm−1 (Figure 2D),
which was slightly offset from the original band. Taking into account the method used in
the preparation, in which the iron particles were synthesized before polymerization, and
the spectroscopic data of the final material, from which we could not infer distortion in
the iron oxide crystal lattice, we are inclined to think that the interactions are probably
hydrogen bonds and coordination between the oxygen of the polymer to iron rather than
proper chemical bonds.

The thermal behavior of the samples, profiles of the m/z ratios, experimental mass
loss curve, and its first derivative are shown in Figure 3. The weight loss/gain with a
change in temperature (TGA profile) is shown in the Supplementary Materials (Figure S3).
As shown in Figure 3A, nonpolymeric cyclodextrin suffered a first weight loss at low
temperatures (120 ◦C), corresponding to the absorbed water molecules (m/z 18). No
significant weight loss was registered up to 350 ◦C when almost total mass loss occurred
(up to 89%). Within the mass range considered, there were a multitude of unspecific
losses typical of minor polyhydroxylated alicyclic compounds as well as water and carbon
dioxide, with the majority of weight corresponding to fragmentations of higher mass due
to the decomposition of carbohydrate molecules.
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Fe3O4 nanoparticles (Figure 3B), synthesized prior to the polymerization step with
less than a 5% weight loss, were recorded up to 800 ◦C, with the main masses associated
with the loss being water (m/z 18), oxygen (m/z 32), and carbon dioxide (m/z 44), probably
due to small impurities present in the sample.

Iron-containing (Figure 3D) and non-containing polymers (Figure 3C) showed com-
pletely different decomposition patterns. On one hand, the cyclodextrin polymerized with
EPI in the absence of iron nanoparticles showed a decomposition process at a slightly
higher temperature than cyclodextrin alone, together with another residual process at close
to the same temperature of decomposition than cyclodextrin. In any case, the possibil-
ity of consisting of unbound nonpolymeric cyclodextrin was discarded by the synthetic
method, since all products were washed to remove the unreacted starting material before
analysis. This fact was confirmed in the DSC analysis (Figures 4 and 5). On the other hand,
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polymerization in the presence of Fe3O4 nanoparticles resulted in two markedly different
decomposition steps, one of them (41.6% weight loss) at a temperature slightly lower than
the parent cyclodextrin, which implies a slight destabilization compared to the EPI-β-CD
polymer, and the other one (22.8% weight loss) at a considerably higher temperature,
650 ◦C, with two m/z values 77 and 78, together with a m/z at 44, indicative of carbon
dioxide that probably proceeded from the carbonylation of iron atoms in the first step.
Despite the fact that m/z 77 could be indicative of organic chlorinated compounds, the
corresponding m/z at 36 at the basal level (picograms) during the whole process was
attributed to the O-18 molecules (also present in m/z 46, OCO-18), rather than hydrogen
chloride due to the high oxygen content in the polymer.
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Other authors have suggested that the third weight loss observed at 650 ◦C could be
due to the phase transition from Fe3O4 to FeO [30]. Therefore, the presence of chlorine
from the cross-linking in the newly coated iron nanoparticles was discarded. Regarding the
DSC analysis (Figure 5), the EPI-Fe-β-CD polymer showed a glass transition between 188
and 189 ◦C before any decomposition took place. This transition, attributed to some kind
of relaxation of the structure to a more flexible arrangement, was absent in the EPI-β-CD
polymer or in any of the starting materials.
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These can be assigned to diffractions from the (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1),
and (4 4 0) planes of Fe3O4, respectively, indicating that the epichlorohydrin-mediated
polymerization of the cyclodextrin in the presence of the preformed iron particles did
not result in any distortion of the crystal lattice (see Supplementary Materials Figure S4:
degree of crystallinity of 68 for the Fe3O4 nanoparticles and 70% for the β-CD-EPI polymer-
modified Fe3O4 nanoparticles), suggesting a structure in which the magnetite nanocrystals
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are superficially coated with the in situ formed polymer, thus preventing the formation of
macromolecular aggregates.

2.2. Adsorbent Dosage

The effect of adsorbent dosage is shown in Figure 7. The experimental conditions were
fixed at 50 mg/L of Direct Red, an agitation speed of 500 rpm, and increasing concentrations
of the polymer at pH 7. The results showed that increasing the amount of polymer led
to a higher dye removal up to a point in which the level of removed dye was stable. In
the range from 0.5 to 2 g, the performance was similar, and approximately 85% of dye
was entrapped from the water solution. For this reason, 0.5 g of adsorbent was selected to
perform further experiments.
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Figure 7. The effect of adsorbent dosage on the removal of Direct Red 83:1.

2.3. pH Effect

The adsorption effectiveness of substances onto polymers depends on the pH. Changes
in the pH value can lead to changes in the charge of both the adsorbent surface and the
ionization degree of the substance [31]. These experiments were conducted using 0.5 g of
the adsorbent, 50 mg/L of dye, 500 rpm, and a pH range from 3 to 11 (Figure 8).
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All of the accumulated data indicated that acidic conditions were the most suitable
to perform the adsorption experiments (pH 3 and 5). In contrast, the process became
less favorable in alkaline media. Indeed, the recorded UV–Vis spectra suggest that the
adsorption capacity sharply decreased by 30% at pH = 11 (see Supplementary Materials
Figure S5) because an increase in negative charges, both in the dye and the adsorbent
(cyclodextrins located on the surface of the magnetic polymer), caused a repulsive force
between the two, affecting their adsorption. As pH emerged as a critical parameter in
the removal procedure, we performed theoretical calculations to further rationalize the
impact of protonation states on the adsorbent/dye interaction. At an early stage of the
computational strategy, we delineated the protonation states at pH = 3, 5, 7, 9, and 11.
According to the developed model systems, Direct Red 83:1 mainly exists as a treat-anionic
form in the range of pH = 3–7, corresponding to four sulfonate (SO3

−) groups. The increase
in pH is concomitant with the deprotonation of the hydroxyl substituents, which in turn
yields more negative species at pH = 9 (charge = −5/−6) and pH = 11 (charge = −7/−8).
The global charge significantly affects the pose adopted by the dye upon encapsulation
(Figure 9), a qualitative picture that was eventually completed by assessing the interaction
energy (see Supplementary Table S1).
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Figure 9. A summary of the results by using computational methods. The β-CD is displayed as a
pink surface while Direct Red 83:1 is represented with ball and stick models. Color scheme: red,
charge = −3; orange, charge = −4; yellow, charge = −5; cyan, charge = −6; blue, charge = −7; grey,
charge = −8.

Remarkably, we observed a direct correlation between the protonation state (charge)
and the predicted interaction energy. If dye is embedded into β-CD at pH values ranging
from 3 to 4, our models foresee an interaction energy of ca. −40 kcal/mol. In contrast, dye
is anchored with an energy of ca. −14 kcal/mol only if the pH is tuned up. Molecular
models confirm that protonation states are critical for the absorption phenomena, and
appear to be a valuable tool for optimizing the experimental conditions.

2.4. Effect of Contact Time

Figure 10 shows that the adsorption ability increased until the adsorption of dye on
the polymer stopped when equilibrium was reached at each concentration.

When equilibrium is reached, the amount of adsorbed/desorbed dye inside/outside
the polymer is in equilibrium. The time needed to reach this point is the equilibrium time,
and the amount of dye entrapped by the polymer indicates the maximum absorption ca-
pacity [32]. The adsorption process showed a rapid rise in the preliminary stages of contact
between Direct Red 83:1 and the magnetic polymer. In the case of the adsorption of the
β-CD-EPI magnetic polymer, only 30 min of contact time was needed to reach equilibrium
(Figure 10). When the contact time increased, the quantity of adsorbed dye remained
constant. Across the whole range of concentrations analyzed, all curves were asymptotic.
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2.5. Kinetic Analysis

The adsorption kinetic data of Direct Red 83:1 were analyzed using three kinetic
models, the pseudo-first-order, pseudo-second-order, and intraparticle diffusion, to in-
vestigate the adsorption kinetics and mechanisms implicated in the adsorption process
of dye onto β-CD-EPI magnetic polymers (Table 1). The best model was selected based
on the results provided by the adjustment (R2). The linearity of the pseudo-first model
(log (qe-qt) versus t) was graphed for 120 min of contact time (Figure 11A).

Table 1. The kinetic results (pseudo-first, pseudo-second, and intraparticle diffusion models) for the
β-CD-EPI-Fe polymer.

PFOM β-CDs-EPI Magnetic Polymer

Co (mg/L) qeexp qecal K1
(min−1) R2

50 2.10 1.61 0.027 0.982
100 4.20 2.60 0.024 0.950
150 6.26 3.48 0.024 0.924
200 8.95 5.93 0.036 0.978
300 13.10 11.78 0.036 0.989

PSOM β-CDs-EPI Magnetic Polymer

Co (mg/L) qeexp qecal K2
(g/mg min) R2

50 2.10 2.10 0.225 0.999
100 4.20 4.20 0.168 0.999
150 6.26 6.26 0.105 0.999
200 8.95 8.62 0.035 0.999
300 13.10 13.10 0.013 0.999

IDM β-CDs-EPI Magnetic Polymer

Co (mg/L) qeexp qecal Ki
(mg/g min 1/2) R2

50 2.10 0.74 0.120 0.959
100 4.20 1.85 0.21 0.920
150 6.26 3.46 0.24 0.872
200 8.95 4.58 0.41 0.861
300 13.10 3.75 0.89 0.878
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The R2 values for this model ranged from 0.924 and 0.989 for β-CDs-EPI-Fe. The
calculated qe differed from the experimental value of qe for this kinetic model, indicating
that the pseudo-first model was not adequate to describe the adsorption process; for this
reason, the pseudo-second model was applied.

The plot of t/qt versus t yielded straight lines across the whole range of measurements
(Figure 11B). In all cases, the R2 values were equal to 0.999. The calculated qe value
was quite close to the experimental value of qe. According to these results, the pseudo-
second-order model presented the best fit to the experimental data, and it can be concluded
that adsorption was favored by chemical interactions, which is the rate-limiting step that
controls the adsorption process.

Using magnetic graphene in the removal of malachite green [13], polyethyleneimine
magnetic nanoadsorbents in the elimination of methyl orange and Pb(II) [33], magnetic
cyclodextrins in the removal of Eu(III) [34], and magnetic β-cyclodextrin porous polymer
nanospheres in the uptake or organic pollutants [35], similar kinetics were observed.

To understand the adsorption of Direct Red 83:1 onto magnetic polymers, the kinetics
of the adsorption process were analyzed by means of the intraparticle diffusion model to
determine whether intraparticle diffusion occurs by plating and to determine whether it
plays an essential role in the adsorption process. This effect was studied by plotting the
amount of Direct Red 83:1 dye absorbed versus the square root of time [36].
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Figure 11C shows two steps in the adsorption of Direct Red 83:1: the first straight
region is associated with chemisorption, and the second region is controlled by the intra-
particle diffusion model (effect of the boundary layer).

2.6. Isotherm Analysis

The interaction between dyes and adsorbents is explained by means of adsorption
isotherms and gives an idea of the adsorption capabilities of the adsorbent [37]; the results
are presented in Table 2. The Freundlich model describes adsorption processes onto
heterogeneous surfaces, with energetically different adsorption sites, and essentially yields
the constants KF and nF [36]. When adsorption is favorable, nF ranges from 1 to 10. A higher
result of nF determines that the interaction between the dye and polymer is adequate.

The KF value for the β-CDs-EPI-Fe polymer was 0.19 L/g. According to the nF results,
it was higher than 1; therefore, the adsorption trend was approximately linear and basically
favored (1.04). The adjustment of the experimental data to the Freundlich model suggests
that the CDs-EPI-Fe polymer followed this isotherm, taking into consideration the value of
R2 (0.911). According to these results, it is possible to conclude that adsorption occurs on
heterogeneous surfaces in this polymer (Figure 12A).

On the other hand, the Langmuir model was adequate in the case of materials pre-
senting uniformly energetic adsorption sites and monolayer adsorbate coverage, and the
isotherm assumed that all of the sites were equivalent to uniform surface coverage [38].
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Table 2. The isotherm results for the Freundlich, Langmuir, and Tempkin models.

Isotherm Parameter CDs

Freundlich
KF 0.190
nF 1.040
R2 0.911

Langmuir

qmax 32
KL 0.320
aL 0.010
R2 0.747
RL 0.667–0.250

Tempkin
aT 0.150
bT 0.370
R2 0.807
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The analysis of qmax is necessary because it indicates the maximum adsorption under
the experimental conditions assayed. In the case of the β-CD-EPI-Fe polymer, the qmax
value was 32 mg/g. The analysis of the separation factor (RL) showed that the results for
this parameter ranged from 0 to 1, indicating that this process is favorable and confirm the
results observed in the analysis of the nF parameter from the Freundlich model (Figure 12B).

Finally, the experimental data were adjusted to the Tempkin isotherm. Furthermore,
this isotherm is valid when the adsorption heat linearly decreases as a function of the
coverage degree because of the interactions between the substrate and the adsorbent. In
this case, the process is characterized by a uniform distribution of binding energies [39].
The binding energies ranged from 8–16 kJ/mol in the case of ionic exchange and from
−40 kJ/mol in physical adsorption [40]. The bT value obtained for the CD-EPI-Fe polymer
was 0.37 kJ/mol.

According to this result, the physical and chemical forces were both involved in the
adsorption of Direct Red onto the magnetic adsorbent (Figure 12C).

Our research group has extensively analyzed the elimination of Direct Red 83:1 by means
of different adsorbents, and the efficiency in the removal of this dye can be observed in Table 3.

Table 3. The adsorption efficiency of different polymers to remove Direct Red 83:1.

Adsorbent qmax (mg/g) Reference

α-CDs-EPI 31.5
[41]HP-α-CDs-EPI 23.4

β-CDs-EPI 107.5
[42]HP-β-CDs-EPI 18.2

γ-CDs-EPI 11.9
[39]HP-γ-CDs-EPI 14.6

β-CDs-EPI-Fe 32.0 This work
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The adsorption capacity of the β-CDs-EPI-Fe polymer was similar or higher to the
rest of the polymers except for that of β-CDs-EPI. Both polymers had a common structure
but the β-CDs-EPI-Fe polymer had iron added to it and this feature affected its efficiency.
The decrease of adsorption capacity caused by the incorporation of iron is a comparative
disadvantage, but it is the toll to be paid to have a polymer magnetically separable. The
polymer exhibited excellent reusability properties; after six cycles of loading and desorption,
its absorption capacity was still 90% (Figure S6).

2.7. Thermodynamic Parameters

The Gibbs free energy value (∆G◦) is related to the spontaneity of chemical reactions.
To determine this value, Equation (1) was used:

K
◦
= Kp ×Madsorbate × 55.5 (1)

where Kp is the equilibrium constant (L/g); Madsorbate is the molecular weight of Direct Red;
and 55.5 is the constant related to the mole concentration of water (mol/L) [43,44]. The
results from Equation (1) were used in Equation (2).

∆G
◦
= −RTln lnK

◦
(2)

The standard free energy (∆G◦) was −27,556.9 J/mol for β-CD-EPI at room tempera-
ture, confirming the spontaneity of the adsorption process. Enthalpy (∆H◦) and entropy
(∆S◦) were calculated by using the Van’t Hoff plot (data not shown). At room temperature,
∆H◦ was 8757.1 J/mol (endothermic reaction) and ∆S◦ was 122.4 J/mol.

As pointed out by Saha and Chowdhury (2011) [45], a value of ∆S◦ > 0 indicates
increased randomness at the solid/solution interface; the adsorbed solvent molecules gain
more translational entropy than is lost by the adsorbate ions/molecules and the degree of
freedom of the adsorbed species increase.

2.8. Advanced Oxidation Process

The degradation of Direct Red 83:1 by the pulsed light/H2O2 process is shown
in Figure 13.
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Figure 13. The degradation of residual Direct Red 83:1 in solution by means of pulsed light/H2O2.
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It can be observed that decoloration of the assay mixture becomes slower with the
progress of the treatment, which is typical of pseudo-first-order kinetics, exhibiting a
degradation rate of 0.0196 cm2/J (R2 = 0.9947). More than 90% of the dye is degraded
within the first 55 pulses (117.7 J/cm2). Prolonging the treatment is not efficient, and data
extrapolation predicts requiring doubling the fluence to reach 99% degradation.

The novel β-CD-EPI magnetic polymer is small, with a high surface area to volume
ratio and low diffusion resistance, which favors the adsorption kinetic. Its magnetic
properties make it easily separable from water. In addition, the entrapped dye can be
desorbed and reused by at least six cycles without significantly losing capability (>90%),
which allows for the reuse of both the dye and water, in a new dying cycle. Furthermore,
the polymer can also be reused in a new dye removal round, which is in harmony with the
circular economy concept. Coupling this novel polymer with a novel AOP offers a fast and
efficient way of minimizing water pollution in the dyeing industry.

3. Materials and Methods
3.1. Chemicals and Reagents

Commercially available β-CD was supplied by Arachem (Tilburgo, The Netherlands).
Sodium borohydride (98%), sodium hydroxide (98%), epichlorohydrin (99%), iron(III)
chloride hexahydrate (FeCl3.6H2O), ethanol and acetone were purchased from Sigma-
Aldrich (Madrid, Spain). Iron(II) chloride tetrahydrate (FeCl2.4H2O) and ammonium
hydroxide solution were supplied by Fluka (Madrid, Spain). Direct Red 83:1 (CAS number:
90880-77-6) was supplied by AITEX (Asociación de Investigación de la Industria Textil,
Alcoy, Spain).

3.2. Iron Nanoparticles Preparation

First, 3.49 g of FeCl2·4H2O and 9.5 g of FeCl3·6H2O were mixed in 100 mL water at
25 ◦C, and then 30 mL of ammonium hydroxide was added dropwise. After magnetic
stirring for 30 min at 80 ◦C, the mixture was centrifuged at 4000 rpm for 10 min. The
precipitate was washed with ethanol:water (1:1), the washing step was repeated twice, and
then the precipitate was dried overnight to obtain magnetic nanoparticles.

3.3. Epichlorohydrin-Iron-β-Cyclodextrin Polymer Preparation

The β-CD-EPI-magnetic (β-Cyclodextrin-Epichlorohydrin) polymer was produced
using the protocol described by Pellicer et al. (2018) [41], with slight modifications to
obtain a magnetic polymer. First, 60 mg of sodium borohydride, 24 g of β-CDs, 24 g of
Fe nanoparticles and 24 mL of water were stirred for 10 min at 50 ◦C. After this, 26 mL of
sodium hydroxide (40%) was poured and stirred for 5 min. Once that, 264 g of EPI was
added dropwise. The mixture was stirred for 6 h at 50 ◦C to obtain the adsorbent. The
polymer was washed with water:acetone (2:1) and dried overnight at 60 ◦C.

3.4. Characterization of the Polymer Material

The characterization of the β-CD-EPI polymer-modified Fe3O4 beads was accom-
plished by various methods. Carbon, hydrogen, nitrogen and sulfur elemental composi-
tions were determined using a LECO CHNS-932 analyzer (LECO Instruments, St. Joseph,
MI, USA) with a threshold value of 0.2% for each element. The particle size study was
performed by water dispersion in the Hydro 2000G unit of the Mastersizer 2000LF laser
analyzer (Malvern Instruments Ltd., Worcestershire, UK), covering a measurement range
of 0.02–2000 µm, whereas the specific surface area was determined in accordance with Mie
theory by the light scattered from the particles taken as equivalent spheres. The morphol-
ogy was resolved by the analysis of FE-SEM images provided by an Apreo S field emission
scanning electron microanalyzer equipped with an EDX detector (Thermo Scientific Brno,
Brno, Czech Republic). The energy dispersive X-ray spectroscopy mapping was performed
at an accelerating voltage of 20 kV.
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IR spectra measurements of the samples were carried out on a Nicolet 5700 spectrom-
eter (Nicolet, Madison, WI, USA) equipped with a Ge/KBr beam splitter, a DTGS-KBr
detector and a ceramic infrared source over the range 4000 to 400 cm−1, 4 cm−1 of resolu-
tion. XRD measurements were performed on a Bruker D8 Advance diffractometer (Bruker
Corporation, Billerica, MA, USA) by Cu-Kα radiation and scanned at 40 kV and 30 mA
from 10◦ to 70◦ in the 2θ range, a step size of 0.05◦ steps, 1 s/step and an angular velocity
of 30 rpm. The powder diffraction file was evaluated with linked software (DIFFRAC.
EVA 5.2, Bruker AXS, 2020) and a crystalline powder database (PDF-4+ 2021, ICDD). TGA
and DSC were performed on Mettler-Toledo Instruments DSC 822e and TGA/DSC-1 HT
(Schwerzenbach, Switzerland), respectively, under a dynamic atmosphere of nitrogen.
Thermal scans were performed from 30 to 800 ◦C (up to 450 ◦C for DSC) at a heating rate
of 10 ◦C/min. For differential thermal analysis (DTA), thermobalance was coupled to a
Balzers Thermostar mass spectrometer (Pfeiffer Vacuum, Asslar, Germany) for gas analysis.
Scan bar graph cycles were performed in the range 15–94 m/z in the quadrupole mass
spectrometer (QMS 200 M3), with a dwell time of 2 s for every ion and cathode voltage in
the ion source of 65 V.

3.5. Dye Solution Preparation

To achieve adsorption experiments, Direct Red 83:1 (CAS 90880-77-6, molecular weight
of 992.77 g/mol) was initially prepared at several concentrations (50, 100, 150, 200 and
300 mg/L). The remaining dye concentration was measured in the supernatant using a
colorimeter (Shimadzu UV-1603). Absorbance signatures were monitored upon treatment
at the maximum absorbance of this dye (λmax = 526 nm; ε526 = 1065 M−1 cm−1).

3.6. Adsorption Experiments

Adsorption tests were performed at 25 ◦C using solutions containing different con-
centrations of dye (50 to 300 mg/L). In each experiment, 0.5 g of polymer and 50 mL of
dye solution (pH = 5) were mixed. The mixture was stirred at 500 rpm. The amount of
dye not retained in the polymer was measured every 10 min; to obtain this remaining dye,
external magnets were used for 5 min. Then, the concentration of dye was determined by
colorimetric experiments. All experiments were performed in triplicate.

The quantity of dye entrapped on the polymer (qe) was determined following
Equation (3) [46]:

qe =
V(C0 − Ce)

m
(3)

where V is the volume of dye (L), m is the mass of polymer employed (g), C0 stands for
the concentration in the liquid phase at the earliest stage (mg/L), and Ce indicates the
liquid phase dye concentration at equilibrium (mg/L). All experiments were conducted
in triplicate.

3.7. Kinetics and Isotherm Analysis

Aiming to assess the mechanism that governs the adsorption of the dye, the pseudo-
first-order [47], pseudo-second-order [48,49], and intraparticle diffusion models [50] were
evaluated using Equations (4)–(6), respectively.

log(qe − qt) = logqe −
k1

2.303
t (4)

t
qt

=
1

k2qe2 +
1
qe

t (5)

qt = ki
√

t + C (6)

where qe and qt are the amounts of dye adsorbed (mg/g) at equilibrium and at time t (min),
respectively; k1 indicates the pseudo-first-order rate constant (min−1); k2 represents the
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equilibrium rate constant of the pseudo-second-order (g/mg min); ki is the intraparticle
diffusion rate constant (mg/g min1/2); t is the time; and C is the intercept (mg/g).

Adsorption isotherms provide useful information to elucidate the way in which
molecules are distributed between the solid and liquid phases if the equilibrium time
is reached. In this study, three conventional equations, namely, the Freundlich [51],
Langmuir [52], and Tempkin [53], were investigated to find the best-fitted model to under-
stand the adsorption of Direct Red onto the β-CD-EPI magnetic polymers. The goodness of
fit model is expressed by the determination coefficients (R2). The Freundlich, Langmuir,
and Tempkin equations are given in Equations (7)–(9), respectively:

ln qe = ln KF +
1

nF
ln Ce (7)

Ce
qe

=
1

KL
+

aL
KL

Ce (8)

RL =
1

1 + aLC0
(9)

qe =
RT
bT

ln aT +
RT
bT

ln Ce (10)

where qe is the equilibrium dye concentration on the adsorbent (mg/g); Ce is the equilibrium
dye concentration in solution (mg/L); KF is the Freundlich constant (L/g); 1/nF is the
heterogeneity factor; KL (L/g) and aL (L/mg) are the Langmuir isotherm constants; RL is
the separation factor; bT is the Tempkin constant (kJ/mol); aT is the constant of the Tempkin
isotherm (L/g); R is the universal gas constant (8.314 J/mol K); and T is the absolute
temperature in Kelvin. The value of RL indicates the isotherm type as irreversible (RL = 0),
favorable (0 < RL < 1), linear (RL = 1), or unfavorable (RL > 1).

3.8. Polymer Reusability

The reusability of the EPI-β-CDs-Fe polymer was evaluated using the same dye at
50 mg/L. A total of 50 mL of dye solution was mixed with 1 g of polymer and stirred during
1 h at 500 rpm. Then, the polymer was magnetically separated for 10 min and the remaining
concentration of dye was determined spectrophotometrically, as above-mentioned. The dye
solution was decanted and the separated polymer was then regenerated using 50 mL acetate
buffer, pH 4, 220 mM, for 30 min. Thereafter, the polymer was once more magnetically
separated and loaded with dye for a new use cycle up to six.

3.9. Dye Degradation by Pulsed Light/H2O2 Process

The elimination of Direct Red 83:1 by the pulsed light/H2O2 process was assayed
to further decrease the contamination level that could eventually reach the environment.
The approach simulates a two-step sequential process where the water contaminated by
the dye is first treated with the polymer and then this water, containing the amount of
dye that is not adsorbed by the polymer, is treated by the pulsed light/H2O2 process.
To this end, a 20 mL mixture of dye and H2O2 was prepared at final concentrations of
45 mg/L dye and 343 mg/L H2O2. The dye was prepared at the concentration that left
the polymer, and the concentration of H2O2 was 200 times greater than that of the dye
on a molar basis to have an excess of H2O2, which avoids making it the limiting reagent.
This mixture was treated with 60 light pulses, each amounting to 2.14 J/cm2 measured
at the mixture surface level for a final fluence of 128.4 J/cm2. Pulsed light treatment was
performed with a XeMaticA-Basic-1 L (Steribeam, Kehl, Germany) operated at 2.5 kV, and
the emission spectrum was reported [54]. Samples were withdrawn every five pulses to
measure absorbance. Experiments were performed in duplicate. Data were normalized
and fitted using pseudo-first-order kinetics.
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3.10. Molecular Models

The structure of Direct Red 83:1 was initially retrieved from PubChem (database avail-
able at https://pubchem.ncbi.nlm.nih.gov/compound/101609554, accessed on 22 June 2022).
The deposited Cartesian coordinates were next implemented in the Schrödinger suite of
programs (Schrödinger Release 2021-1, Schrödinger, LCC, New York, NY, USA, 2021),
which was used to generate stable 3D structures at all selected pH values. All protonation
states were determined with the Epik code [55,56]. This approach is known to correctly
reproduce the pKa values in azo dyes [57]. All resulting molecules were subsequently
docked into the central cavity of a β-CD [58] by using the extra precision version of Glide
as a docking engine [59]. A final refinement was conducted with Prime [60]. The latter
level of theory accounts for β-CD relaxation upon encapsulation and consequently yields
more accurate energy values.

4. Conclusions

The removal of Direct Red 83:1 from wastewater was achieved by using β-CD-EPI
magnetic adsorbents. An acidic environment (0.5 g) was the optimum condition to perform
the whole set of experiments. The experimental data followed the pseudo-second and
intraparticle diffusion models. Adsorption occurred onto heterogeneous surfaces according
to the three isotherms analyzed. The magnetic adsorbent was able to remove 32 mg/g of
Direct Red 83:1 (qmax). The adsorption was exergonic according to the Gibbs free energy
results, which indicates the spontaneity of this adsorption process. The novel β-CD-EPI
magnetic polymer is small, with a high surface area to volume ratio and low diffusion
resistance, which favors the adsorption kinetic. Its magnetic properties make it easily
separable from water. The polymer exhibited a higher reusability, keeping 90% of its
capacity after six cycles of loading–desorption, which is in harmony with the circular
economy concept. The remaining dye in solution after polymer treatment was successfully
eliminated using an advanced oxidation process. Coupling this novel polymer with a novel
AOP offers a fast and efficient way of minimizing water pollution in the dyeing industry.
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