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Abstract

As the world’s fastest spreading vector-borne disease, dengue was estimated to infect
more than 390 million people in 2010, a 30-fold increase in the past half century. Although
considered to be a non-endemic country, mainland China had 55,114 reported dengue
cases from 2005 to 2014, of which 47,056 occurred in 2014. Furthermore, 94% of the indig-
enous cases in this time period were reported in Guangdong Province, 83% of which were
in Guangzhou City. In order to determine the possible determinants of the unprecedented
outbreak in 2014, a population-based deterministic model was developed to describe den-
gue transmission dynamics in Guangzhou. Regional sensitivity analysis (RSA) was
adopted to calibrate the model and entomological surveillance data was used to validate
the mosquito submodel. Different scenarios were created to investigate the roles of the tim-
ing of an imported case, climate, vertical transmission from mosquitoes to their offspring,
and intervention. The results suggested that an early imported case was the most important
factor in determining the 2014 outbreak characteristics. Precipitation and temperature can
also change the transmission dynamics. Extraordinary high precipitation in May and
August, 2014 appears to have increased vector abundance. Considering the relatively
small number of cases in 20183, the effect of vertical transmission was less important. The
earlier and more frequent intervention in 2014 also appeared to be effective. If the interven-
tion in 2014 was the same as that in 2013, the outbreak size may have been over an order
of magnitude higher than the observed number of new cases in 2014.The early date of the
firstimported and locally transmitted case was largely responsible for the outbreak in 2014,
but it was influenced by intervention, climate and vertical transmission. Early detection and
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response to imported cases in the spring and early summer is crucial to avoid large out-
breaks in the future.

Author Summary

Dengue has not been considered to be a major problem in China since it is recognized as
an imported disease and only 8,058 cases were reported from 2005 to 2013. However, in
2014 alone, 47,056 new cases were reported. In this study, a mathematical model was
developed to determine the possible cause of this outbreak. The most important parame-
ters found to underlie the pattern of a small outbreak in 2013 and a much larger one in
2014 was the timing of the first imported and locally transmitted case. The importance of
precipitation and temperature was also confirmed by the simulation results under different
climate scenarios. The model also suggests that the earlier and more frequent control
interventions in 2014 targeting immature mosquitoes, such as emptying water containers,
and adult control, were effective in preventing larger outbreaks. Furthermore, more atten-
tion should be paid to imported cases occurring between March 1% and July 1* to prevent
early and prolonged transmission. Without early detection and response, the final out-
break size might otherwise be an order of magnitude or more the size when the imported
case occurred outside this time period.

Introduction

Dengue is a febrile illness caused by the dengue virus which is further classified into 4 serotypes
(DENV 1-4), and transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Classically,
dengue virus infection produces mild flu-like fevers but can also result in lethal dengue hemor-
rhagic fever (DHF) and dengue shock syndrome (DSS) when infected a second time with a dif-
ferent serotype [1]. According to the World Health Organization (WHO), dengue is the fastest
growing vector-borne disease in the world with only one thousand cases reported in the 1950s
to more than 90 million cases in the 2000s [2]. Estimated from a systematic literature search,
there were 96 million apparent dengue infections globally in 2010; however, an additional esti-
mated 294 million infections were asymptomatic [3].

Dengue is believed to be an imported disease in mainland China, and 55,114 cases were
reported from 2005 to 2014. Approximately 94 percent of the indigenous cases that occurred
in this period were reported in Guangdong Province, and 83 percent of these Guangdong cases
were in Guangzhou City [4]. In 2014, an unprecedented dengue outbreak hit Guangzhou, with
37,341 new cases contributing to 94 percent of the new cases from 2005 to 2014 in Guangzhou.
The annual new cases in Guangzhou were normally lower than 150 except for the 765 in 2006,
1,249 in 2013 and 37,341 in the 2014 outbreak.

Guangzhou differs significantly from other dengue transmission areas with Ae. albopictus as
the sole vector rather than Ae. aegypti [5]. Unlike Ae. aegypti, Ae. albopictus adapts to the cold
winter in temperate and subtropical areas by diapausing, which gives it the ability to expand to
higher latitudes. Normally, the adults cannot survive the low temperature in winter, but they
can produce diapause eggs when the temperature becomes lower and the day becomes shorter
[6,7]. These diapause eggs will not hatch until the next spring, when the temperature and water
condition become favorable again. Moreover, the vertical transmission of dengue virus in Ae.
albopictus is more efficient [8], with approximately 0.5 to 2.9 percent of the eggs laid by
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infected mosquitoes being infected [8-10]. When the vertical infected diapause eggs develop to
adults in the next spring, they have the ability to infect humans immediately without biting
infected humans, even causing a significant outbreak if there were sufficient infected eggs in
the past year. This pathway might allow dengue to become endemic in Guangzhou. The other
possibility for dengue to be endemic is through overwintering infected adults, especially when
global warming increases the temperature in the winter. However, the daily mean temperature
from December to February of the 30-yr average (the coldest three months) was 14.8°C, and
that of 2013 was 14.4°C. Thus the possibility for infected adults to live through the winter of
2013 is relatively low, considering that the temperature in the winter of 2013 was not abnor-
mally high. Mathematical models suggest that vertical transmission can increase the endemic
level of the vector population and human population significantly [11]. However, Ae. albopic-
tus is less efficient in transmitting dengue virus. Typical explosive DHF epidemics have not
been found in the places where Ae. albopicus predominates over Ae. aegypti, such as parts of
China, the Seychelles Islands, La Reunion Island, the Maldive Islands, historically in Japan and
most recently in Hawaii [12,13].

Another possible causal factor for the 2014 outbreak in Guangzhou was the abnormally
high precipitation in May and August which provided more breeding sites and increased the
environmental carrying capacity for Ae. albopictus [14]. A third possibility was the early start-
ing date of the outbreak, with the earlier imported cases occurring in the late spring and early
summer leading to the greater final size of the epidemic as a result of the lengthened infection
season before the decrease of Ae. albopictus abundance in the winter [15]. A multivariate Pois-
son regression analysis of the Guangzhou outbreak data was recently published that showed
the number of imported cases, minimum temperature with a one-month lag and cumulative
precipitation with a three month lag predicted the outbreak in 2013 and 2014 [16]. Here we
use a mathematical model rather than statistical model to further explore the factors underly-
ing these outbreaks since the structure of our model is based on mechanistic factors controlling
both mosquito population dynamics and the dynamics of viral transmission explicitly and,
therefore, should allow greater confidence in making predictions in the presence of environ-
mental change [17].

There were 99 dengue transmission models cited in literature from 1970 to July 2012, most
based mainly on the Ross-Macdonald model of malaria transmission, the classical theoretical
framework for modelling mosquito-borne diseases [18]. However, the core assumptions of
some of these models differs from Ross-Macdonald model in various ways. Examples include
those explicitly modelling the mosquito immature stage population dynamics [19,20], the tem-
perature-dependent extrinsic incubation period (EIP) [21], vertical and mechanical transmis-
sion [11,22], spatial heterogeneity [15,23], control strategies [24,25], or multiple dengue virus
serotypes [26]. Stochastic models [15] or agent-based models [27] have also been developed to
simulate the transmission dynamics of dengue virus. To emphasize local characteristics, we
included only immature stage population dynamics, vertical transmission, control strategies,
and temperature-dependent adult mosquito mortality rate, biting rate and the EIP. Coinfec-
tion, multiple pathogen types, and temporary immunity were not considered here since dengue
virus 1 (DENV-1) has been the only predominant serotype found in Guangzhou since the
1990s [4]. Though the test results for 2014 are not ready, in the 1,249 cases of 2013, 1,243 are
DENV-1 cases and only 6 are dengue virus 2 (DENV-2) cases. Spatial distributions of the mos-
quitoes, and heterogeneous biting were not considered here mainly because of limited data
availability.

In this paper, a population level deterministic mathematical model including explicitly
modelled water level and mosquito population in different life stages was developed. Then the
parameters in the model were estimated via successive cycles of fitting. Observed monthly
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mosquito index was used to validate the mosquito submodel. Finally, different scenarios were

created to investigate the important mechanisms responsible for the unprecedented outbreak
of dengue in 2014 in Guangzhou City.

Methods
Ethics statement

The study was reviewed and approved by the Ethics Committee of the Guangzhou Center for
Disease Control and Prevention. All the patient data were de-identified and the data were ana-

lyzed anonymously.

Study areas

Guangzhou is the capital and largest city of Guangdong Province, with a total area of 7,434
square kilometers [28] and a population of 13 million at the end of 2013 [29]. (Fig 1). It is one
of the most urbanized areas and the center of China's economic growth. With the Tropic of
Cancer crossing just north of the city, Guangzhou has a humid subtropical climate with hot
and wet summers and mild and dry winters. The annual average temperature is approximately

21.5°C. January is the coldest month with an average temperature of 13.0°C while the hottest is

July at 28.5°C. Annual rainfall varies from 1,612 to 1,909 mm, with more than 80 percent

occurring between April and September [30]. The wet and warm climate is favorable for the

growth of Ae. albopictus, which is the secondary vector for dengue virus in the world but the
sole vector in Guangzhou [31,32]. Though dengue is not endemic in Guangzhou, more than
0.30 million travelers from dengue endemic countries such as Malaysia, Singapore, Indonesia,

Thailand and India visit Guangzhou each year. These countries are also the top choices for out-

bound travelers from Guangzhou [33]. Since the natural and socio-economic conditions in
Guangzhou are conducive to mosquito growth and reproduction, high densities of Ae. Albopic-
tus together with dengue-infected travelers present a high potential for initiating local spread

of the disease [31].
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Fig 1. Location of study area, Guangzhou, in China.
doi:10.1371/journal.pntd.0004417.9001
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Data collection

Dengue is a notifiable disease in China which means that, once diagnosed, cases must be
reported to the web-based National Notifiable Infectious Disease Reporting Information Sys-
tem (NIDRIS) within 24 hours. All case reports used in this analysis were diagnosed according
to the National Diagnostic Criteria for Dengue Fever (WS216-2008) published by the Chinese
Ministry of Health [34]. In addition, active case detections was carried out through field inves-
tigations in the communities with confirmed dengue cases [14]. Cases were then divided into
indigenous and imported cases based on whether the patient traveled to a dengue endemic area
and was bitten by mosquitoes there within 15 days of the onset of illness [14]. A list of daily
reported new cases for 2013 and 2014, obtained from Guangzhou Center for Disease Control
and Prevention (Guangzhou CDC), was used to calibrate the model. This dataset was published
online in the transmission season on the website of the Health Department of Guangdong
Province (http://www.gdwst.gov.cn/). There were a total of 1,249 and 37,341 reported cases for
2013 and 2014, respectively.

Monthly mosquito surveillance reports consisting of the Breteau Index (BI) and the Mos-
quito Ovitrap Index (MOI) in 2013 and 2014 were also obtained from Guangzhou CDC and
used to validate the mosquito submodel (S1 Table). BI is the number of positive containers
with Ae. albopictus larva per 100 houses inspected, and is considered to be the best single index
for Aedes density surveillance [14]. MOI is the percentage of Ae. albopictus positive ovitraps in
all ovitraps collected from a specified area, and reflects the abundance of the adults [35].

Daily temperature, rainfall and evaporation data for Guangzhou from 2012 to 2014, which
were used as inputs to the model, were downloaded from the China Meteorological Data Shar-
ing Service System (CMDSSS) (http://cdc.nmic.cn/). In addition, climate data from 1985 to
2014 were also retrieved from CMDSSS to calculate 30-year daily average values.

Population data for the human submodel was obtained from the Guangdong Statistical
Yearbook on China Infobank (http://www.bjinfobank.com/). This data was also used to esti-
mate human birth rate and death rates in Guangzhou [36-38].

Model description

A deterministic mathematical model was developed to interpret the transmission of dengue in
Guangzhou city based on the Ross-Macdonald model [39,40], which is a basic framework
widely used to study the dynamic transmission of mosquito-borne diseases. Fig 2 presents the
structure of our model with Table 1 showing the definition for each symbol in this figure. Tem-
perature can influence the development rate, death rate of immature mosquitoes, average dura-
tion of and number of eggs laid each gonotrophic cycle, biting rate and the EIP of dengue virus
[41-43]. The form of temperature-dependent functions were based on [20,41], and the coeffi-
cients were estimated from experiments on Ae. albopictus strains from Guangzhou and adja-
cent areas [42,44]. Density of the larvae also plays an important role in the development rate of
eggs and larvae, and the death rate of larvae. The form of density forcing rates were taken from
[27]. More detailed information about the parameters, temperature or density forcing func-
tions for Ae. albopictus development and death rates, and the differential equations for the
model can be found in the S1 File.

The model includes several modifications to the Ross-Macdonald framework to incorporate
the influence of climate factors, vertical transmission and local interventions. First, the imma-
ture aquatic phases of Ae. albopictus were modeled explicitly since the development rate of
eggs, larva, and pupa, as well as the mortality of larva and pupa can be influenced by tempera-
ture and density. Second, a SEI (Susceptible, Exposed, and Infected) model was used for mos-
quito submodel instead of a SI (Susceptible and Infected) model to capture the temperature-
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estimated and black letters for constant rates estimated from [36—38]. Yellow English letters indicate temperature and density-dependent functions. Red
symbols indicate only temperature dependency and green rectangles on the left side indicate the state variables affected by the spillover effect.

doi:10.1371/journal.pntd.0004417.9002

dependent pathogen latency in Ae. albopictus. Thirdly, an element to reflect mosquitoes
infected by vertical transmission was added, because Ae. albopictus has the ability to transmit
dengue virus vertically through eggs, with a filial infection rates ranging from 0.5 to 2.9% for
Dengue-1 virus [8]. Fourthly, we explicitly modeled the water availability by including evapo-
ration, rainfall, and maximum and minimum water level (See details in S1 File). The environ-
mental carrying capacity for mosquitoes will increase when the water level rises, and the
density-dependent death rate will decrease in a short period. Furthermore, a spillover effect is
triggered when there is an extreme rainfall event and the water level is close to the maximum
water level, resulting in a loss of immature mosquitoes. The ideal death rate of larva and the
development rate of eggs and larva depend only on temperature. However, the real death rate
also depend on the water-level or density of the larva (See S1 File for more information). Simi-
larly, the control intervention to empty water containers can also remove a fraction 1-y; of
water and immature mosquitoes, while ultra-low-volume (ULV) aerosol applications of insec-
ticides can kill a fraction 1-p, of adult mosquitoes. In addition, temperature-dependent biting
rate and the number of eggs per gonotrophic cycle were incorporated to better represent the
effects of climate on mosquito population dynamics. Since dengue is still considered as a non-
endemic disease in China, which means new autochthonous cases occur only after imported

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004417  February 10, 2016

6/22



@' PLOS NEGLECTED
NZJ : TROPICAL DISEASES Determinants of the Dengue Outbreak in Guangzhou, 2014

Table 1. Description of parameters and notation in the model.

Parameter Description Typical values Reference
Constant rates
U Mortality rate for residents in Guangzhou (day™) 3.5x107° [36-38]
ay Population growth rate in Guangzhou (day™) 8.1x107° [36-38]
g Sex ratio of Ae. albopictus at the emergence (dimensionless) 0.5 [45,46]
Parameters need to be estimated
HE Egg mortality rate (day™) 0-0.1 [47]
6 The ratio of minimum egg hatching rate to ideal egg hatching rate (dimensionless) 0-1 To our best
knowledge
A The ratio of minimum larvae development rate to ideal larvae development rate 0-1 To our best
(dimensionless) knowledge
Wo The maximum heavy rain washout fraction (dimensionless) 0-1 To our best
knowledge
Wrnin Minimum water level (mm) 0-Wmax [27]
D)o Maximum water level (mm) 200-2000 [27]
Tmax Maxmium carrying capacity for immature stages (mosquito) 1.0x10°-1.2x10” To our best
knowledge
Yaem Duration from emerging adults to adults (day) 1-7 [42,46,48]
Mem Mortality during adult emergence (day™") 0-0.2 [47]
o The ratio of infected to uninfected immature and mature mosquito death rate 1-3 [49]
(dimensionless)
p Vertical transmission rate, the proportion of infected eggs laid by infected mosquitoes 0-0.2 [8-10]
(dimensionless)
Gt Intrinsic incubation period (day) 4-8 [50]
Tin Recovery period (day) 4-8 [51]
Oy Transmission probability from vector to human (dimensionless) 0-1 To our best
knowledge
Oy Transmission probability from human to vector (dimensionless) 0-1 To our best
knowledge
[0} Reporting rate 0-1 1/3.21in [52]
B2o13 Time for the imported case in 2013 521-571 (Jan 1st, 2012 as day =~ Outbreak
1)@ started on
Day 561
B2o14 Time for the imported case in 2014 853-903 2 Outbreak
started on
Day 893
Ha The survival rate for adults after intervention (day™) 0-1 To our best
knowledge
Mi The survival rate for immature stage after intervention (day™) 0-1 To our best
knowledge
Temperature-dependent rates (See mathematical expression in S1 File)
mp Temperature-dependent mortality rate for pupa (day™) Function (S1 File)
ma Temperature forcing mortality rate for adult mosquitoes (day™) Function (S1 File)
fe Temperature forcing development rate for pupa (day™') Function (S1 File)
oy 1/Temperature-dependent EIP (day™) Function (S1 File)
fag 1/Temperature-dependent duration for gonotrophic cycle (day™) Function (S1 File)
Ne Temperature-dependent eggs per gonotrohpic cycle (per female) Function (S1 File)
b Temperature-dependent biting rate (day™) Function (S1 File)
Temperature- and density-dependent rates (See mathematical expression in S1 File)
my Temperature- and density-dependent mortality rate for larva (day™) Function (S1 File)
fe Temperature- and density-dependent egg development rate (day™) Function (S1 File)
(Continued)
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Table 1. (Continued)

Parameter Description

Typical values Reference

fL Temperature- and density-dependent larvae development rate (day™) Function (S1 File)

Some of the parameters do not occur in the flow chart, only in the equations, see S1 File for detailed information.
& The range of timing of the first imported cases equals to the beginning time of local transmission — 15 days (Extrinsic incubation time + intrinsic

incubation time in summer) 25 days.

doi:10.1371/journal.pntd.0004417.t001

cases, an imported case input was added to the system at day B3 and B014 (January 1%, 2012
as day 1) to initiate the outbreak in 2013 and 2014, respectively. Instead of using the date of the
first reported imported case, we treated the timing of the first imported case as a parameter,
since the outbreak may be started by an unreported or asymptomatic case. We only added the
first imported case to the system and left out all the other subsequent imported cases, because
it was a small number when compared with the number of infectious people after the rapid
local transmission began, and was reasonable to be ignored. And because Ae. albopictus will
survive adverse winter temperatures as diapausing eggs, the development rate from eggs to
larva is assumed to be zero from late October to early March [53]. The reporting rate ¢ was
also included to account for the asymptomatic and unreported dengue infections.

In summary, a SEI model was used for the vector submodel and SEIR (Susceptible, Exposed,
Infected and Recovered) model for the human submodel (Fig 2). Five different life stages for
mosquitoes were considered: three aquatic stages (E, eggs; L, larva; P, pupa), one emerging
adult stage (Ae), and one biting and reproductive adult stage (A). Subscripts u and i were used
to represent uninfected and vertical infected aquatic phases and emerging adults; while s, e,
and i were used to denote the populations of susceptible, exposed, and infected adults. Analo-
gously, the human population was divided into four subclasses: Hs, He, Hi, and Hr, which
stands for susceptible, exposed, infected and recovered humans, respectively.

All the analyses were conducted in R 3.2.0 [54], and the differential equations in the model
were solved by R package deSolve [55]. The model was run over the period 2012 to 2014,
though the focus is on simulating the dengue outbreak in 2013 and 2014. The mosquito abun-
dance for only the first simulated year is affected by the initial value for eggs, and the following
years showed no memories from previous years [56], so an extra year was needed to achieve a
stable mosquito population for 2013 and 2014. However, for simplicity, we assumed that there
was no imported cases in 2012. The only possibility for dengue cases in 2012 to affect the next
two years was through vertical transmission. Taking into account the low vertical transmission
rate and the small number of dengue cases in 2012 (139 cases), we assumed that the influence
of 2012 on the next two years was negligible.

Model calibration

Typical of the class of mechanistic disease transmission models used here, there are a large
number of parameters with substantial uncertainty in their values. In addition, in this analysis
we place considerably more confidence in the timing and pattern of the field data describing
human cases and mosquito infection and abundance in Guangzhou in 2013 and 2014 than in
the precise numbers reported on any day. As a result, we chose to address the issue of parame-
ter estimation using a strategy that has been called regional sensitivity analysis or RSA [57].
This approach begins with the specification of a region of parameter space thought to include
the range of feasible values of each parameter with high probability (As the typical value for
each parameter in Table 1). Monte Carlo simulation runs are then conducted to assess the
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doi:10.1371/journal.pntd.0004417.9003

performance of the model over this parameter space. Here we define this space by specifying
the univariate marginal distributions of the model parameters need to be estimated, as given in
Table 1, each of which we assume to be independent.

Classification criteria are then defined and applied to the output of the model to determine
if a particular realization captures the essential features of the pattern of daily case reports. Fig
3 shows the specific criteria for the 2013 and 2014 Guangzhou dengue case reports (See the
detailed criteria in S1 File). If a particular model run results in a case report trajectory passing
through all six of the shaded windows, the model is classified as a “pass”, that is as having ade-
quately mimicked the pattern of the field data used for calibration.

Passing and failing parameter vectors are then collected for subsequent analysis. Usually the
first simulation experiments using the RSA approach result in a very small fraction of passes and
these vectors extend over almost the entire range of any of the univariate prior distributions. This
is a result of the fact that there are many parameter combinations that can produce the same pat-
terns of model response and their correlation structure is usually very complex in the high dimen-
sional parameter space being sampled. Non-uniqueness of model parameterization of this sort is
an issue about which there is a substantial literature particularly in the field of hydrology [57]. In
the present case, 74 passing parameter vectors were obtained in 410,594 initial simulation runs
which we term Cycle 1. In the S2 File the sample cumulative distribution functions are shown for
each parameter for passes and fails. As shown there, some parameter distributions that differ little
between passes and fails which gives little clue as to parts of the range of that parameter where
passes are more likely. The value of d,,, ,,, the Kolomogorov statistic, is a measure of the maximum
difference between the two distributions and can be used as a rough index of sensitivity. Very
large differences can be seen for some parameters in Cycle 1, for example 13, [i> Pem and Wy
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Fig 4. Trajectories for daily new cases of the 637 passing parameter sets in Cycle 5. Black dots indicate the number of daily new cases from

Guangzhou CDC, while gray lines are model outputs and red line is the median for all outputs. Blue and red vertical dash lines stand for washout and
intervention days, respectively. Blue shaded area for the 90 percent interval for all 637 simulations.

doi:10.1371/journal.pntd.0004417.9004

In view of the very low pass rate of the first set of simulations, we chose to use the outcome
of the Cycle 1 experiments to seek a subspace in which passing parameters were more likely to
be found. This was done by trimming the ranges of parameters with large values of d,,, ,. Trim-
ming was an ad hoc procedure based on trimming the range of parameters with few passes at
either the high or low end of the sample distribution function of passes. A total of 4 trimming
cycles were conducted resulting in a pass rate of 3.19% in the final subspace, Space 5, an
increase of about 175 times over the initial space, Space 1. The marginal distributions of the
parameters in Space 5 now show much reduced differences between passing and failing distri-
butions as discussed below. We regard a highly trimmed parameter range and a large decrease
in d,;, , between spaces 1 and 5 as evidence of the importance of a parameter in producing sim-
ulations meeting the pass criteria. However, we note that a parameter may be very important,
but if initial uncertainty in its value is small, that is the prior range is narrow, there may be little
difference in the marginal distributions under passes versus fails. A second situation in which a
parameter can show little difference in its pass/fail marginal distributions yet be important can
occur if there are interactions with other parameters not reflected in the marginal distributions.
The pairwise correlation matrix can give some clues to such situations and will be discussed
below for Space 1 and Space 5. (See S2 Table for the pairwise correlation matrices for parameter
values Cycle 1 and Cycle5)

Fig 4 summarizes the case report data for 2013 and 2014 and shows the envelope of 637
passing simulation trajectories from the Space 5 parameter distributions. The daily number of
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new cases output by the model was calculated as the number of individuals entering the com-
partment Hi times the reporting rate ¢. The median final epidemic size for 2013 and 2014 was
1,044 and 30,863, respectively, for the 637 passing parameter sets of Cycle 5. Although the
envelope of passing simulations contains the observed peak values in both years, the median
passing peaks were 16% and 17% lower than the observed peaks respectively.

Fig 5 shows the Cycle 5 simulation results and field data for larvae and adult mosquitoes.
We aggregated the monthly average amount of larva and adults from daily model output of the
637 passing simulations, then normalized them to 0 to 1 and plotted them against the normal-
ized Bl and MOI data from Guangzhou CDC. Mosquito surveillance data in 2012 was not used
in the validation, because the mosquito abundance in the first simulated year can be affected by
the initial value for eggs. Entomological surveillance data recorded only the absence/presence
not the number of Ae. albopictus in each container, so it is only a proxy of the abundance. The
minimum, maximum, mean and standard deviation for Pearson’s correlation between scaled
model output larva amount and BI were 0.76, 0.86, 0.82, and 0.02, respectively. And the corre-
lation for scaled model output adult amount and MOI ranged from 0.65 to 0.80, with a mean
of 0.74 and standard deviation of 0.03. The BI and MOI data were not used in calibration but
the patterns produced by the model, as shown in Fig 5, confirm that the model is producing
realistic patterns of mosquito abundance over time.

Table 2 shows the Space 1 versus Space 5 marginal distribution comparisons with RR (range
reduction) denoting the fractional reduction of the range in each parameter. The ranges of six
parameters were unaltered and nine were reduced by 50% or more of their initial range. The
nine fall into three types of parameters, those associated with vector population dynamics and
infection (pug, A, 0, and ay,,), those related to the timing and reporting of imported cases (B2913,
B2014> and @), and those associated with the effectiveness of mosquito control interventions (i,
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Fig 5. Mosquito submodel patterns. The scaled 637 simulated results and field data for (a) larva and (b) adults. Gray lines show model output, red lines
median output, and dark blue points show mosquito surveillance data acquired from Guangzhou CDC.

doi:10.1371/journal.pntd.0004417.9005
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The pairwise correlation matrices for the passing parameter distributions in Space 1 and
Space 5 are shown in S2 Table. For Space 1, the same 9 parameters with large range reductions
show high correlations with one or more of others in that group. There is also a very high cor-
relation between wy;, and wy,,y, an artifact that is imposed by the model structure. In the
Space 5 correlations, all of the high values from Space 1 are lower, and most very much lower,
as might be expected. However, some new correlations emerge, notably with 7,,,.x, the maxi-
mum carrying capacity for immature stages of the mosquito. These correlations are with e,
mortality during adult emergence, and the human to vector, oy,,, and vector to human, oy,
transmission probabilities.

We do not believe we have access to additional field data or other information which will
allow significant further reduction in Space 5 or point to other areas in the parameter space
that might suggest alternative underlying processes to be driving the observed patterns of
behavior of the system. Hence, parameter vectors meeting the passing criteria sampled from
Space 5 will be used in the subsequent explorations of the key processes underlying the 2014
epidemic.

Simulation experimental results

The year 2013 differed from 2014 in several aspects, notably the date of imported cases (B.o13
and B014), climate, the time and frequency of the interventions, and the number of eggs
infected by vertical transmission from the previous year.

We first explore the timing of imported cases, which is not the real timing of the first
imported case reported to the NIDRIS, but a parameter we need to estimate, denoting the first

Table 2. The range and d,,, , for each parameter in Cycle 1 and Cycle 5, and the RR from Cycle 1 to Cycle 5.

Parameter

Range
0-0.1
0-1
0-1
01
0 — Wmax
200-2000
1x108-1.2x107
1-7
0-0.2
1-3
0-0.2
3-9
3-9
0-1
0-1
01
520-570
853-903
01
01

doi:10.1371/journal.pntd.0004417.t002

imported case that starts the local transmission. The outbreak in 2014 started at June 11", and
Cycle 1 Cycle 5 RR (%)

dmn Range dm;n

0.23 0.02-0.05 0.11 70
0.20 0.4-1 0.06 40
0.26 0.4-0.8 0.03 60
0.10 0-1 0.06 0
0.19 0 — Wmax 0.03 0
0.31 250-1400 0.07 36
0.15 2x10°-9x10” 0.11 36
0.10 1-7 0.02 0
0.13 0.08-0.2 0.03 40
0.32 1.8-2.7 0.09 55
0.11 0-0.2 0.05 0
0.15 3-9 0.07 0
0.06 3-9 0.04 0
0.11 0.2-0.9 0.06 30
0.12 0.2-0.6 0.12 60
0.10 0.1-0.5 0.08 60
0.17 560-570 0.07 80
0.52 850-870 0.06 60
0.22 0.4-0.6 0.04 80
0.28 0.65-0.9 0.05 75
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Fig 6. Trajectories of daily new cases under different scenarios. (A) Postponing the date of imported case in 2014; (B) advancing the date of imported
case in 2013; (C) setting the intervention in 2014 to the same as that in 2013; (D) removing all the infected eggs at the beginning of 2014; (E) advancing the
date of imported case in 2013 and removing all the infected eggs at the beginning of 2014; and (F) trajectories of the final epidemic size for 2014 after
changing the date of imported case between March 1! and November 30™. Black dots indicate for the daily reported case in 2013 and 2014. Gray lines
indicate the trajectories for each simulation. Red lines indicate for the median and blue shaded area for the 90 percent interval for all 637 simulations.

doi:10.1371/journal.pntd.0004417.9006

peaked around October 1%, with a time interval of 112 days, while the smaller outbreak in 2013
began at July 14", and peaked around October 19", with an interval of 97 days. If the force of
infection was the same for these two years, the final size of epidemic in 2014 would be signifi-
cantly higher than that in 2013 on this basis alone. Without interventions, the peak occurs
when the temperature drops to cause a sufficient combination of a decrease in biting rate and
an increase in the mosquito death rate. Appropriately timed interventions reduce the abun-
dance of mosquitoes, thus reducing the force of infection which results in an earlier peak. To
make the two years comparable, we changed the date of the first imported case in 2014, B,014,
in the 637 passing parameter sets to P014 + (Peak time 2013—f,0;3) (Scenario Postpone 2014).
By doing this, we made the time interval between the imported case and the peak in 2014 equal
to that in 2013. The case report trajectory for each run was recorded (Fig 6A). Then in another
scenario (Scenario Advance 2013), we changed the B,g;3 to By015 —(Peak time 2014—,414), to
attempt to produce an outbreak in 2013 with a size similar to the observed number in 2014
(Fig 6B). Furthermore, to investigate the relationship between the date of imported cases and
the final epidemic size further, we kept all the other parameters the same as in the 637 passing

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004417  February 10, 2016 13/22



@' PLOS NEGLECTED
Nz : TROPICAL DISEASES Determinants of the Dengue Outbreak in Guangzhou, 2014

(A)

25
20

154

Monthly Average temperature (°C )

E 800
=
Year 2 Year
©
=o= Average ‘g 0007 =o= Average
o
== 2012 £ == 2012
-c |
—e= 2013 2 400 o= 2013
S
== 2014 g =o= 2014
; o 200 -
o= 2015 < =0= 2015
>
<
=]
S 0-
I 1 E

Fig 7. (A) Monthly average temperature; and (B) monthly accumulated precipitation for Guangzhou in 2012 to 2015 and the 30-year average.

doi:10.1371/journal.pntd.0004417.9007

sets, and only changed P14 in each set to integers between Day 791 and 1066, that is from
March 1%, 2014 to November 30", 2014 (Scenario Change importing dates), and recorded the
final epidemic size for each run (Fig 6F).

The results of these experiments are shown in Fig 6. When the time interval between the
imported case and the peak in 2014 was changed to match that in 2013, only 30 parameter sets
(4.7% of the original 637) mimicked the pattern of the outbreak in both years. The median final
epidemic size of 2014 dropped to 1,474, similar to that of 2013 (Fig 6A). And when the time inter-
val between the imported case and the peak in 2013 was increased to the same as that in 2014,
none of the 637 parameter sets produced passing behaviors. As shown in Fig 6B, after the change,
the peak number of cases was significantly higher in both years, with new median final outbreak
sizes of 158,889, and 137,003 for 2013 and 2014, respectively. In summary, postponing the date of
the import case in 2014 produces an outbreak whose scale is similar to that of 2013, and advanc-
ing the date of the import case in 2013 produces an outbreak even worse than observed in 2014.
In addition, since all other parameters were unchanged except for B,9;3, the larger than observed
outbreak in 2014 is attributable to vertical transmission, that being the only way that the situation
in 2013 can influence that in 2014. A separate scenario was created, still by advancing B,¢;3, but
removing all infected eggs in the system at the beginning of 2014, as discussed below.

The final experiment on the timing of imported cases involved holding all parameters the
same as in the 637 passes, except that of the date of imported case which was varied from
March 1% to November 30™. The final epidemic size for each run is plotted in Fig 6F and
shows that when the first imported case occurs on April 18™, the median final epidemic size
was the highest at 60,158. The final epidemic size became stable after July 1* at approximately
1,350, similar to the observed size in 2013. These experiments clearly suggest that the date of
the first imported cases was a crucial determinant of the severity of the 2014 epidemic.

However, the force of infection was not the same in 2013 and 2014. It is affected by mos-
quito abundance, biting rate, transmission probability from vector to human and transmission
probability from human to vector. Though we assumed the transmission probabilities were the
same for 2013 and 2014 (oy,, and o), the biting rate depends on temperature and the mos-
quito abundance depends on both temperature and precipitation. Hence, different scenarios
were created to study the role of climate of the variations in climate depicted in Fig 7.
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Experiments were conducted in which the precipitation, temperature, and evaporation data of
2014 were replaced by data of 2012, 2013 or of the 30-yr average. Since the temperature in
2014 did not differ significantly from that in other years, while the precipitation in May and
August 2014 were much higher, we also ran simulations with actual temperature and evapora-
tion in 2014, but scaled the precipitation to 30 year average.

The new case trajectory for the real climate data was treated as baseline here, so the passing
rate was 100 percent for the 637 parameter sets. Table 3 shows the results of the various experi-
ments. As can be seen, the passing rate was relatively low, at only about 28 percent, when 30
year average precipitation was used to replace the real 2014 data (Scenario 2, 5, 6, 7, 8, and 13).
Furthermore, the median peak size and final epidemic size were significantly lower than base-
line. When the 2014 precipitation was used (Scenario 3, 9, 10, 11 and 12), the passing rate was
around 65 percent but it was more than 80 percent when the 2013 or 2014 temperature was
used. The median peak outbreak size was higher than baseline when 2014’s precipitation and
average temperature were combined together (Scenario 3 and 11). The maximum difference
between precipitation in 2014 and the 30-year average occurred in May and August, so we
scaled the precipitation in these two months to their 30-year average. The passing rates were
65.0, 61.2 and 35.8 percent when we scaled only May, only August and both, respectively (Sce-
nario 16, 17, and 18). When comparing Scenario 19, 20, 21 with 13, higher passing rate and
average outbreak size are observed as a result of increasing the rainfall in May and August
above the 30-year average. Rainfall in August seems to be slightly more important.

Table 3. Passing rates, median peak sizes, and median final epidemic sizes under different climate scenario for 2014.

Scenario Precipitation Temperature Evaporation Passing rate Median peak size Median outbreak size
0 2014 2014 2014 100 894 30863
1 2013 2013 2013 42.7 549 18543
2 Avg Avg Avg 27.0 463 16842
3 2014 Avg Avg 67.8 1010 34826
4 2013 Avg Avg 57.8 756 26809
5 Avg 2014 Avg 26.5 369 13509
6 Avg 2013 Avg 22.6 342 11833
7 Avg Avg 2014 31.4 538 18925
8 Avg Avg 2013 26.7 430 16060
9 2014 2014 Avg 85.1 808 28074
10 2014 2014 2013 82.1 789 27127
11 2014 Avg 2014 64.2 1132 38879
12 2014 2013 2014 84.3 817 26493
13 Avg 2014 2014 30.5 424 15559
14 2013 2014 2014 60.8 679 23676
15 2012 2014 2014 35.6 518 18559
16 2014 May*0.56 2014 2014 65.0 690 23924
17 2014 August*0.49 2014 2014 61.2 666 23938
18 2014 May*0.56, August*0.49 2014 2014 35.8 504 18518
19 Avg May*1.79 2014 2014 36.4 513 18397
20 Avg August*2.04 2014 2014 40.2 538 18956
21 Avg May*1.79, August*2.04 2014 2014 54.0 649 22453
22 2013 May*1.81 2014 2014 77.2 763 26716

Avg, 30-yr average precipitation, temperature or evaporation.

doi:10.1371/journal.pntd.0004417.t003
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All the results suggest that the precipitation in 2014 played an important role in forming the
outbreak, especially rainfall in May and August. However, the temperature in 2014 was lower
than average in the spring and winter months, thus acting as a protective factor. That is, if the
temperature in 2014 had been higher, the average outbreak size would have been higher as
well.

The peak time of daily new cases is clearly sensitive to the date of interventions and the sim-
ulation results suggests that the interventions are very effective. The most common interven-
tions in Guangzhou were emptying water containers and ULV spraying of adulticide, both
conducted at neighborhood level and organized by neighborhood committee. Emptying water
containers reduces the abundance of the immature stage, water level and environmental carry-
ing capacity, thereby reducing adult abundance. ULV spraying of insecticide decreases the
abundance of adults almost instantly. With a reduced vector to human ratio, the force of infec-
tion decreases while the recovery rate remains the same resulting in an earlier peak. The inter-
ventions in 2013 took place every Friday from October 9 to November 10™, while in 2014 on
every Friday from September 24 to November 30™, as well as on July 25", August 15", Sep-
tember 4™ and 28", and October 8"

To determine the effectiveness of these interventions, we set interventions in 2014 the same
as those in 2013 and recorded the trajectories (Scenario Change intervention dates). The inter-
vention in 2013 took place later and has a much lower repetition frequency. No passes occurred
after the changes, because the median peak size and overall outbreak size increased drastically
to 21,808 and 843,430 respectively (Fig 6C), approximately 27 times the baseline value and 23
times the actual reported cases in 2014. The new peak time was October 12", almost 15 days
later than the observed peak, which again shows the importance of the time interval between
the imported case and the peak.

In addition, the filial infection rate can also change the characteristic of an outbreak. To
investigate the importance of vertical transmission, the number of infected eggs (Evi) was set to
zero at the beginning of 2014 (Scenario Remove Evi), because this is the only way that the epi-
demic in 2013 can influence that in 2014. This change resulted in 490 passing simulations out
of 637 runs. The median of peak size and outbreak size were 778 and 2,792, respectively, only
slightly lower than the baseline (Fig 6D). In addition, when we investigated the role of timing
of the imported case and changed B,0;3 to make the time interval between the import case and
peak in 2013 the same as that in 2014, we found that the peak size and outbreak size in 2014
also increased and attributed this to vertical transmission. A scenario was also run with both an
advanced import case date in 2013 and no infected eggs carried over from 2013 to 2014 (Sce-
nario Advance 2013 and remove Evi). The peak and outbreak size dropped to 539 and 15,526,
respectively, which suggested that the effect of vertical transmission should not be neglected
when the outbreak size in the previous year was large (Fig 6E).

Discussion

From our analyses, four factors appear to have been principally responsible for the pattern of
the moderate outbreak in 2013 and the much larger one in 2014, namely the date of the first
imported case, unusually high precipitation in 2014, interventions, and vertical transmission.
We found the timing of first imported and transmitting case was the dominant feature respon-
sible for this pattern. Furthermore, once the timing of imported case is fixed, climate signifi-
cantly affects the dengue transmission dynamics. For example, precipitation in May and
August, 2014 were found to have a moderate effect on the size of the outbreak, while tempera-
ture in 2014 was less favorable for the outbreak and suggests that if the temperature had been
higher in the spring and winter months in 2014, the final outbreak size would have been even
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greater. Vertical transmission played a minor role in forming the pattern, but it is likely to be
significant only when the outbreak size in the previous year is large. In addition, we found that
the earlier and more frequent interventions in 2014 proved to be effective, otherwise the out-
break size might have been over an order of magnitude higher than the observed value.

The date of imported case was crucial in producing the outbreak pattern in 2013 and 2014.
The date of the first imported case in our analysis is not the exact date of the first imported
case, but a dummy variable indicating the time of the imported cases which starts the local out-
break. Since we have no information about which imported case will cause local transmission,
the time of imported cases was set to be a parameter to be fitted in the model. Though imported
cases occurred in almost every month, indigenous cases were mainly reported from July to
November when the mosquito abundance and biting rate are higher, and the EIP is shorter. [4]
Temperature and arrival date of the first infectious human also interact since early arrival will
occur at lower temperature, but there is a longer time for transmission to increase before the
beginning of winter season and thereby produce a larger outbreak [15]. That is, low tempera-
ture can increase the EIP as well as reduce the biting and the mortality rate resulting in fewer
mosquitoes surviving to be infectious as was also shown in Fig 6F. Considering the tradeoff
between higher biting rate and longer transmission season, a case imported around mid-April
appears to have triggered the biggest outbreak in 2014. (Fig 6F) In addition, the number of
imported cases also matters to the outbreak size [16]. However, we did not take this into
account, since in our deterministic model one imported case is sufficient to initiate internal
transmission.

Precipitation too can have both beneficial and detrimental effects on the abundance of Ae.
albopictus and dengue transmission. Ae. albopictus mainly breed in flower pot trays, bamboo
tubes, used tyres, disposable containers and surface accumulated water. Precipitation can
change the water level in these containers and thereby affect the density-dependent develop-
ment and death rate [27]. When the water level is higher, the environmental carrying capacity
also increases; hence, the maximum number of mosquitoes the environment can support will
also increase. Higher water level will also bring down the death rate and increase the develop-
ment rate, so the survival rate of mosquitoes increases during such periods, and development
from larvae to adult will be faster. On the other hand, heavy rainfall also can destroy breeding
sites. When a heavy rain occurs at the time the water level is close to the maximum, some of
the immature stage mosquitoes will be washed out of their containers (Spillover effect in Fig 2)
making container habitats significantly less attractive to ovipositing females. Both mechanisms
can cause population loss of Ae. albopictus [58].

In contrast, a study in France suggested that the heavy rainfall events can increase the risk of
chikungunya [59]. In fact, the relationship between precipitation and mosquito abundance is
complicated. We increased or decreased different amounts of rainfall in 10-day time windows,
and ran the model with these new precipitation profiles. The result showed that the relation-
ship between the amount of precipitation and mosquito abundance or the number of dengue
cases was nonlinear, and there was no simple rule to predict the effects of rainfall or heavy
rainfall.

According to Table 3, the temperature in 2014 was not as important as precipitation in caus-
ing the outbreak pattern because the inter-annual change of temperature is much smaller than
that of precipitation. However, temperature plays an important role in controlling various
aspects of the seasonal population dynamics of Ae. Albopictus as discussed above.

The vertical transmission rate was less important in determining the outbreak pattern in
2013 and 2014, though experiments have confirmed that adults hatched from infected diapause
eggs can transmit dengue virus [60]. Our analysis suggested that with the small number of
cases in 2013, it is impossible that the big outbreak size in 2014 was caused by only by vertical
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transmission, therefore dengue was still imported, not endemic, for the 2014 outbreak, which
was also recognized by analyzing seasonality and virus source of dengue cases [4]. The probable
sources of dengue virus detected in Guangzhou were mainly Thailand, Philippines, Indonesia,
Vietnam, Cambodia, and Malaysia [14,61], all of which are also popular tourist destinations
for residents in Guangzhou [33]. However, the influence of vertical transmission should not be
neglected if a big outbreak occurred in the previous year. Considering the large amount of
infected eggs left over from 2014 to 2015, the effect of vertical transmission in 2015 should be
large, even can start a local outbreak without any imported case. However, there is no big out-
break in 2015, with 44 imported cases but only 57 indigenous cases, though the precipitation in
May was higher and there are more imported cases than 2014. This is likely to be attributable
to the extensive interventions in 2015. After the unprecedented outbreak in 2014, the govern-
ment paid more attention to early detection of imported cases, early mosquito control (started
in April compare with in the end of July, 2014), and the quarantine of every suspicious case.
Moreover, residents in Guangzhou have more knowledge about the difference between dengue
and influenza after 2014, so they are more likely to go to the hospital when symptoms occur
and will be put quarantined immediately after confirmed, which can also reduce local transmis-
sion. However, due to the deterministic nature of this model, its use is only appropriate when
the scale of the outbreak was big enough to ignore the stochastic effects, but the outbreak size
in 2015 was relatively small, therefore we did not simulate the situation in 2015 here.

Currently, there is no effective commercial dengue virus vaccine available. Thus, the preven-
tion of a dengue outbreak relies heavily on vector control. Container emptying and ULV spray-
ing are the most common control strategies in China. Other approaches such as releasing
Wolbachia infected male Ae. albopicus and introducing mosquito larvae-eating fish have also
been adopted, though to a much smaller extent. Although the efficiency of ULV spray in con-
trolling adult Ae. albopictus has been questioned over the years [24,62], larval source reduction
has proven to be successful [62]. Since Guangzhou applied both strategies at the same time, we
could not separate them. In addition, though it was argued that mosquito control strategies
were often implemented after the peak of transmission and had little or no impact on dengue
transmission [62], the first intervention in Guangzhou was timely, two months earlier than the
peak, and does appear to have reduced the final epidemic size significantly.

Some studies have suggested positive associations between dengue incidence and the Aedes
household index and the BI, [63,64] while others have concluded that there was no significant
correlation [65,66]. In our study, we found that the abundance of Ae. albopictus was almost the
same for 2013 and 2014 (Fig 5), and there is no relationship between dengue incidence and the
mosquito index for Guangzhou in this specific outbreak. However, on the other hand, accord-
ing to our results when manipulating the climate files, the abundance of mosquitoes can affect
the transmission dynamics, though does not appear to be the most important reason for the
large 2014 outbreak.

There are, of course, various limitations to our analysis particularly for use in the future. For
example, the whole population was considered to be susceptible in 2012 since dengue is not a
common disease in Guangzhou. There were 12.70 million people at the beginning of 2012 and
only 2,381 cases were reported between 2002 and 2011. In addition, there may be transmission
of other serotypes in the future, only one serotype was included in the model because most of
the cases have been DENV-1 in recent years. Another limitation of the study may be that the
temperature dependent functions employed in the model were based on experiments which
were conducted under constant temperature conditions [42,44,67]. Temperature changes from
day to day as well as the diurnal temperature range can also change the transmission dynamics
[68,69]. The most significant limitation, however, may be that our model does not take spatial
effects into account. Further steps should be taken to develop a spatially-explicit individual
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based model, and to include the spatial heterogeneity and stochasticity of transmission of den-
gue in Guangzhou. With a stochastic model, we can learn more about the probability of local
transmission, which can be combined with the outbreak scale to give us a more practical esti-
mation of the dengue outbreak risk.

With the spread of Ae. albopictus under global warming and increasing numbers of interna-
tional travelers, dengue poses additional challenges to policymakers, especially when taking
into account the antibody-dependent enhancement, which can lead to increased viral replica-
tion and higher viral loads [70] when infected by another heterologous strain. A second wave
outbreak with a different serotype could bring more serious manifestations of dengue fever like
DHF or DSS [71]. Sustained efforts should be taken to control mosquito abundance and to pre-
vent or limit the extent of further outbreaks.
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