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ABSTRACT
Background: People who inject drugs (PWID) are at an amplified vulnerability for experiencing
a multitude of harms related to their substance use, including viral (e.g. HIV, Hepatitis C) and
bacterial infections (e.g. endocarditis). Implementation of evidence-based interventions, such as
syringe services programs (SSPs), remains imperative, particularly in locations at an increased
risk of HIV outbreaks. This study aims to identify communities in Florida that are high-priority
locations for SSP implementation by examining state-level data related to the substance use
and overdose crises.
Methods: State-level surveillance data were aggregated at the ZIP Code Tabulation Area
(ZCTA) (n¼ 983) for 2017. We used confirmed cases of acute HCV infection as a proxy of
injection drug use. Least Absolute Selection and Shrinkage Operator (LASSO) regression was
used to develop a machine learning model to identify significant indicators of acute HCV
infection and high-priority areas for SSP implementation due to their increased vulnerability
to an HIV outbreak.
Results: The final model retained three variables of importance: (1) the number of drug-associ-
ated skin and soft tissue infection hospitalizations, (2) the number of chronic HCV infections in
people aged 18–39, and 3) the number of drug-associated endocarditis hospitalizations. High-
priority SSP implementation locations were identified in both urban and rural communities out-
side of current Ending the HIV Epidemic counties.
Conclusion: SSPs are long researched, safe, and effective evidence-based programs that offer a
variety of services that reduce disease transmission and assist with combating the overdose cri-
sis. Opportunities to increase services in needed regions across the state now exist in Florida as
supported by the expansion of the Infectious Disease Elimination Act of 2019. This study pro-
vides details where potential areas of concern may be and highlights regions where future evi-
dence-based harm reduction programs, such as SSPs, would be useful to reduce opioid
overdoses and disease transmission among PWID.

KEY MESSAGES

� The rate of acute HCV in Florida in 2017 was 1.9 per 100,000, nearly twice the national average.
� Serious injection related infections among PWID are significant indicators of acute HCV infection.
� High-priority SSP implementation locations in Florida were identified in both urban and rural
communities, including those outside of current Ending the HIV Epidemic counties.
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1. Introduction

Due to the convergence of the opioid and stimulant cri-

ses in the United States [1–3], there has been a signifi-

cant increase in the prevalence of people who inject

drugs (PWID), as well as incidence of overdose death

[4,5]. PWID are at an amplified vulnerability for experienc-

ing a multitude of harms related to their substance use,

including viral (e.g. HIV, Hepatitis C) and bacterial

infections (e.g. skin and soft tissue, infective endocarditis)
[6–8] and fatal overdose [9]. In 2018, approximately 10%
of new HIV infections were related to injection drug use
(IDU) [10], and IDU has been the primary risk factor for
the rising rate of acute hepatitis C virus (HCV) infections
across the U.S [11]. In addition, hospitalizations related to
IDU-associated bacterial infections, such as infective endo-
carditis, have been significantly increasing over the last
10years [12,13].
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While the number of HIV diagnoses among PWID
steadily decreased between 2010 and 2015 [14], IDU-
associated HIV outbreaks linked to opioid and other
concurrent substance use disorders [15–20] have con-
tributed to a significant increase in HIV diagnoses
among this vulnerable population. This concerning
trend has generated local and national focus on rapid
recognition of HIV outbreaks and implementation of
control measures to mitigate further transmission. In
2016, the Centres for Disease Control and Prevention
published a nationwide assessment of U.S. counties
most vulnerable to rapid spread of IDU-associated HIV
[21], utilizing county-level acute HCV infection as a
proxy measure for IDU. Results from this analysis high-
lighted two important findings: (1) social and eco-
nomic conditions are significantly related to acute
HCV, and (2) the most vulnerable counties lacked suffi-
cient harm reduction-based HIV prevention strategies
for PWID, specifically syringe services programs (SSPs).
Recent research has corroborated these findings and
has expanded to investigate the utility of risk environ-
ment frameworks to better understand the physical,
social, and economic influences at the community-
level, providing robust context to drivers of drug-
related harms [22].

The methodology presented in Van Handel et al.
(2016) has been adopted by state health departments
to understand localized context of vulnerable counties
for rapid HIV spread among PWID to geographically
target the implementation of HIV prevention interven-
tions [23] and has been extended to zip code [24] and
census tract [25] geographical levels. These national
and state-level analyses have led to a significant
increases in authorization and implementation of SSPs
across the country [26]. However, SSPs have, and con-
tinue to, experience significant political opposition,
which have led to closures in highly vulnerable loca-
tions (West Virginia and Indiana) [27]. In 2019, the
Florida Legislature passed the Infectious Disease
Elimination Act (IDEA) authorizing the expansion of
SSPs across the state by allowing counties to pass
ordinances to implement these harm reduction pro-
grams in their respective jurisdictions [28]. Florida has
been severely impacted by the syndemic of overdose,
HIV infection, and HCV infection. In 2020, 6,089
Floridians died from a opioid-related overdose [29],
and 7 of the 67 counties (Miami-Dade, Broward, Palm
Beach, Hillsborough, Pinellas, Orange, and Duval) have
been identified as high-priority counties under the
Ending the HIV Epidemic: Plan for America initiative
[30]. Taken together, with the expansion of SSPs, it is
imperative to understand the highest-priority counties

and zip-code level locations in Florida for local HIV
prevention policy and program implementation
for PWID.

The current methodology used for identifying vul-
nerable locations has been comprised of a multi-step
process, including assessment for multicollinearity,
variable reduction (e.g. principal component analysis),
and regression modelling that is subject to overfitting
[21,23,31]. The use of machine learning (ML) algo-
rithms has become more common in the field of HIV
prevention research, offering a flexible method to
evaluate large and complex data. ML is broadly
defined as the process by which computational and
statistical algorithms “learn” from data [32]. There are
a myriad of ML algorithms used in practice, ranging in
complexity, applicability, and functionality (e.g. regres-
sion, regularization, decision tree, Bayesian, deep
learning, and clustering). These learning algorithms
have been applied in HIV research, including the cre-
ation of prediction tools for providers to identify can-
didates for PrEP [33,34], determining factors associated
with HIV testing among high-risk groups [35], identify-
ing individuals at high-risk for HIV acquisition [36], and
has been recently used in predicting vulnerable loca-
tions for overdose, HIV, and HCV [25]. This study aims
to identify jurisdictions in Florida that are high-priority
locations for rapid SSP implementation by applying a
ML algorithm to state-level data that are related to
the substance use and infectious disease epidemics.

2. Methods

2.1. Study design and setting

Following the methodology used in Van Handel et al.,
2016, Rickles et al., 2018, and Bergo et al., 2021, we
used an ecological study design for the entire state of
Florida. Counts and percentages of membership in
socioeconomic features were collected from the
American Communities Survey (ACS) 2013–2017 5-year
estimates at the ZIP code Tabulation Area (ZCTA) level.
In addition, Florida state-specific variables were col-
lected and aggregated from multiple state govern-
ment surveillance systems for 2017 at the ZIP code
level (n¼ 983).

2.1.1. Data
2.1.1.1. Ethics statement. This study was reviewed by
the University of Miami Institutional Review Board
(IRB) and was declared exempt from IRB review due to
the use of deidentified surveillance data in aggregate
and publicly available data sources.
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2.1.1.2. Outcome variable. The primary outcome of
interest for the present analysis was ZCTA-level inci-
dence of acute HCV infection in the state of Florida in
2017. Data were provided by the Florida Department of
Health Merlin surveillance system, Florida’s repository of
clinical and laboratory data for reportable diseases [37].
Acute HCV incidence was defined as newly diagnosed
by positive HCV antibody and/or positive RNA nucleic
acid amplification test with discrete onset of symptoms
consistent with acute viral hepatitis (e.g. fever, head-
ache, malaise, anorexia, nausea, vomiting, diarrhea, and
abdominal discomfort) and either jaundice or elevated
liver enzymes (serum alanine aminotransferase [ALT]
level >200 IU/L) during the period of acute illness.

2.1.1.3. State surveillance variables. Twenty-six
ZCTA-level features were collected across 5 Florida
state surveillance systems (Table 1). Variables were
selected based on the findings from Van Handel et al.,
2016, Rickles et al., 2017, and theoretical indicators of
acute HCV infection hypothesized by the study team.
All data were aggregated as counts by ZIP code for
2017. State-level health variables included in the mod-
els were: number and rate of deaths related to all
drugs, number and rate of deaths related to heroin
and opioids only, number and rate of deaths related
to multiple substances, rate of nonfatal drug overdo-
ses (all drugs), rate of nonfatal drug overdoses (opi-
oid), number and rate of sexually transmitted
infections (STIs i.e. syphilis, gonorrhoea, and chla-
mydia), number and rate of chronic HCV infections in
people between the ages of 18–39 (defined as labora-
tory confirmed positive HCV RNA AND does not meet
the case definition of acute hepatitis C), and the num-
ber and rate of serious injection related infection (SIRI)
hospitalizations. SIRI included infective endocarditis,
skin and soft tissue infections (SSTIs), osteomyelitis,
and bacteraemia and sepsis. SIRI were determined
based on a validated ICD-10 algorithm, and more in-
depth description of the methodology identifying
these infections is published elsewhere [38].

Since state-level data were collected at the ZIP
code level and ACS variables were collected at the 5-
digit ZCTA-level, ZIP codes were transformed into cor-
responding ZCTAs using the Uniform Data System
Mapper “ZIP Code to ZCTA crosswalk” calculator [39].
ZCTAs are generalized areal presentations of ZIP Code
service areas created by the U.S. Census Bureau to
develop a geographical boundary.

2.1.1.4. ACS variables. Twenty-five features were col-
lected from the American Community Survey (ACS)

2013–2017 5-year estimates at the 5-digit ZCTA-level
(Table 2). ACS-specific estimates included in the mod-
els were: estimated total population, percentage of
population aged 18–24, percentage of persons with-
out health insurance, percentage of households with a
vehicle available, percentage of people with no high
school diploma (�25 years old), per capita income,
percent of people living in poverty (based on Census-
defined poverty levels), income inequality Gini coeffi-
cient, percentage of the total population that is non-
Hispanic White, non-Hispanic Black, and Hispanic, total
housing units, number of vacant housing units, per-
centage of vacant housing units, number of mobile
homes, percentage of mobile homes, percentage of
homes with no phone service, and percentage of the
population never married. Variables with non-normal
distributions were log-transformed, such as per cap-
ita income.

2.1.2. Statistical analysis
2.1.2.1. Spatial autocorrelation. Due to the geo-
graphical nature of this analysis, we examined the spa-
tial distribution of our outcome variable (rate of acute
HCV infection) across ZCTAs to understand the spatial
autocorrelation in the outcome variable. We used the
global Moran’s I statistic to evaluate whether there
was a significant clustering pattern in our outcome
variable [40,41]. Once Moran’s I was computed, we
used Monte Carlo simulation to determine the normal
distribution of Moran’s I with our outcome variable if
data were spatially random [42]. Upon investigation,
we determined that there was significant spatial auto-
correlation (Moran’s I¼ 0.0965, p¼ .001) across ZCTAs,
suggesting that neighbouring ZCTAs have similar rates
of acute HCV infection, with high-high and low-low
clustering. To account for the significant correlation in
our outcome variable, we included a spatial autocor-
relation measure in our model by averaging the rate
of acute HCV infection among each ZCTA’s five closest
neighbours [43].

2.1.2.2. Model development. Using data collected
from the ACS 2013–2017 5-year estimates and state-
level surveillance in the state of Florida, we fitted
models to predict acute HCV infection at the ZCTA-
geographical level. Based on the distribution of the
outcome variable, we used a standard Poisson regres-
sion model using Least Absolute Shrinkage and
Selection Operator (LASSO). The LASSO regression pro-
cedure performs L1 regularization, optimizing predict-
ive accuracy by automating the selection of variables
through shrinkage and elimination of non-significant
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Table 1. Florida state-specific estimates, Data Sources, and Descriptive Statistics Aggregated at the ZIP Code Tabulation Area
(ZCTA) (N¼ 983).
Feature Description Data Source Mean Median IQR

Deaths related to all drugs The number of all deaths attributed to
any kind of drug (based on
residential ZCTA)

Florida Department of
Child and Families

4.5 3.0 1.0–6.0

Rate of deaths related to
all drugs

The number of all deaths attributed to
any kind of drug per 100,000

Florida Department of
Child and Families

25.9 16.1 5.7–29.4

Deaths related to heroin and
opioids only

The number of all deaths attributed to
heroin or opioids (based on
residential ZCTA)

Florida Department of
Child and Families

3.6 2.0 0–5.0

Rate of deaths related to heroin
and opioids only

The count of all deaths attributed to
heroin or opioids per 100,000

Florida Department of
Child and Families

18.6 11.4 0–23.7

Deaths related to
multiple substances

The count of all deaths attributed to
multiple substances (based on
residential ZCTA)

Florida Department of
Child and Families

2.6 1.0 0–4.0

Rate of deaths related to
multiple substances

The count of all deaths attributed to
polysubstance use per 100,000

Florida Department of
Child and Families

13.7 7.3 0–17.4

Rate of nonfatal drug overdoses,
all drugs

Number of EMS calls for nonfatal
overdose for all drugs per 100,000

Florida Drug Overdose
Surveillance and
Epidemiology
(FL-DOSE)

43.0 20.0 4.0–50.5

Rate of nonfatal drug overdoses,
heroin only

Number of EMS calls for nonfatal
overdose for heroin or opioids
per 100,000

Florida Drug Overdose
Surveillance and
Epidemiology
(FL-DOSE)

16.1 3.0 0–14.0

Number of Syphilis infections The number of syphilis infections
reported to FDOH by ZCTA

MERLIN 9.1 3.0 1.0–10.0

Rate of Syphilis infections The number of syphilis cases
per 100,000

MERLIN 42.9 18.6 5.4–44.2

Number of
Gonorrhoea infections

The number of Gonorrhoea infections
reported to FDOH by ZCTA

MERLIN 31.6 16.0 4.0–37.0

Rate of Gonorrhoea infections The number of Gonorrhoea cases
per 100,000

MERLIN 157.9 90.3 48.1–169.1

Number of Chlamydia infections The number of chlamydia infections
reported to FDOH by ZCTA

MERLIN 101.7 65.0 23.0–134.0

Rate of Chlamydia infections The number of chlamydia cases
per 100,000

MERLIN 507.5 361.4 247.7–560.6

Acute HCV infection The number of acute HCV infections
reported to FDOH by ZCTA

MERLIN 0.41 0 0-1.0

Rate of acute HCV infection The rate of acute HCV infection
by ZCTA

MERLIN 1.9 0 0-2.4

Chronic HCV infection in
persons between 18 and
39 years old

The number of chronic HCV infections
reported to FDOH in persons
between the ages of 18–39
by ZCTA

MERLIN 10.4 6.0 2.0-13.0

Rate of chronic HCV infection
between 18 and 39-year-old

The rate of chronic HCV infection
between the ages of 18–39 per
100,000 by ZCTA

MERLIN 89.4 34.7 14.0-63.6

Drug-associated infective
endocarditis

The number of drug-related
endocarditis hospitalizations
by ZCTA

Agency for Health Care
Administration
(ACHA)

1.46 0 0-2.0

Rate of drug-associated infective
endocarditis

The rate of endocarditis per 100,000 Agency for Health Care
Administration
(ACHA)

8.7 1.6 0-10.2

Drug-associated skin and soft
tissue infections (SSTI)

The number of drug-related SSTI
hospitalizations by ZCTA

Agency for Health Care
Administration
(ACHA)

7.6 4.5 1.0-11.0

Rate of drug-associated SSTIs The rate of SSTIs per 100,000 Agency for Health Care
Administration
(ACHA)

57.7 27.2 9.2-50.2

Drug-associated osteomyelitis The number of drug-related
osteomyelitis hospitalizations
by ZCTA

Agency for Health Care
Administration
(ACHA)

2.3 1.0 0-3.0

Rate of drug-associated
osteomyelitis

The rate of osteomyelitis per 100,000 Agency for Health Care
Administration
(ACHA)

12.6 5.7 0-16.6

Drug-associated bacteraemia
and sepsis

The number of drug-related
bacteraemia and sepsis
hospitalizations by ZCTA

Agency for Health Care
Administration
(ACHA)

8.6 6.0 2.0-13.0

Rate of drug-associated
bacteraemia and sepsis

The rate of bacteraemia and sepsis
per 100,000

Agency for Health Care
Administration
(ACHA)

49.9 33.2 13.7-61.0
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variables by setting them to zero [44]. LASSO works
by applying a shrinkage penalty lambda (k), or tuning
hyperparameter, to the regression coefficients through
minimization of the sum of squares. Increasing the

lambda value increases bias in the model and allows
for more and more coefficients to be set to zero and
eliminated from the model (i.e. variable selection). To
reduce overfitting, improve model performance, and

Table 2. American Community Survey (ACS) 2013–2017 5-year estimates, data sources, and descriptive statistics aggregated at
the ZCTA (N¼ 983).
Features Description Data Source Mean Median IQR

Total Population The number of civilian noninstitutionalized
population per ZCTA

ACS-ID DP05 20,627 17,802 7,520–30,395

Population aged 18–24 The estimated number of people aged 18–24 in
a ZCTA

ACS-ID S1501 1,801 1,294 512–2,501

Percentage of Population
aged 18–24

The estimated percentage of people aged 18-24
in a ZCTA

ACS-ID S1501 8.6% 7.7% 5.8–9.4%

Percentage of population
never married

The percentage of the population of a ZCTA
that were never married

ACS-ID S1201 29.7% 28.3% 22.4–35.8%

Percentage of population
that is Non-Hispanic White

The number of persons who reported they
were not Hispanic or Latino and were of
white race alone divided by the estimated
total ZCTA population

ACS-ID DP05 63.6% 70.0% 48.3–83.8%

Percentage of population
that is Non-Hispanic Black

The number of persons who reported they
were not Hispanic or Latino and were of
black race alone divided by the estimated
total ZCTA population

ACS-ID DP05 13.4% 8.0% 2.8%-16.7%

Percentage of population
that is Hispanic

The number of persons who reported they
were Hispanic or Latino divided by the
estimated total ZCTA population

ACS-ID DP05 18.6% 11.3% 5.8–24.0%

Uninsured The number of persons without health
insurance coverage per ZCTA

ACS-ID S2701 3,034 2,036 829–4,217

Percentage uninsured The number of persons without health
insurance coverage divided by total civilian
population per ZCTA

ACS-ID S2701 14.3% 13.6% 9.8–17.9%

Percentage with any
vehicle access

The number of households with a vehicle
available divided by the total estimated
number of households per ZCTA

ACS-ID B08141 39.6% 40.9% 34.5–46.3%

Percentage with no high
school diplomas

The number of persons aged� 25 years with
less than a 12th grade education (including
individuals with 12 grades but no diploma)
divided by the estimated ZCTA population
aged� 25 years.

ACS-ID S1501 13.0% 11.3% 6.6–17.6%

Per capita income, (log) The log mean income per person in the county;
derived by dividing the total income of all
people aged� 15 years by the total
ZCTA population

ACS-ID B19301 10.2 10.2 9.9–10.4

Per capita income The mean income per person in the county;
derived by dividing the total income of all
people aged� 15 years by the total
ZCTA population

ACS-ID B19301 $29,324 $25,693 $20,761–$33,709

Gini Coefficient Summary measure of income inequality. Values
range from 0 to 1, with higher scores
indicating greater inequality

ACS-ID B19083 0.44 0.44 0.41–0.48

Percentage living in poverty Poverty levels were defined by the Census
Bureau, which uses a set of money income
thresholds that vary by family size and
composition to determine who is in poverty.
If a family’s total income is less than the
family’s threshold, then that family and every
individual in it is considered in poverty. The
number of persons in poverty was divided
by the estimated total ZCTA population

ACS-ID B17003 9.5% 8.4% 5.9–11.6%

Total housing units The total number of housing units per ZCTA ACS-ID DP04 9,419 8,983 3,530–14,145
Occupied housing units The number of occupied housing per ZCTA ACS-ID DP04 7,640 7,180 2,758–11,316
Vacant housing units The number of vacant housing per ZCTA ACS-ID DP04 1,779 1,253 545–2,347
Number of mobile homes The number of mobile homes per ZCTA ACS-ID DP04 853 424 68–1,202
Percentage of mobile homes The total number of mobile homes by the total

number of housing units.
ACS-ID DP04 14.5% 6.8% 0.8–23.7%

Percentage of vacant
housing units

The total number of vacant housing units by
the total number of housing units.

ACS-ID DP04 20.9% 16.7% 11.8–24.7%

Percentage of occupied
housing units

The total number of occupied housing units by
the total number of housing units.

ACS-ID DP04 79.1% 83.3% 75.3–88.2%

Percentage of homes with
no phone service

The average percentage of the total housing
units that did not have phone service

ACS-ID DP04 1.02% 0.9% 0.55–1.3%
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determine the optimal regularization parameter, we
divided the overall dataset into a training dataset
and a validation dataset. Data were randomly split
with 70% of the data being used for model training
and 30% of the data being used for validating model
performance. Using the training dataset only, we
used k-fold cross-validation to determine the opti-
mal, user-defined lambda value [45,46]. A vector of
potential lambda values ranging from 10�5 to 105

was created to determine optimal lambda value. The
optimal lambda value was determined by the mini-
mization of the root mean squared error (RMSE), and
the optimal lambda value was used in the final
model (Figure 1). Parameter estimates were deter-
mined for the model using the optimal lambda value
with a Poisson distribution. Based on the number of
zeros in the outcome variable (72%), we tried to fit
models with a negative binomial and zero-inflated
Poisson distribution. However, these models failed to
converge. In addition, we explored using Random
Forest (RF) as an additional specification check to
assess issues with the data imbalance (preponder-
ance of zero values) and potential high-order interac-
tions. Due to the RF model corroborating our
findings from the LASSO model, we decided to pro-
ceed with the LASSO model.

To assess how well the model performed on unseen
data, the model trained on the training dataset was
used to determine predictive accuracy on the validation
dataset (i.e. the remaining 30% of the data). The RMSE
of the model on the training and validation datasets
were computed and compared for performance.

2.1.2.3. Variable of importance. We further evaluated
the variable importance rankings to identify which varia-
bles had the strongest predictive value of acute HCV
infection. The variables selected by the model with the
optimum lambda value were determined and reported
to understand which variables have the most predictive
power. All analysis was completed using the caret and
glmnet packages in R 4.0.1 statistical environment.

2.1.2.4. Vulnerability mapping. Shapefiles for 2017
ZCTAs for the state of Florida were downloaded using
the tigris package. Shapefiles were merged with the
predicted values of acute HCV infections from the
training and final predictive model and mapped using
the ggplot2 package. Predicted values were split into
deciles to understand the highest-priority areas for
SSP implementation, defined as the 90th percentile of
all ZCTAs with the highest predicted acute HCV infec-
tion. All mapping procedures were performed in R
4.0.1 statistical environment. The optimal model from
the training data was used to predict outcome for
both training and validation data to provide vulner-
ability mapping for all ZCTAs in Florida.

3. Results

In 2017, of the 983 ZCTAs in Florida, 404 acute HCV
infections were reported to the Florida Department of
Health, with an overall incidence of 1.9 per 100,000,
nearly twice the national average [47]. Acute HCV inci-
dence across ZCTAs ranged from 0 to 46.9 per 100,000.
A detailed overview of each feature’s description, data

Figure 1. Scatterplot of root mean squared error (RMSE) across log lambda values used for training dataset. Log: logarithm;
RMSE: root mean-squared error; Lambda: hyperparameter.
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source, mean, median, and interquartile range (IQR) is
presented in Tables 1 and 2 and a correlation matrix of
all features is presented in Figure 2.

3.1. Results of the training LASSO and
model validation

Using 10-fold cross-validation, the optimal lambda
value in the LASSO training model that produced the

lowest RMSE was k¼ 0.561 (Figure 1). At this value,
the RMSE of the model was 4.04. Of the 40 features,
the LASSO variable selection procedure retained 3 pre-
dictors in the model. The strongest predictors were:
(1) the number of drug-associated skin and soft tissue
infection hospitalizations, (2) the number of chronic
HCV infections in people aged 18–39, and (3) the
number of drug-associated infective endocarditis hos-
pitalizations (Figure 3). All other features were set to

Figure 2. Correlation heatmap of features included in the LASSO model.
Legend. inc.lag: Average acute HCV of neighbouring ZCTA; pct_occupied_num: percent occupied housing units; bosrate: rate of IDU-related bacteraemia and sepsis
hospitalisations; ostrate: rate of osteomyelitis; sstirate: rate of skin and soft tissue infections; endorate: rate of endocarditis; chlamydiarate: rate of chlamydia; gonor-
rhearate: rate of gonorrhoea; syphilisrate: rate of syphilis; odpolyrate: rate of polysubstance-related overdose deaths; odopioidrate: rate of opioid-related overdose
deaths; odanyrate: rate of any drug-related overdose deaths; hcvchronicrate: rate of chronic HCV among those aged 18–39; hcvrate: rate of acute HCV infection;
pct_vacant_num: percent of vacant housing units; pct_mobile_num: percent of mobile homes; gini_num: GINI coefficient; od_opioid_only: number of opioid-
related overdose deaths; od_multidrug: number of polysubstance-related overdose deaths; od_anydrug: number of any drug-related overdose deaths; syphilis_-
count: number of syphilis cases; gonorrhoea_count: number of gonorrhoea cases; chlamydia_count: number of Chlamydia cases; BOS: number of IDU-related bac-
teraemia and sepsis hospitalisations; OST: number of IDU-related osteomyelitis hospitalisations; SSTI: number of IDU-related skin and soft tissue infection
hospitalizations; Endo_count: number of IDU-related endocarditis hospitalizations; Opioid_overdose_ems: rate of non-fatal opioid overdoses; Alldrug_overdose_ems:
rate of non-fatal drug-related overdoses; Hcv_chronic_2017: number of chronic HCV infections among those aged 18–39; Pct_24: percent of population aged
18–24; Pct_poverty: percent living in poverty; Pct_anyvec: percent with any vehicle; Pct_nohighschool: percent of people with no high school education; Loginc:
logarithm of per capita income; Pct_uninsured: percent of people uninsured; Pct_nevermarried: percent of people never married; Pct_his: percent of people identi-
fying as Hispanic; Pct_nonhisblack: percent of people identifying as non-Hispanic Black; Pct_nonhiswhite: percent of people identifying as non-Hispanic White.
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zero and eliminated from the model. When applied to
the validation dataset, the RMSE of model was 4.44,
suggesting the model had good predictive perform-
ance and minimal overfitting.

3.2. Vulnerability mapping

Based on the predicted values obtained from the
training and validation model, high-priority areas were
located both in urban and rural settings, even outside
of the current Ending the HIV Epidemic jurisdictions
(Figure 4). There were 27 counties that contained the
99 ZCTAs that were identified as high priority
(Table 3). Counties that contained high-priority ZCTAs
include (ordered from most to least): Pinellas, Duval,
Palm Beach, Pasco, Broward, Orange, Volusia, Lee,
Hillsborough, St. Lucie, Hernando, Bay, Brevard, Clay,
Manatee, Miami-Dade, Sarasota, Seminole, Charlotte,
Escambia, Martin, Okaloosa, Osceola, St. Johns, Sumter,
Union, Washington. Of these counties, 5 (17.9%) have
implemented SSPs, 1 (3.6%) has passed a local ordin-
ance authorizing an SSP but have not moved to

implement, and 22 (78.6%) have no SSP ordinance
in place.

4. Discussion

This ecological study provides important information
regarding high-priority locations in Florida for the
implementation of HIV prevention programs (i.e. SSPs)
to serve PWID, a population vulnerable to the rapid
transmission of HIV infection [15,17,18,48]. Our analysis
provides state, county, and community-level stake-
holders (e.g. health departments) granular information
regarding where resource allocation should be focused
and planning for localized SSP implementation. This
study also highlights the utility of state-level surveil-
lance data integration across departments and data
sources. Through the application of a machine learn-
ing algorithm, we identified significant indicators for
acute HCV infection, such as chronic HCV infection
among people aged 18–39, drug-associated skin and
soft tissue hospitalizations and drug-associated infect-
ive endocarditis hospitalizations.

Figure 3. Variable Importance Index (VIMP) from the LASSO model. LASSO: least absolute shrinkage and selection operator; VIMP:
variable of importance; Feature: Variable; SSTI: skin and soft tissue infections.
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Our data suggest a significant relationship between
chronic HCV among people aged 18–39 and acute
HCV incidence. Previous research has suggested that
there is a plausible mechanistic relationship between
chronic HCV and HCV incidence through geographical
variability in community viral load [49]. Areas with
high burden of active and untreated HCV may serve
as a HCV reservoir, increasing the probability of HCV
being transmitted during sharing of injection equip-
ment among PWID in the absence of prevention [50].
With increasing prevalence of younger PWID [51] and
increasing rates of chronic HCV among persons under
the age of 39 years old [11] coupled with limited
access to curative HCV treatment due to sobriety
restrictions and a historical lack of HCV prevention (i.e.
SSPs) among PWID in Florida, a multifaceted approach
through treatment access and scaling up prevention
remains imperative in the control of HCV.

These results also expand on state-level variables
collected in existing surveillance systems by examining
IDU-associated bacterial infections among a cohort of

PWID identified by ICD-10 codes. The results from the
final model highlight the compounding harms that
PWID face outside of viral infections (e.g. HCV and
HIV), suggesting that a state-wide surveillance system
of bacterial infections (e.g. infective endocarditis)
should be developed to better track and understand
the trends of infectious sequelae due to the substance
use and overdose crises.

The machine learning algorithm predicted well but
showed room for improvement in prediction perform-
ance with the algorithm’s RMSE value >4 and R-squared
value <0.10. RMSE is an absolute measure of fit, provid-
ing information on how close the observed data points
are to the model’s predicted values [52]. This may be, in
part, due to the relative imbalance in acute HCV infec-
tions. Many (72%) of the ZCTAs did not report any
acute HCV infection, and modelling of relatively rare
events can be difficult. Because LASSO regression simul-
taneously performs variable selection/retention, we pro-
duced a parsimonious model of 3 features which
improves simplicity in understanding the final model.

Figure 4. Map of predicted acute HCV percentiles by ZCTA produced by the LASSO model. Solid black lines indicate county lines;
solid gray lines indicate ZCTA boundary; white space represents water or protected land (e.g. Everglades).
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This analysis contextualizes, geographically, high-
priority ZCTAs for implementation of prevention serv-
ices for PWID (Figure 4). With the expansion legislation
passed to allow all counties in Florida to implement
SSPs in 2019, counties that contain ZCTAs in the 90th

percentile should emergently look to support and
pass local legislation to implement these evidence-
based programs. The effectiveness and cost-effective-
ness of SSPs as a public health strategy are well estab-
lished [53–56], garnering support from the Centres for
Disease Control and Prevention and explicitly named
as a cornerstone program in the “Prevent” pillar of the
Ending the HIV Epidemic initiative. To date, there have
been 9 counties (Miami-Dade, Broward, Palm Beach,
Hillsborough, Pinellas, Manatee, Leon, Alachua and
Orange) that have passed local ordinances authorizing
an SSP within their respective jurisdictions, 7 of which
were identified as counties containing high-priority
ZCTAs. While the majority of high-priority counties
under the Ending the HIV Epidemic initiative have
passed ordinances, this analysis highlights additional
locations where local SSP implementation is impera-
tive, including both urban (85%) and rural (15%) coun-
ties (defined by the 2010 Census). The counties
identified in this analysis closely match the drug-

related overdose deaths by county in 2017 [57], high-
lighting the syndemic opioid and overdose crises
faced by Florida counties.

Based on the significant predictors of acute HCV
infection, state policymakers and community stake-
holders should assess the implementation of harm
reduction and behavioural interventions in medical-
based settings, such as emergency departments where
PWID are frequent utilizers [58]. There has been
increased focus on the integration of addiction medi-
cine and infectious disease specialties to develop
“Serious Injection-Related Injury (SIRI)” teams due to
the significant increase in infections like infective
endocarditis [59,60]. These teams are focused on pro-
viding both gold standard antibiotic therapies and evi-
dence-based substance use disorder treatment among
patients hospitalized with SIRIs [61,62] to optimize
health-related outcomes. These teams are well posi-
tioned to deliver harm reduction interventions to
PWID, including linkage to HIV prevention (e.g. PrEP),
HIV and HCV treatment, and outpatient medications
for opioid use disorder [63].

Beyond additional interventions, these findings, and
the model, have important implications for the predic-
tion and prevention of IDU-associated HIV outbreaks.
Research has demonstrated that outbreaks of IDU-
associated HCV may proceed the rapid transmission of
HIV, most salient in the Scott County, Indiana outbreak
[64,65]. In 2018, Miami-Dade county detected an out-
break of HIV among their PWID population after the
implementation of an SSP in December 2016 [15].
Based on the results of this model using data from
2017, Miami-Dade county contained 2 ZCTAs that
were identified as high-priority areas, of which one
was the exact ZCTA where the outbreak was identi-
fied, investigated, and mitigated by the local SSP and
the Florida Department of Health. This convergence of
predicted and detected outbreaks may highlight the
practical utility of this model to identify outbreaks in
Florida. In addition, bacterial infections, such as SSTIs
and infective endocarditis, could be further upstream
indicators of HCV and HIV infection, highlighting the
importance of incorporating these infections in the
prediction of HIV outbreaks in future research [66].

4.1. Limitations

This analysis is subject to several limitations. First,
there is a lack of accurate and robust surveillance
reporting for acute HCV infection and other state-level
data, such as drug-related deaths and EMS calls for a
drug-related overdose. This also includes changes in

Table 3. Descriptive statistics of Florida counties containing
high-priority ZCTAs�.

County

Number of
ZCTAs identified
as high priority

Pinellas 13
Duval 8
Palm Beach 8
Pasco 8
Broward 7
Orange 7
Volusia 6
Lee 6
Hillsborough 5
St. Lucie 4
Hernando 3
Bay 2
Brevard 2
Clay 2
Manatee 2
Miami-Dade 2
Sarasota 2
Seminole 2
Osceola 2
Charlotte 1
Escambia 1
Martin 1
Okaloosa 1
St. Johns 1
Sumter 1
Union 1
Washington 1
Total 99
�High priority jurisdictions were defined as the 90th percentile of all
ZCTAs with the highest predicted rate of acute HCV infection.
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case definitions over time, underreporting, and mis-
classification that can cause issues with the reliability
of the data being modelled. However, we utilized only
2017 data on acute HCV infection in which a consist-
ent case definition was applied across the year, and
these data are the best measures available at the state
level. In addition, PWID often avoid health care serv-
ices due to pervasive stigma [67] remain hesitant to
call 911 when responding to an overdose [68], and
use naloxone distributed by SSPs in the field [69] sug-
gesting that existing data sources are limited in cap-
turing representative metrics. However, at the time of
this study, Miami-Dade was the only county with
street-level distribution of naloxone so these unre-
ported nonfatal overdoses would not impact the
model outside of Miami-Dade County in 2017. Second,
our data were only limited to a cross-sectional frame-
work, not allowing for forecasting and including spa-
tiotemporal dynamics in the data to map risk in space
and time. In addition, the final model from our 10-fold
cross-validation was used to make predictions on both
the training and validation datasets in order to obtain
predicted values for all ZCTAs for vulnerability map-
ping, therefore the values for the training data are fit-
ted values and the values for the validation data are
truly predicted values. Therefore, the two subsets of
ZCTAs may have differing accuracy. Third, the most
significant variables in our models were variables that
are not routinely collected by the state. This exclusion
poses potential issues with the ability to rapidly apply
this methodology to new data when available,
although it does point to potential important data to
add to the state’s surveillance efforts. The Agency for
Health Care Administration (AHCA) in Florida is
responsible for collection and management of claims
data which could be utilized to provide these data on
a timely basis. Fourth, this study utilized “black-box”
prediction algorithms that increase the complexity of
understanding how and which variables are driving
prediction. However, Variable Importance Index (VIMP)
can provide insights into how variables influence pre-
diction by ranking which variables are most important
in the model. Fifth, the machine learning algorithm
used can be sensitive to class imbalance, which may
have resulted in suboptimal predictive performance of
the model. Zero-inflated, negative binomial, and
Random Forest models were explored; however, the
zero-inflated and negative binomial models did not
converge and the Random Forest model corroborated
our results from the LASSO model. Lastly, high correl-
ation between features in the models may have
impeded model performance and variable importance

(Figure 2). Nonetheless, taken together, this analysis
provides a more robust methodology and granular
understanding of high-priority areas for SSP
implementation.

5. Conclusions

SSPs offer a multitude of benefits for PWID. This study
provides an application of machine learning algo-
rithms that can help provide a streamlined method-
ology to be used by states undertaking their own
vulnerability assessments. Future research should
explore longitudinal modelling approaches in order to
improve prediction and forecasting of risk in space
and time. This study also expands on the geographical
unit of analysis, providing granular data at the ZCTA-
level instead of the county-level. The results from this
analysis should be disseminated to local health
departments to inform the targeted expansion of serv-
ices for PWID, including SSPs, HIV/HCV testing and
treatment, naloxone distribution, and community out-
reach to prevent HCV and HIV infection among this
high incidence community.
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