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Abstract: Nanobiotechnology is a promising field in the development of safe antibiotics to combat
the increasing trend of antibiotic resistance. Nature is a vast reservoir for green materials used
in the synthesis of non-toxic and environmentally friendly nano-antibiotics. We present for the
first time a facile, green, cost-effective, plant-mediated synthesis of platinum nanoparticles (PtNPs)
using the extract of Combretum erythrophyllum (CE) plant leaves. The extract of CE served as both a
bio-reductant and a stabilizing agent. The as-synthesized PtNPs were characterized using ultraviolet-
visible (UV–Vis) absorption spectroscopy, high-resolution transmission electron microscopy (HR-
TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and dynamic light
scattering (DLS) techniques. The HR-TEM image confirmed that the PtNPs are ultrasmall, spherical,
and well dispersed with an average particle diameter of 1.04 ± 0.26 nm. The PtNPs showed strong
antibacterial activities against pathogenic Gram-positive Staphylococcus epidermidis (ATCC 14990) at
a minimum inhibitory concentration (MIC) of 3.125 µg/mL and Gram-negative Klebsiella oxytoca
(ATCC 8724) and Klebsiella aerogenes (ATCC 27853) at an MIC value of 1.56 µg/mL. The CE-stabilized
PtNPs was mostly effective in Klebsiella species that are causative organisms in nosocomial infections.

Keywords: Combretum erythrophyllum; platinum nanoparticles; green synthesis; antibacterial;
Klebsiella oxytoca; Klebsiella aerogenes

1. Introduction

Nanobiotechnology, an emerging field of nanoscience, has advanced the develop-
ment of green practices in producing bio-inspired nanoparticles (NPs). It involves us-
ing biomolecules in the production of nanomaterials and nano-based systems. These
biomolecules account for the variation in the size, shape, wavelength, surface area, and
functionalization of these nanoparticles [1–3]. Noble metal nanoparticles (MNPs) such
as platinum, gold, and silver have been used in diverse applications such as pharmaceu-
tics, gas sensors, electronics, medicine, diagnosis, fuel cells, sensing, drug, gene delivery,
etc. This is due to their excellent intrinsic optical, electronic, and physicochemical prop-
erties, which offer them functional capabilities different from the bulk materials [2,4],
giving “Ockham’s razor” to applied nanomedicine because of the flexibility in their multi-
functionalization in bio-applications [5]. Among the noble MNPs, platinum nanoparticles
(PtNPs) possess inherent and distinct properties such as high surface area, resistance to
corrosion, and biocidal effects [6]. Several physical and chemical methods have been used
in the synthesis of PtNPs. However, these processes are not completely green due to the
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use of high temperatures and toxic reagents. In addition, large-scale synthesis is not easy
to achieve with such methods [7]. To proffer alternatives to these procedures, a benign and
environmentally friendly approach has been used by prospecting microorganisms [8], plant
extract [9,10], and polysaccharides [11] for the synthesis of PtNPs. Amongst these biological
entities, the use of plant extracts (PE) has proved to be an excellent choice because they are
readily available, simple, cost-effective, eco-friendly, and highly bio-compatible for biomed-
ical applications [12]. Furthermore, PE contains diverse phytochemicals or metabolites
such as carbohydrates, alkaloids, terpenes, phenols, tannins, lipids, quinones, reductases,
proteins, flavonoids, vitamins, etc. [13–15]. Therefore, they can serve as both reducing and
stabilizing agents, thus eliminating the use of hazardous chemical reagents in the synthe-
sis of MNPs [16]. These phytochemicals or metabolites can prevent the aggregation of
nanoparticles, reduce generic toxicity, and increase their bio-assimilation [4,17,18]. Several
plant, leaf, flower, and seed extracts of Taraxacum laevigatum [9], Garcinia mangostana L. [19],
Xanthium strumarium [20], Punica granatum [2], Nigella sativa L. [6], etc. have been used
in the biogenic synthesis of PtNPs. Despite these, it is imperative to explore more plant
sources due to their vast array of phytochemicals.

Combretum erythrophyllum (CE) is a native plant in South Africa belonging to the
medicinal family of Combretaceae. It grows independently and usually serves as a shade
or an ornamental plant [4,21]. Different extracts of the CE plant’s leaves, bark, and seeds
have been used customarily for medicinal purposes due to their richness in secondary
metabolites [22]. Prior studies have shown that its leaf and extract contain flavonoids,
alkaloids, phenolics, carbohydrates, proteins, and essential oils [20,22], which are excellent
bio-reductants. Despite these excellent properties, there has been no known research
on the use of C. erythrophyllum extract in the green synthesis of PtNPs or extracts from
the Combretaceae family, as it has been reported for other MNPs such as silver and
gold. Furthermore, as far as the authors know, there has been no report on the antibiotic
properties of PtNPs synthesized using the extract of C. erythrophyllum. Herein, we report for
the first time the synthesis of PtNPs using the aqueous extract of CE leaves as both reducing
and stabilizing agents. The formation of the as-synthesized PtNPs was confirmed by using
Ultraviolet-Visible (UV–Vis) absorption spectroscopy. The morphological and structural
evaluation was carried out by using high-resolution transmission electron microscopy (HR-
TEM). The biological activity of the as-synthesized PtNPs was evaluated using minimum
inhibition concentration (MIC) for its antibacterial activity against Gram-positive and Gram-
negative bacteria. The results showed that the CE-PtNPs exhibited selective antibacterial
activity toward specific pathogenic Klebsiella species, which could serve as a means for
controlling infectious diseases.

2. Results and Discussion
2.1. UV-Visible Spectra

The growth of biosynthesized PtNPs using C. erythrophyllum extract was monitored by
observing the change in the color of the reaction mixture. As the reaction progressed, the
color changed from light yellow to brown and finally darkish brown. This observed color
change shows the conversion of the Pt (IV) to Pt (II) and finally to Pt (0), indicating the
formation of PtNPs. The observed color change can be attributed to the surface plasmon
response of MNPs due to the vibration of free electrons on its surface. The formation
of PtNPs at 24 h reaction time was confirmed by UV-Vis spectroscopy. The absorption
spectra of the precursor platinum (Pt) salt showed a plasmon peak at 262 nm as a result of
the dissociation and formation of 2H+ and PtCl62− in water [19]. Nevertheless, after the
reduction by the CE extract, the plasmon peak of the Pt salt disappeared, thus signifying
a total reduction of the Pt salt to a zero-valent platinum (Figure 1). A similar result was
reported for the biosynthesis of PtNPs using the extract of Psidium guajava [23].
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Figure 1. Absorbance spectra of platinum salt and PtNPs CE.

2.2. XRD Analysis

The XRD pattern of the CE-PtNPs at 24 h is shown in Figure 2. The diffraction pattern
shows peaks at 2θ values of 39.99◦, 46.49◦, 67.70◦, and 81.49◦, corresponding to the (111),
(200), (220), and (311) crystallographic planes of the face-centered cubic (fcc) with the lattice
parameter a = 3.92 Å, which is in accordance with JCPDs-ICDD Card no: 04-802 [24].
Similar results have been reported in the biosynthesis of PtNPs using Punica granatum
crusts extract [2]. The high intensity of the peak at 39.99◦ shows that the nanoparticles
were predominantly oriented toward the (111) plane. The width of the (111) peak was used
to calculate the average crystallite size by using the Scherrer equation [25]. The calculated
average size was 1.83 nm, which is in agreement with the size obtained from the HR-TEM.
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Figure 2. XRD patterns of the as-synthesized PtNPs CE.

2.3. TEM Analysis

Figure 3 shows the TEM micrograph of the as-synthesized PtNPs using the CE ex-
tract as a bio-reductant. As shown in Figure 3a, the as-prepared PtNPs are small and
mostly spherical. The presence of lattice fringes in the high-resolution image indicates
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the crystallinity of the PtNPs. Figure 3b shows the correlation of the calculated lattice (d)
spacing values with the XRD patterns. Furthermore, the selected area electron diffraction
(SAED) image shows the ring patterns accompanied by the single spots in a ring (Figure 3b
inset), which are in agreement with the XRD patterns. The particle size distribution that
was obtained from the TEM micrograph is shown in Figure 4a. The particle size ranged
between 0.2 and 1.8 nm with an average particle diameter of 1.04 ± 0.26 nm. In Figure 4b,
the energy-dispersive X-ray spectrum (EDX) showed the occurrence of Pt and elements
such as calcium, oxygen, and potassium, which come from CE extract, showing its richness
in minerals. The Cu is a result of the copper grid used for the analysis. The PtNPs-CE
showed a negative zeta potential of −34.1 mV, signifying sufficient surface charge for
electrostatic and colloidal stability in biological systems [4].

2.4. FTIR Analysis

FTIR spectroscopy was used to investigate the surface chemistry of the as-synthesized
PtNPs and confirm the functional groups of the biomolecules involved in reducing and
capping the as-synthesized PtNPs. The FTIR spectra of both the CE and the as-synthesized
PtNPs are shown in Figure 5, with common absorption bands presented in Table 1. The
major absorption bands in the PtNPs are 3283 cm−1, 2920 cm−1, 2850 cm−1, 1708 cm−1,
and 1620 cm−1. The peak at 3283 cm−1 correlates to the O-H stretching (intramolecular
bonding) of the hydroxyl group found in polyphenols; peaks at 2920 cm−1 and 2850 cm−1

are attributed to the asymmetric stretch of C-H group of alkanes. The peak at 1708 cm−1

is attributed to the C=O stretching found in typical flavonoids or flavones. The peak at
1620 cm−1 correlates to the carboxylate anion stretching (-COO-) of proteins and amino
acids. The shift observed in the wavenumber of -OH, C-H, C=O, and -COO- stretching
of PtNPs compared to the CE extract shows possible coordination between the PtNPs
and the CE extract [26]. Thus, it is believed that the proteins, flavonoids, amino acids,
polyphenols, and carbohydrates biomolecules present in CE served as both bio-reductant
and stabilizing agents.
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Table 1. Assignment of IR bands for CE extract and as-synthesized PtNPs.

S.N. CE Extract
Vibrational Mode (cm−1)

PtNPs CE
Vibrational Mode (cm−1) Assignment

1 3260 3283 OH- Stretching
2 2932 2920, 2850 C-H Stretching
4 1715 1708 C=O Stretching
5 1609 1620 COO- Stretching
6 1515 1505 N-O Stretching

7 1440
1328

1443
1338

C-N Stretching of
Aromatic Amine

8 1174 1170 S=O Stretching
9 1052 1057 C-O-C Stretching
10 837 835 C-H Bending
11 769 759 C-H Bending

2.5. Antibacterial Activity

The as-synthesized PtNPs were evaluated for antibacterial activities against diverse
pathogenic Gram-positive (+ve) and Gram-negative (−ve) bacteria. The as-synthesized Pt-
NPs exhibited inhibitory activity against the pathogenic bacteria at different concentrations,
as shown in Supplementary Material Table S1. Figure 6 shows a graphical presentation of
the MIC values of the PtNPs tested against the listed bacterial strains. Significantly, the as-
synthesized PtNPs showed selectivity toward Gram-negative Klebsiella species of Klebsiella
aerogenes and Klebsiella oxytoca at a very low MIC value of 1.56 µg/mL. Staphylococcus epi-
dermidis and Proteus mirabilis showed susceptibility to the CE capped PtNPs but at a higher
MIC value of 3.125 µg/mL. Enterococcus faecalis, Bacillus subtilis, and Klebsiella pneumoniae
were susceptible at a much higher concentration, ranging from 500 to 2000 µg/mL. The
PtNPs showed no inhibitory effect against Escherichia coli, Staphylococcus aureus, Proteus
vulgaris, and Mycobacterium smegmatis. A preliminary study evaluating the antibacterial
effect of the CE extract showed no effective inhibitory properties compared to the PtNPs
(Supplementary Material Table S1). The observed low MIC value observed for the Klebsiella
species of Ka and Ko could be due to oxidative stress as a result of reactive oxygen species
(ROS) that are produced via a redox process. This eventually causes membrane and DNA
damage that culminates in cell death. Cell death via ROS is often more potent [27]. A
higher MIC value observed in Klebsiella pneumoniae can be attributed to the fact that it is one
of the most virulent and resistant species of the Klebsiella genus. Such virulence factors are
the production of hyper capsules, siderophores such as salmochelin and aerobactin, genetic
codes for allantoin metabolism, and fimbriae [28,29]. All these are believed to contribute to
the pathogenicity of K. pneumoniae, which possibly makes it less susceptible or resistant
to ROS [29], and thus, a higher MIC value was obtained compared to the other Klebsiella
species. Another plausible reason for the higher MIC values could be metal ion release.
The metal ion interacts with the amine and carboxylic groups of proteins and nucleic acids
to cause cell death. This is a less potent and slower mechanism, and thus, a larger amount
of MNPs are required for cell death [27,30,31].
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3. Materials and Methods
3.1. Materials

Analytical grade hexachloroplatinic (IV) acid hydrate (H2PtCl6·xH2O) and Mueller–
Hinton agar and broth were procured from Sigma-Aldrich, South Africa. One mg/mL
streptomycin was purchased from Sigma Aldrich, St. Gallen, Switzerland (BCBP5897V).
All aqueous solutions were prepared using deionized water.

3.2. Preparation of the Plant Extract

Healthy CE leaves were obtained from the Water Sisulu National Botanical Garden at
Roodepoort, Johannesburg. The leaves were cleaned and afterwards dried under ambient
conditions. Five grams of the dried leaves were mixed with 100 mL of deionized water and
heated at 90 ◦C for 1 h. The mixture was filtered using a Whatman filter paper, and the
filtrate was used for the synthesis.

3.3. Green synthesis of PtNPs

First, 10 mL of the extract from the CE leaf was added to 50 mL of 1 mM H2PtCl6·xH2O
at 85 ◦C under reflux at a stirring rate of 750 rpm for 24 h.

3.4. Characterization

A Perkin Elmer Lambda 25 UV-Vis spectrophotometer was used for the absorption
measurement. The absorption spectra were recorded in the range of 200–700 nm. The
shape and size of the as-synthesized PtNPs were determined by transmission electron
microscopy (TEM) using JEOL JEM-2100 at an acceleration voltage of 200 kV. The zeta
potential analysis of the PtNPs was studied at 25 ◦C using Malvern Panalytical Zetasizer
Nano ZS based on the Smoluchowski model. The surface chemistry of the sample was
investigated using Perkin Elmer Spectrum Two FTIR spectroscopy over the range of
4000–400 cm−1. X-ray diffraction (XRD) studies were conducted with monochromatic Cu-
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Kα1 radiation (λ = 1.54 Å) at the diffraction angle range of 10◦ and 90◦ using a Bruker D8
Advance X-ray diffractometer.

3.5. Antibacterial Activity of PtNPs

The microdilution technique was used in the evaluation of the MIC. Fresh bac-
terial growths of the listed pathogenic bacteria strains (Staphylococcus epidermidis (Se)
(ATCC14990), Proteus mirabilis (Pm), (ATCC 7002), Escherichia coli (Ec) (ATCC 25922), Ente-
rococcus faecalis (Ef) (ATCC 13047), Bacillus subtilis (Bs) (ATCC 19659), Staphylococcus aureus
(Sa) (ATCC 25923), Klebsiella pneumoniae (Kp) (ATCC 13822), Klebsiella oxytoca (Ko) (ATCC
8724), Mycobacterium smegmatis (Ms) (MC 2155), Bacillus cereus (Bc) (ATCC 10876), and
Klebsiella aerogenes (Ka) (ATCC 27853)] were standardized to the 0.5 McFarland standards in
Muller–Hilton broth, which was then used as inoculum. In 96-well plate containing 100 µL
of 2000, 1000, 500, 250, 125, 62.5, 50, 25, 12.5, 6.25, 3.125 and 1.56 µg/mL of PtNPs; 100 µL
of each inoculum were seeded in triplicate. The plates were grown overnight at 37 ◦C.
Muller–Hilton broth (50% v/v in DMSO) was used as a negative control. Streptomycin
(1 mg/mL) served as the positive control. Viable cells were confirmed in the presence of
resazurin dye after 2 h incubation as they enzymatically reduced resazurin dye (blue color)
to the resorufin that fluoresces pink. A pink color indicates bacterial growth. The smallest
concentration that inhibited bacterial growth was recorded as the MIC, and the values were
recorded for each bacteria strain.

4. Conclusions

A simple, cost-effective, green, and eco-friendly method was used to synthesize water-
soluble CE stabilized PtNPs. The leaf extract of Combretum erythrophyllum served as the
bio-reductant and stabilizing agent. An optical characterization by UV-Vis was used to
confirm the formation of the PtNPs. XRD studies revealed the formation of PtNPs with
a cubic crystal structure, while the FTIR study confirmed the role of the biomolecules of
CE extract as a capping agent in the biosynthesis of the PtNPs. The CE capped PtNPs are
spherical in shape with an average particle diameter of 1.04 ± 0.26 nm. The biosynthesized
PtNPs showed selective inhibition toward Gram-negative Klebsiella species implicated in
nosocomial infections. This study could serve as a starting point in exploring CE-capped
PtNPs in nanomedicine for the treatment of nosocomial infectious diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics10111275/s1, Table S1: Antibacterial study of PtNPs, CE extract and streptomycin
via minimum inhibitory concentration method.
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