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Simple Summary: The creation of stable fluorescent glioma cell lines opens prospects for the detailed
characterization of the molecular mechanisms of glioma origin and pathogenesis, and the develop-
ment of breakthrough therapeutic approaches to achieve maximum glioma destruction and minimize
the risk of future metastases. Herein, we generated and characterized a novel fluorescent glioma
GL261-kat cell line stably expressing a far-red fluorescent protein, TurboFP635 (Katushka). Using
the orthotopic mouse glioma model and epi-fluorescence imaging, we demonstrate the detection of
fluorescent glioma GL261-kat cells in mice, and observe an increase in the fluorescence signal during
glioma progression, which is accompanied by a gradual development of neurological deficit and
behavioral alterations in mice. We show that GL261-kat cells can be a useful tool for studying glioma
biology, because they can accurately and non-invasively monitor the characteristics of glioma growth
in brain tissue in orthotopic mouse models.

Abstract: Glioma is the most common brain tumor, for which no significant improvement in life
expectancy and quality of life is yet possible. The creation of stable fluorescent glioma cell lines
is a promising tool for in-depth studies of the molecular mechanisms of glioma initialization and
pathogenesis, as well as for the development of new anti-cancer strategies. Herein, a new fluorescent
glioma GL261-kat cell line stably expressing a far-red fluorescent protein (TurboFP635; Katushka)
was generated and characterized, and then validated in a mouse orthotopic glioma model. By using
epi-fluorescence imaging, we detect the fluorescent glioma GL261-kat cells in mice starting from day
14 after the inoculation of glioma cells, and the fluorescence signal intensity increases as the glioma
progresses. Tumor growth is confirmed by magnetic resonance imaging and histology. A gradual
development of neurological deficit and behavioral alterations in mice is observed during glioma
progression. In conclusion, our results demonstrate the significance and feasibility of using the novel
glioma GL261-kat cell line as a model of glioma biology, which can be used to study the initialization
of glioma and monitor its growth by lifetime non-invasive tracking of glioma cells, with the prospect
of monitoring the response to anti-cancer therapy.
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1. Introduction

Despite significant progress in neurosurgery, and the ongoing improvements of com-
bined therapeutic approaches to glioma treatment, the survival rate remains very low
and prognosis poor. In 2021, the World Health Organization (WHO) presented an up-
dated Classification of Tumors of the Central Nervous System, which categorized five
glioma subtypes according to their morphological, molecular, and genetic profiles [1,2].
Gliomas constitute about 77% of all neuroepithelial tumors, and are characterized by
high histological heterogeneity, rapid invasive growth, high proliferation rate, and inten-
sive angiogenesis [3,4]. The five year survival rate for patients with glioma ranges from
66% among young patients (from infancy to 19 years) to 5% in the elderly (≥75 years).
For glioblastoma multiforme (WHO grade IV), the survival rates are 13% (20–44 years)
and 1% (55–64 years), respectively [5–8]. To lengthen the life expectancy and enhance the
quality of life of patients with gliomas, there is an urgent need to characterize glioma
development in detail, and to develop breakthrough therapeutic approaches to achieve
maximum glioma destruction and minimize the risk of future metastases.

Murine glioma models are important for studying glioma’s origin and pathogenesis [9–11],
because they offer the possibility of exploring in detail different aspects of glioma biology,
including morphological, genetic, biochemical, and functional alterations of the brain tissue
during tumorigenesis, as well as the identification of specific diagnostic and prognostic
glioma biomarkers, development of effective new anti-cancer strategies, and development
of next-generation drugs.

The creation of stable tumor cell lines labeled with genetically encoded fluorescent
proteins is a promising tool in experimental oncology. Fluorescent tumor models have
several advantages compared to non-fluorescent tumor models. For instance, fluorescently
labeled tumor cell lines can be used for tracking the precise molecular mechanisms of tumor
growth, determining tumor cell death rate, and monitoring the activation of signaling
pathways in response to anti-cancer therapy [12–16]. Moreover, the fluorescent proteins
can function as additional tumor antigens that help in the study of anti-tumor immune
responses [17,18], or can be used for in vivo fluorescent imaging to monitor tumor growth
patterns, metastatic processes, and tumor regression. In addition, fluorescent tumor models
enable the assessment of the peculiarities of tumor invasion, and reveal the intensity of
blood supply to the tumor [19–24]. Therefore, the use of in vivo tumor models based on
fluorescently labeled cell lines is especially relevant to the study of tumors that are highly
invasive and have no clear neoplasm boundaries, such as gliomas: they make it possible to
track single tumor cells remaining after surgery and anti-cancer therapy.

Among the various fluorescent proteins with different spectral characteristics, particu-
lar preference is given to the creation of fluorescently labeled cell lines to red and far-red
proteins (625–900 nm) [25]. These fluorescent proteins have greater light penetration, enter-
ing the therapeutic window of biological tissue transparency, and can be visualized at a
depth of up to one centimeter [14,26–28]. The pronounced fluorescence emission maxima
in the visible and infrared spectral region minimize the influence of tissue autofluorescence
and scattered excitation radiation on the registration of the fluorescence signal of interest.

Herein, we present a novel fluorescent glioma GL261-kat cell line stably expressing a
far-red fluorescent protein, TurboFP635, also known as Katushka, which has an emission
maximum at 635 nm. We describe a step-by-step procedure for obtaining and characterizing
monoclonal GL261-kat glioma cells and their validation in a mouse orthotopic glioma
model. In this model, we demonstrate the accurate monitoring of glioma growth in the
brain using epi-fluorescence imaging, and assess the impact of the developing tumors on
the severity of neurological deficit, as well as on the cognitive and learning abilities of mice.
A complex analysis of the morphological changes of brain tissue is also presented.
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2. Material and Methods
2.1. Cell Culture and Transfection

The murine glioma cells, GL261, were used as a parental cell line. Murine glioma
GL261 cells were kindly provided by Prof. Dr. P. Agostinis, Laboratory of Cell Death
Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven
(Leuven, Belgium). The cells were cultured in DMEM medium containing 4.5 g/L glucose
(PanEco, Moscow, Russia) and supplemented with 2 mM glutamine (PanEco, Russia),
100 µM sodium pyruvate (Thermo Fisher, Waltham, MA, USA), and 10% fetal bovine
serum (Thermo Fisher, USA). They were cultured at 37 ◦C in a humidified atmosphere
containing 5% CO2 in a Binder C150 incubator (BINDER GmbH, Tuttlingen, Germany). At
the end of the exponential growth period, the cells were removed with a trypsin–versene
solution (1:3) (PanEco, Russia) and reseeded at a multiplicity of seeding of 1:10, and an
approximate cell density of 1.0 × 105 cells/mL.

The parental cell line GL261 was transfected with the plasmid vector pTurboFP635-N
(Evrogen, Moscow, Russia), in which the gene for TurboFP635 fluorescent protein is under
the control of the cytomegalovirus promoter, which enables protein expression in mam-
malian cells. Lipofection was carried out using Lipofectamin 3000 reagent (Invitrogen,
Waltham, MA, USA), followed by primary selection of cells in medium supplemented
with increasing concentrations up to 2 mg/mL of an aminoglycoside antibiotic, G418 (In-
vitrogen, USA). The transfected cells were then sorted using a FACS Aria III cell sorter
(BD Biosciences, Franklin Lakes, NJ, USA). Cells with the strongest TurboFP635 protein
fluorescence (λex 561 nm and λem 600–630 nm) were sorted, expanded in cell culture,
and sorted again to obtain the brightest fluorescent cell subset. Three sort/expand cycles
were used. At the last stage, we applied a ‘single cell sorting’ mode, which allows for
the collection of one cell per well in a 96-well culture plate. Following cultivation, the
individual monoclonal colonies were obtained. The clone that maintained the morphology
and growth rate of the parental line and had the strongest TurboFP635 fluorescence was
selected and established as the monoclonal GL261-kat cell line. Fluorescence detection of
TurboFP635 in transfectant glioma GL261 cells was performed using an Axio Observer
Z1 LSM-710 DUO NLO laser scanning microscope (Carl Zeiss, Jena, Germany) with an
LD C-Apochromat water immersion objective lens with 40× magnification and numerical
aperture of 1.1. For image acquisition, the fluorescence was excited at 594 nm and the signal
was recorded in the 603–720 spectral range.

2.2. Mice and Ethics Statement

In vivo studies were performed on female BALB/c mice (5–7 weeks old). The use of
allogenic mice contributed to a decrease in the intensity of tumor growth in the orthotopic
glioma model [29,30] and, thus, provided the opportunity for long-term monitoring of
the intensity of the fluorescent signal of inoculated glioma cells in the brains of mice.
The animals were housed in a conventional vivarium of Lobachevsky State University of
Nizhny Novgorod. All experimental procedures were approved by the Bioethics Committee
of Lobachevsky University (ethic code No57 from 15 November 2021), and carried out
in accordance with Act 708n (23 082010) of the Russian Federation National Ministry of
Public Health, which states the rules of laboratory practice for the care and use of laboratory
animals, and Council Directive 2010/63 EU of the European Parliament (22 September 2010)
on the protection of animals used for scientific purposes.

2.3. Surgical Procedures and Orthotopic Transplantation of Glioma GL261-Kat Cells In Vivo

The mice were anesthetized by inhalation of Isoflurane (Laboratorios Karizoo,
Barcelona, Spain) at a concentration of 1.5–2.0% in a gas-air mixture. In the absence of
proprioceptive reflexes, the top of the animal’s head was cleared of fur and fixed in a stereo-
tactic frame (World Precision Instruments, Sarasota, FL, USA). After soft tissue incision,
a trepanation window in the right hemisphere was formed using a fine drill according to
the stereotactic coordinates (2 mm lateral and 2 mm posterior to the bregma). The mice
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were injected with 2.5 × 104 (GL25 group) or 5 × 104 (GL50 group) glioma GL261-kat cells
suspended in 2 µL of phosphate-buffered saline (PBS, Invitrogen, Waltham, MA, USA).
Injection was carried out intracranially, 2.5 ± 0.5 mm below the dura mater. The control
mice were injected with 2 µL of PBS. For intravital studies of the dynamics of fluorescent
signal propagation of glioma GL261-Kat cells, the trepanation window was closed with a
sterile cover glass fixed to the skull with a dental composite (DentLight-flow, Vladmiva,
Belgorod, Russia). The material was polymerized with a LUX V lamp (Woodpecker/DTE,
Guangxi, China). The adjacent tissues were tightly sutured with surgical thread (0.2 mm)
and treated with an antiseptic solution. After the procedure, the animals were allowed to
recover from anesthesia before being returned to their cages with postoperative care and
ad libitum access to food and water.

2.4. Epi-Fluorescence Imaging In Vivo

The features of tumor progression after inoculation of glioma GL261-kat cells were
analyzed by epi-fluorescence imaging. Before the procedure, the mice underwent gen-
eral anesthesia (intraperitoneal injection of 70 mg/kg Zoletil®100 (Virbac Sante Animale,
Carros, France) followed by intramuscular injection of 0.01 mg/kg Xilanit (Nita-Farm,
Saratov, Russia), and fixed on a black platform. They were covered with black fabric to min-
imize the effects of scattered light and autofluorescence on the signal of interest (Figure 1).
A glass skull cover with a square hole for imaging the region of interest was placed on the
head of the mice.
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Figure 1. Representation of the animal position during the epi-fluorescence imaging.

A whole-body imaging system (Deep Vision System, DVS-03, Federal Scientific Re-
search Centre “Crystallography and Photonics” of the RAS, Moscow, Russia) was used with
TurboFP635 excitation at 590 nm and detection of fluorescence in the region of 625–675 nm.

2.5. Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) was performed by using a high-field magnetic
resonance tomograph (Agilent Technologies DD2–400 9.4 T; 400 MHz; Cheadle, UK) with
a volume coil M2M (H1). The anesthetized mice were kept in a fixed position inside
the magnet tunnel for 40 min. The MR images were obtained and analyzed using VnmrJ
program. T1- and T2-tomograms of layer-by-layer frontal brain sections weighted by proton
density were performed using the multi gradient echo multi slice (MGEMS) pulse sequence
with the following parameters: TR = 1000 ms, TE = 1.49 ms, 6 echoes, FOV 20 × 20 mm,
matrix 256 × 256, slice thickness 1 mm, 15 slices, 17 min and 4 s scanning time.



Cancers 2022, 14, 3822 5 of 15

2.6. Neurological Status Determination

The functional state of the CNS was assessed by a severity scale of neurological
deficit with modifications for mice [31–33]. The scale includes 10 tests of motor activity,
coordination of movements, reflexes, muscle tone, and ptosis and exophthalmos; each of
these is scored 2 points for no reaction, 1 for some disturbances, and 0 for good/normal
reaction. The values were summarized and interpreted according to the following grade:
10–20 points: severe CNS damage; 6–9 points: moderate CNS damage; and 1–5 points: light
CNS damage.

2.7. Open Field Test

The general locomotor and orienting-exploratory activity of the mice were tested in
the open field box (LE800S; Panlab Harvard Apparatus, Barcelona, Spain). The behavioral
reactions were recorded for 5 min using a Sony SSC-G118 camera (Tokyo, Japan). The
following parameters were assessed: general motor activity (number of the squares crossed
in the center and periphery of the arena), vertical motor activity (number of upright
postures), and emotional state (number of grooming acts, defecation and urination, time
spent in the center of the arena).

2.8. Passive Avoidance Test

The learning ability of the mice was assessed using a chamber (60 cm × 20 cm × 25 cm)
with an electrified lattice floor divided into darkened and lighted sections (Shuttle Box
LE918; Panlab Harvard Apparatus, Spain). The animal was placed in the lighted section and
the time until it moved to the dark section was measured. An electric stimulus (0.08 mA)
was applied 5 s after the mouse entered the dark section. The test was repeated 24 h after
the training session. The first training test lasted 180 s and the repeated test 300 s.

2.9. Histological Analysis

Morphological assessment of mouse brain tissue was carried out according to a pub-
lished protocol [31]. In brief, the surgically isolated brains were fixed in 10% formalin solu-
tion and then incubated in sucrose solutions of increasing concentration (15% and 30%) for
a total of 48–72 h. The samples were gradually filled with cryogel (Leica, Wetzlar, Germany)
and cut into 10 µm coronal sections using a Leica CM1520 freezing sliding cryostat (Le-
ica, Germany). The sections were stained with hematoxylin–eosin (PanReac AppliChem,
Germany), and examined with a Zeiss Primo Star light microscope (Zeiss, Germany) with
an integrated Axio CamMRc camera (Zeiss, Germany).

2.10. Statistical Analysis

Statistical analysis was performed using GraphPad Prism v.9.3.1.471 (San Diego, CA,
USA). The results are presented as the mean ± standard error of the mean (SEM). The
Shapiro–Wilk test was used for normal distribution analysis. Differences between two
independent groups were assessed by the Mann–Whitney test. Epi-fluorescence imaging
data were analyzed using two-way ANOVA. Differences between groups were considered
significant if the corresponding p-value was less than 0.05.

3. Results
3.1. Creation of the Stable Fluorescent Murine Glioma GL261-Kat Cell Line

We created a novel, stable, monoclonal cell line of murine glioma expressing the
far-red fluorescent protein, TurboFP635. The parental murine glioma, GL261, is a well-
characterized cell line commonly used in experimental murine glioma models [34]. Tur-
boFP635 has broad emission in the far-red spectral range, with a maximum at 635 nm
and right shoulder up to 750 nm, which makes it suitable for deep whole-body imaging.
Importantly, TurboFP635 fluorescence is several times brighter (due to high extinction and
fluorescence quantum yield) than other proteins with similar spectral properties, including
HcRed and mPlum, and it is highly photostable and stable against pH changes [35].
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The GL261 cells were transfected by lipofection and primary selection was performed
on an antibiotic-containing medium, with multiple rounds of optical sorting. Long-term
repeated passaging allowed for the selection of individual cells with stable expression,
presumably as a result of chromosomal integration of the fluorescent protein gene. As a
result, we obtained monoclonal GL261-kat cells with red fluorescence of about three orders
of magnitude higher than the autofluorescence of parental GL261 cells when analyzed by
flow cytometry (Figure 2A). In GL261-kat cells, the fluorescent protein is homogenously
distributed in the cytoplasm and nuclei (Figure 2B). The latter phenomenon proves the abil-
ity of Turbo635 to passively localize in the nuclei without the need for nuclear localization
sequence and translocation-assisting proteins. Of note, such nuclear penetration is widely
reported for small proteins with a molecular weight below 60 kDa, including those of
GFP-family [13,36]. Of note, GL261-kat exhibits a morphology and growth patterns similar
to the parental GL261 cell line. Therefore, a serious impact of the transfection procedure
on cell metabolism is excluded. The stability of TurboFP635 expression is proven through
more than 30 passages and also after cryopreservation. This stability enabled us to use the
novel GL261-kat cell line in an orthotopic mouse glioma model.
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Figure 2. Establishment and characterization of GL261-kat cell line with TurboFP635 expression.
(A) GL261-kat cells have red fluorescence about three orders of magnitude higher than the aut-
ofluorescence of the parental GL261. Shown are cell distributions of parental cell line (grey) and
monoclonal GL261-kat (red), according to fluorescence intensity: λex 651 nm; λem 610–630 nm. (B) The
fluorescent protein is homogenously distributed in cell cytoplasm and nuclei. The confocal images
of GL261-kat cells were obtained using an Axio Observer Z1 LSM-710 DUO NLO laser scanning
microscope (Carl Zeiss, Germany). Shown are transmitted light image, fluorescent image (λex 594 nm;
λem 603–720 nm), and image with merged channels. Scale bars, 20 µm.

3.2. Morphological Alterations of Brain Tissue in Orthotopic Mouse Glioma Model

Next, we assessed the features of glioma progression in the orthotopic mouse tumor
model by using the glioma GL261-kat cells. To examine the ability of the new cell line to
maintain fluorescence for a long time, we used allogenic BALB/c mice in order to decrease
the intensity of tumor progression [29,30]. We intracranially injected the mouse brains with
2.5 × 104 GL261-kat cells (GL25 group) or with 5 × 104 cells (GL50 group). The control
mice were intracranially injected with the appropriate volume of PBS.

The intensity of tumor growth was assessed over a five week period by analyzing
the morphological changes in the brain tissue using lifetime in vivo imaging, as well as by
histological analysis. We also quantified neurological deficit, general locomotor activity,
and orienting-exploratory activity of the mice in the “Open Field” setup, and cognitive and
learning abilities in the passive avoidance test.

Using in vivo epi-fluorescence imaging, we are able to confidently detect the fluores-
cence of glioma growing in mice in both the GL25 and GL50 groups (Figure 3).
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Figure 3. Epi-fluorescence imaging assessment of mouse brains after inoculation of glioma
GL261-kat cells. (A) The glioma cells, 2.5 × 104 cells (GL25 group) or 5 × 104 cells (GL50 group)
resuspended in PBS (2 µL), were injected 2.5 ± 0.5 mm below the dura mater. The control mice were
injected intracranially with the appropriate volume of PBS. TurboFP635 was detected (λex 590 nm;
λem 625–675 nm) by using a whole-body imaging system (Deep Vision System, DVS-03, Russia). Scale
bars, 5 mm. (B) The fluorescence intensity of glioma GL261-kat cells in mice enables us to confidently
detect these cells starting on day 14 after inoculation, and the fluorescence signal intensity increases
with tumor progression. The integral fluorescent signal in the GL50 group mice have a tendency to
increase relative to the GL25 group on day 35 after inoculation. * p < 0.05 versus control, two-way
ANOVA with Dunnett multiple comparisons test, n = 4.

On day 14 after inoculation of glioma GL261-kat cells, the glioma cells spread across
the surface of the cerebral cortex in the sagittal plane (Figure 3). At that time, an increase
in fluorescence is detected in 60% of the mice. Later, the fluorescence signal continues
to increase with the glioma progression. On day 21 after inoculation, the formation of
fluorescent glioma without clear boundaries is observed in the brain of all the experimental
mice. The integral fluorescent signal in the GL50 group is noticeably higher than in the
GL25 group, which is consistent with the amount of initially inoculated glioma cells.

In parallel, the dynamics of morphological changes in mouse brain tissue after inoc-
ulation of glioma GL261-kat cells were assessed using MRI (Figure 4A). MR tomograms
obtained on day 14 after surgery reveal tinted areas in the right parietal lobe of the brains
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in both the GL25 and GL50 groups, indicating the presence of a heterogeneous structure
(Figure 4A). On day 30 after inoculation, glioma without clear boundaries with healthy
brain tissue is seen in 20% of mice in the GL25 group. The volume of the glioma site
increases prominently (day 14: 11.3 ± 4.4 mm3, day 30: 38.5 ± 16.4 mm3). In comparison
with the 14th day of the post-injection period, no pronounced morphological alterations
of brain tissue are observed on day 30 after glioma cells inoculation in the GL50 group.
However, the volume of the glioma tends to increase (day 14: 8.5 ± 0.8 mm3, day 30:
13.0 ± 4.3 mm3).
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Figure 4. Dynamics of morphological changes of mouse brain tissue after inoculation of glioma
GL261-kat cells. (A) Representative magnetic resonance images (MRI) of mouse brains on days
14 and 30 post-injection. The multi gradient echo multi slices (MRI MGEMS) were obtained by a
high-field magnetic resonance tomograph, Agilent Technologies DD2-400 9.4 T (400 MHz) and the
following parameters were assessed: TR = 1000 ms, TE = 1.49 ms, 6 echoes, FOV 20 mm × 20 mm, ma-
trix 256 × 256, slice thickness 1 mm, 15 slices, 17 min and 4 sec scanning time. The red squares indicate
the area of injection of glioma cells and tumor growth. MR tomograms reveal the presence of a het-
erogeneous structure in the right parietal lobe of mouse brains in both the GL25 (2.5 × 104 cells) and
GL50 (5 × 104 cells) groups on day 14 after inoculation of glioma cells, and the volume of the glioma
site tends to increase by day 30 in the post-injection period. (B) Histological samples of brain cortex
of mice were obtained on day 40 after inoculation of glioma GL261-kat cells. Hematoxylin–eosin
staining, magnification ×20. The brain tissue of the control group has a typical morphology without
significant changes in the vascular system structure. In the GL25 group, approximately at the site
of glioma cells injection, tumor cells with vague, small nuclei and atypical neuronal cells with an
elongated nucleus and small necrotic sites (white arrows) are observed. Red arrows indicate the
local points of infiltrative tumor growth. In the GL50 group, a dense accumulation of tumor cells
of various shapes and sizes is observed at the edge of histological preparations. Tissue edema and
active necrotic process can also be seen (white arrows). Scale bars, 20 µm.
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Histological analysis of the brain cortex was performed on day 40 after inoculation of
glioma GL261-kat cells (Figure 4B). No significant morphological changes of brain tissue
are observed in the control group (Figure 4B). Neurons with numerous processes are evenly
arranged without clustering, and are predominantly oval or circular shape with centrally
located nuclei occupying 60% to 90% of cell size; the cytoplasm is uniform, and the structure
of the vascular system has a typical morphology. Analysis of histological preparations
from the GL25 group reveals neuronal cells of various sizes with atypical, elongated nuclei
(Figure 4B). At the site of GL261-kat cells injection, approximately 20% of the tumor cells
have vague, small nuclei, and 15% of the neuronal cells had atypical, elongated nuclei.
In 10 fields of view of the histological sample, the presence of 1–2 small necrotic brain
tissue sites is also seen. In the GL50 group, a dense accumulation of numerous tumor
cells of various shapes and sizes is observed at the edge of the histological preparations
(Figure 4B). The nerve cells have indistinct borders and blurred nuclear outlines, indicating
tissue edema and an active necrotic process. The brain cortex of mice in the GL50 group
is also characterized by a large number of round and oval blood vessels with thin walls,
which form vascular clusters. Dense clusters of tumor cells are located close to the vessels.
The development of a vascular network in close interaction with atypical cells indicates an
active tumor process.

3.3. Assessment of Behavioral and Cognitive Reactions of Mice in the Orthotopic Glioma
GL261-Kat Model

The neurological status assessment reveals the gradual development of neurological
deficits in both experimental groups (Figure 5). On day 35 after inoculation of glioma
GL261-kat cells, the mean scores of neurological deficits in the GL25 and GL50 groups are
10.7 ± 0.3 and 9.8 ± 0.6, respectively, which correspond to severe central neural system
damage. However, no significant differences between the two experimental groups are
found throughout the observation period.
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Figure 5. Neurological status assessment of mice after inoculation of glioma GL261-kat cells. The
data demonstrate that inoculation of 2.5 × 104 glioma cells (GL25) or 5 × 104 cells (GL50) results
in gradual development of neurological deficits, reaching scores of 10.7 ± 0.3 (GL25) and 9.8 ± 0.6
(GL50), respectively, by day 35 post-injection, which correspond to severe central neural system
damage. No significant differences between the GL25 and GL50 groups are found throughout the
observation period. * p < 0.05 versus controls, Mann–Whitney test.

The development of neurological deficits is accompanied by changes in general loco-
motor and orienting-exploratory activity of the experimental mice (Table 1). Analysis of
behavioral reactions in the open field test of mice from the GL25 group reveals a significant
increase in the time spent in the arena center, which indicates a decrease in the level of fear
and anxiety. Pronounced changes in the orienting-exploratory activity in the GL25 group
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are also observed. The alterations are characterized by an absence of upright postures and
a significant decrease in the number of peeks into the arena’s holes, indicating impaired
mink reflex repeatability. The mice in the GL50 group also show less pronounced motor
and orientation-exploratory activity compared to the control group (Table 1). There is a
decrease in the number of peeks in holes and squares passed in the periphery of the arena
accompanied by a tendency to spend more time in the arena center.

Table 1. Parameters of behavioral reactions of mice in the open field test on day 32 after inoculation
of glioma GL261-kat cells. (A) Parameters of locomotor activity; (B) Emotional status characteristics.

(A)

Mouse Group
Number of Squares Passed

in the Arena Time in the Arena
Center, s

Number of
Upright Postures

Integral Fluorescence
Intensity of Glioma

GL261-Kat Cells in the Brain
Tissue, A.U.

(Day 35 after Inoculation)Periphery Center

Control 40.2 ± 12.2 13.4 ± 4.4 100.8 ± 33.7 1.2 ± 0.5 7480 ± 709
GL25 16.75 ± 11.6 21 ± 7.8 245.5 ± 32.5 * 0 12189 ± 2954
GL50 11 ± 6.2 * 14 ± 6.5 233.8 ± 49.4 0.2 ± 0.1 16127 ± 1770 #

(B)

Mouse Group Grooming Time, s Number of Peeks
in Holes Acts of Urination Acts of Defecation

Control 3.4 ± 1.5 20.6 ± 5.9 0.6 ± 0.3 1.8 ± 0.9
GL25 1.3 ± 1.4 8.5 ± 2.2 * 0.3 ± 0.1 1.3 ± 0.7
GL50 3.8 ± 1.1 2.6 ± 1.6 * 0.4 ± 0.3 3.2 ± 1.4

* p < 0.05 versus control, Mann–Whitney test. # p < 0.05 versus control, two-way ANOVA with Dunnett multiple
comparisons test.

In addition, the effect of inoculation of glioma GL261-kat cells on cognitive functions
and learning ability was analyzed using the passive avoidance test (Table 2). During the
training session, the mice enter the dark chamber section and tend to leave the brightly lit
space, following the mink reflex. However, in the GL50 group, the latent time of movement
to the dark section is significantly longer than in the control group. A similar tendency is
shown by the GL25 group. These observations are correlated with the open field data, and
indicate a decrease in motivation to avoid bright light and open space.

Table 2. The reproducibility of the conditioned passive avoidance reflex in mice in the remote period
after inoculation of glioma GL261-kat cells.

Experimental Group
Latent Period of Movement

to the Dark Chamber Section, s
Integral Fluorescence Intensity of Glioma
GL261-Kat Cells in the Brain Tissue, A.U.

(Day 35 after Inoculation)Training Session Retesting

Control 27.2 ± 7.5 279.8 ± 22.1 7480 ± 709
GL25 54.0 ± 17.7 203.9 ± 67.9 12,189 ± 2954
GL50 78.5 ± 13.8 * 220.7 ± 54.4 16,127 ± 1770 #

* p < 0.05 versus control, Mann–Whitney test. # p < 0.05 versus control, two-way ANOVA with Dunnett multiple
comparisons test.

The latent period of movement to the dark section in the retest significantly increases in
the control and experimental groups relative to the training session. Thus, after inoculation
of glioma GL261-kat cells, the mice preserve learning ability and memorial trace in response
to an electrical stimulus. No significant differences relative to the control group are seen.
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4. Discussion

In this study, a novel fluorescence glioma GL261-kat cell line stably expressing a far-red
fluorescent protein TurboFP635 (Katushka) was generated and characterized. Using an
orthotopic mouse glioma model and epi-fluorescence imaging, we demonstrate confident
detection of the fluorescence of glioma GL261-kat cells in mice, and an increase in the
fluorescence signal during glioma progression accompanied by gradual development of
neurological deficits and behavioral alterations in mice.

The murine GL261 cell line is widely used in experimental mouse models to study
glioma biology. Ausman and colleagues were the first to report the generation of GL261 by
intracranial injection of the alkylating agent (i.e., 3-methylcholantrene) into C57BL/6 mice,
and their maintenance in syngeneic mice using a series of intracranial and subcutaneous
transplantations of tumor tissue [37]. The efforts of several research groups led to the
creation, from the GL261 tumor, of a stable cell line, which was subsequently characterized
in detail [34]. The glioma GL261 cell line has several advantages, such as a high aggressive-
ness accompanied by an easy adaptation to in vitro fast growth without contact inhibition.
Moreover, the p53 gene mutation associated with elevated p53 expression in glioma GL261
cells brings this line closer in biological characteristics to human gliomas. Unlike the rat
glioma C6 cell line, murine glioma GL261 cells do not spontaneously regress [34,38]. More-
over, GL261 cells are easy to transfect or virally transduce, which opens possibilities for the
development of novel genetically modified fluorescent cell lines for experimental imaging
of tumor growth in vitro and in vivo [39,40]. GL261 cells are moderately immunogenic
and suitable for orthotopic implantation in syngeneic and immunocompetent animals to
study tumor immunology [39,41]. For instance, glioma GL261 cells were used to study the
mechanisms of immunogenicity of cell death in response to various anti-cancer therapeutic
agents, including to chemotherapeutics and photodynamic therapy [42–45].

Glioma GL261 cells in the syngeneic orthotopic mouse model are characterized by
rapid tumor growth accompanied by the development of severe neurological deficits and
aberrations in behavioral reactions [46]. The tumor size and local tumor tissue exten-
sion can be monitored well by MRI from the second week after inoculation of glioma
cells [47]. The relatively novel approaches for intravital assessment of glioma progression
are based on optical-based techniques, combined with genetic labeling of glioma cells with
luciferase [40,41] or fluorescent proteins. Due to the high-light-absorption in the visible
spectral range, the green fluorescent proteins used in the initial studies were more appli-
cable for ex vivo analysis [48]. Later, the creation of far-red emitting proteins gave rise
to more relevant in vivo follow-ups of tumor progression and invasion [49,50]. While the
optical penetration depth for green light in the brain tissue of both humans and rodents
does not exceed 0.5 mm in blue/green spectral region, it increases up to 1.0–1.5 mm for
red light [51,52]. It means that 2–5% on initial light flow penetrates at depths of about
3–4 mm, which is of interest for small animal glioma models. Despite the attractiveness of
the approach, there are few available red-emitting GL261-derived cells lines, such as cell
lines expressing DsRed2 (λem 587 nm) [50] and mCherry (λem 610 nm) [53]. Moreover, it
should be noted that, in most cases, the available GL261-derivative cell lines have not been
tested for the whole-body imaging, and have been mostly used for ex vivo morphometric
studies [53]. The only found study with an attempt to quantitate the in vivo GL261 glioma
progression was performed using the Kusabira Orange (λem 561 nm), the protein with the
optical properties far from ideal for deep whole-body imaging [49]. To create the GL261-kat
cell line, we chose the fluorescent protein TurboFP635, which has an optimal combination
of far-red emission and high quantum yield, providing excellent brightness supported by
high photostability. Notably, the comparative experimental analysis of the TurboFP635
protein, also known as Katushka, demonstrated its beneficial properties compared to other
red fluorescent proteins such as mNeptune, mCardinal, and eqFP650 [54].

Importantly, because glioma cells are highly aggressive, the overall survival rate of
mice does usually not exceeded three weeks [46,47]. Allogeneic models are less common,
but are also used to study glioma biology [55–57]. In the current study, the use of an
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orthotopic glioma model in allogenic BALB/c mice made it possible to decrease tumor ag-
gressiveness, and thereby prolong mouse survival, which opens the possibility to evaluate
the ability of preserving the fluorescence of the glioma GL261-kat cells in the long-term
period. We show that glioma GL261-kat cells can be used to accurately assess the brain
tumor progression in vivo. The fluorescence of glioma GL261-kat cells in the mice is con-
fidently detected from day 14 after inoculation of glioma GL261-kat cells, with further
increases in the fluorescence signal during tumor progresses. The integral fluorescent signal
is consistent with the amount of inoculated glioma GL261-kat cells. Furthermore, active
tumor progression is confirmed by histological analysis. At the same time, the glioma
growth is accompanied by the gradual development of neurological deficits and behavioral
alterations in BALB/c mice. Thus, our data demonstrate the significance and feasibility
of using the novel, fluorescently labeled glioma GL261-kat cell line as a model to study
glioma biology in orthotopic mouse models and to analyze the initiation and invasion of
glioma, and the possibility of non-invasive lifetime tracking of glioma cells, which can be
especially useful when assessing the responses to anti-cancer therapy.

5. Conclusions

A new fluorescent glioma GL261-kat cell line stably expressing the far-red fluorescent
protein, TurboFP635 (Katushka), is generated and characterized. Using the orthotopic
mouse glioma model, we show that the GL261-Kat cell line can be employed as a useful
tool to study glioma biology, and to accurately and non-invasively monitor the impact of
tumor growth in the brain tissue in orthotopic mouse models.
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