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Creating reproducible 
pharmacogenomic analysis 
pipelines
Anthony Mammoliti1, Petr Smirnov1,2,5, Zhaleh Safikhani   1,2,5, Wail Ba-Alawi   1 & 
Benjamin Haibe-Kains   1,2,3,4,5

The field of pharmacogenomics presents great challenges for researchers that are willing to make 
their studies reproducible and shareable. This is attributed to the generation of large volumes of 
high-throughput multimodal data, and the lack of standardized workflows that are robust, scalable, 
and flexible to perform large-scale analyses. To address this issue, we developed pharmacogenomic 
workflows in the Common Workflow Language to process two breast cancer datasets in a reproducible 
and transparent manner. Our pipelines combine both pharmacological and molecular profiles into 
a portable data object that can be used for future analyses in cancer research. Our data objects and 
workflows are shared on Harvard Dataverse and Code Ocean where they have been assigned a unique 
Digital Object Identifier, providing a level of data provenance and a persistent location to access and 
share our data with the community.

Introduction
With the advances of high-throughput technologies in biomedicine, the volume of data has drastically increased 
in the last decade across scientific disciplines1. This influx of data has provided researchers with the ability to 
discover and utilize data of various types and structural characteristics that aid in carrying out leading-edge 
research. However, when heterogeneous and multimodal data types are produced in large quantities, the data 
become much more complex to process, making conventional computational processing methods inadequate 
and calling for new solutions2,3. These conventional methods encompass the use of scripting languages to process 
this data lacking (i) resource management capabilities (compute and memory); (ii) ability to aggregate data from 
multiple sources; (iii) support for modular processing; (iv) ability to handle unstructured data; and (v) ability to 
transform data to be used with other tools/algorithms4,5. Moreover, pipelines harnessing complicated methods for 
processing cancer pharmacogenomic data, which is data measuring the way a cancer’s genome affects its response 
to drug therapy (multiple gene-drug associations), may be difficult to reproduce6,7. These methods include the 
use of convoluted scripts that deploy multiple genomic tools and statistical methods/algorithms to compute drug 
response and identify molecular features7,8. Studying the effects of a drug on a single gene (single gene-drug 
association) or a few genes, is referred to as a pharmacogenetic analysis6. A challenge subsequently arises, as there 
becomes a plethora of pipelines for pharmacogenomic datasets that utilize different complex methods, which all 
aim to perform the same goal, but will yield different results9. These limitations hinder scalability and the use of 
pharmacogenomic data generated by drug screening facilities worldwide, to its full potential. There is therefore a 
need for the development of more sophisticated computational pipelines to address these issues10.

To address the issues of scalability, reproducibility and standardization with processing and analyzing phar-
macogenomic datasets, we created open-source processing pipelines using the Common Workflow Language 
(CWL), a popular data workflow language in the data science and bioinformatics community11. We leveraged 
PharmacoGx within our pipelines, an R/Bioconductor package that provides computational approaches to sim-
plify the processing and analysis of such large datasets12. We pushed our CWL pipelines to Code Ocean13, which 
process two large breast cancer pharmacogenomic datasets14–17 and create fully documented data objects shared 
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through a persistent, unique digital object identifier (DOI) on Harvard Dataverse18. Our study demonstrates how 
existing computational tools and platforms can be used to standardize the processing of pharmacogenomic data 
in a transparent and reproducible way, and how these processing pipelines and resulting datasets can be shared 
with the scientific community.

Pharmacogenomic Datasets
The first dataset is the Oregon Health and Science University (OHSU) breast cancer screen generated within Dr. 
Joe Gray’s laboratory (GRAY)14,17,19. The two most recent versions of the GRAY dataset were published in 2013 
and 2017, where the latest update collectively includes 91 cell lines and 107 drugs, with 9,756 drug sensitivity 
experiments for 72 cell lines screened against 107 drugs, after our curations14,17,19. The dataset includes processed 
SNP (n = 77), exon array (n = 56), U133A expression (n = 51), RNA-seq (n = 54), RPPA (n = 49), and methyla-
tion (n = 55) profiles with the use of various technologies and processing methods (Table 1)17,19. Multiple cell lines 
were added to the GRAY molecular profile data after the 2013 release, but before the update to the drug response 
data in the 2017 release, resulting in our curation of 91 cell lines for both versions of the dataset14,17,19.

The second dataset is the University Health Network (UHN) breast cancer screen (UHNBreast) with molecu-
lar and pharmacological profiles released in 201616 and 201715, respectively. The dataset includes processed SNP 
(n = 79), RNA-seq (n = 82), RPPA (n = 79), and miRNA (n = 82) (Table 1)16. We provide the most recent update 
to UHNBreast with four new drugs (trastuzumab, olaparib, BYL719, and UNC0642), for a total of 85 cell lines, 
8 drugs, and 689 drug sensitivity experiments, after our curations, where 56 cell lines were screened against 8 
drugs15,16.

The convergence of the 2017 update of GRAY and our 2019 update to UHNBreast yield an intersection of 72 
cell lines and 5 drugs after curation through our pipelines (Fig. 1).

Reproducible and Transparent Processing of Data
Due to the scale and complexity of data that are produced through high-throughput platforms, the data pro-
cessing and analysis pipelines should possess a robust and flexible infrastructure4,5. It is therefore important for 
pipelines to support interoperability, such as where different tools can be allocated to different data20. However, 
pipelines that are interoperable by consisting of multiple components/stages are difficult to reproduce21. To solve 
this issue, we developed our PharmacoGx pipelines in CWL, which allowed us to standardize the way we executed 
our multi stage processing and analysis of both breast cancer datasets in a reproducible and transparent manner 
(Fig. 2) (see Methods)11. Importantly, PharmacoGx implements the PharmacoSet (PSet) class, allowing us to cre-
ate shareable R objects integrating all aspects of pharmacogenomic datasets, from cell line and drug annotations 
to the molecular and pharmacological data12. Each CWL pipeline is allocated a specific subroutine that is required 
for PSet creation, which includes curating cell and drug annotations, computing drug response, and incorporat-
ing processed molecular profiles for a given dataset (Table 2)11,12. To accomplish this in a semi-automatic fashion, 
we incorporated each pipeline into a CWL workflow, where PharmacoGx computes each stage of a pipeline and 

GRAY 2013 GRAY 2017 UHN Breast 2017 UHN Breast 2019

Cell lines 91 91 83 85

Drugs 89 107 4 8

Experiments 9413 9756 52 689

Molecular data 
and processing

RNA-seq (ALEXA-Seq, TopHat, HTSeq) RNA-seq (STAR, Cufflinks)

CNV (aroma.affymetrix, CNTools, DNACopy) CNA (Illumina GenomeStudio, CNTools, DNACopy)

Methylation (Illumina GenomeStudio) miRNA (sva, ComBat)

RPPA (normalization methods from MD Anderson) RPPA (normalization methods from MD Anderson)

RNA (RMA, MicroArraySuite, aroma)

Table 1.  Summary of cell line and drug curations, sensitivity experiments, and molecular profile processing for 
GRAY and UHNBreast datasets.

Fig. 1  Convergence of drugs and cell lines between GRAY (2017) and UHN Breast (2019) after curation 
through our CWL pipelines.
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assembles their corresponding outputs into a PSet. This workflow not only transparently indicates the pipelines 
that are being executed, but also ensures that each pipeline is executed in the same manner if replicated, enforcing 
reproducibility11. In addition, the support of interoperability through CWL can be highlighted, as each pipeline 
stage that generates a corresponding output interacts with subsequent stages, which can be further enforced 
through specifying file-specific ontologies. These pipeline interactions validate the integrity of each given output 
object and PSet generated to ensure that it can be used for secondary analyses11,12. Interoperability through shared 
ontologies is also supported by PharmacoGx, as our pipelines curate and assign unique identifiers to each cell 
line and drug compound in each dataset, where the identifiers are used in subsequent pipeline stages to verify 
that the data is correctly compiled12. Therefore, the unique identifiers not only validate PSets that are generated, 
but also maximize consistency across existing PSets. However, because every dataset requires a different way of 
transforming and processing the data, due to variability in the way the data were initially shared and structured 
for each study, GRAY and UHNBreast possess their own CWL pipelines and workflow to accommodate for the 
differences14–17,19. Because CWL is a standardized language, each pipeline must include input and output defini-
tions, base commands, and requirements (e.g., resource, Docker)11. In addition, each CWL pipeline and workflow 
must be accompanied by a YAML (YAML Ain’t Markup Language) or JSON file, which consists of an object array 
that defines a class and path for each input in the respective pipelines. In order for our CWL pipelines to execute 
successfully, they must specify the following: hints (docker requirement to run PharmacoGx), inputs that declare 
a type and input binding position (Rscripts, annotation files, raw drug data, processed molecular data), outputs 
that declare a type and output binding (e.g, processed drug sensitivity R objects, PSets), and a base command (to 

Fig. 2  Breast cancer PharmacoSet (PSet) generation and DOI assignment through execution of a reproducible 
PharmacoGx CWL workflow.

CWL Pipeline Pipeline Description Input Output

Cell line Curation Curates cell lines Cell line annotation Curated cell lines

Tissue Curation Curates tissues Cell line annotation Curated tissues

Drug Curation Curates drugs Drug annotation Curated drugs

Cell line Info Collects cell line metadata Cell line metadata Cell line metadata

Drug Sensitivity Recomputes raw drug response data Raw drug response data Recomputed sensitivity

Drug Published Collects published drug response data Published drug response data Published sensitivity

Molecular Profiles Incorporates molecular data into 
ExpressionSets Molecular profiles ExpressionSets

getPSet Creates PSet All objects produced by each pipeline PSet

Table 2.  CWL workflow pipelines and their respective data streams to produce a PharmacoSet (PSet) for GRAY 
and UHNBreast datasets.
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run Rscript), in the specified CWL file11,12. Therefore, in order for our CWL workflows to be fully documentented 
and reproducible, each pipeline must be defined as an input and possess a successful runtime independently11. 
Having to explicitly specify these parameters required to run each pipeline, along with the inputs and outputs 
in CWL provides an added layer of transparency to the pipelines, as well as allowing users to have control over 
data provenance. One of the highlights of our CWL workflows is the computation of drug response data for both 
datasets, which include AAC (Area Above the drug-dose response Curve), IC50 (maximal drug concentration to 
achieve 50% cell growth inhibition), Hill-Slope (measurement of slope of a drug-dose response curve), Einf (max-
imum theoretical inhibition), and EC50 (drug concentration for which 50% of maximum response is observed) 
(see Methods). Computed AAC was later utilized in a post-PSet analysis to determine the concordance between 
a gene-drug association in both datasets through calculating the concordance index (CI) between respective 
RNA-seq and the AAC data (see Methods)14–17,19. For GRAY, we computed AAC, IC50, Hill slope values, and 
included published GI50, GR50, GEC50, GRmax, GRinf, hGR, and GRAOC, data14,17 (see Methods). For UHNBreast, 
recomputation of AAC, IC50, and Hill slope was also performed, along with Einf, and EC50

15.

Tracking Data Provenance and Validating Pipeline Integrity
Tracking data provenance with CWL can be further enhanced through the use of the provenance flag (–prov-
enance) when executing the PSet workflows11. Here, a Research Object is automatically generated, which is a 
directory that acts as a bundled container for all of the resources utilized and produced within our workflows, 
including metadata that annotates each resource11,22. Within this object is a “data” directory that contains each 
input file used in the workflow with a unique and fixed checksum11. We are given granular transparency across the 
entire workflow at every stage, as we are able to map each checksum to a respective input file and location in the 
“data” directory, including all of the Rscripts that were utilized within a pipeline, through a workflow metadata file 
that is generated. In addition to a checksum, each PSet is also assigned a Universally Unique Identifier (UUID), 
which provides an additional layer of provenance to accurately identify the PSet that was generated by the work-
flow11,12. Moreover, this is accompanied by a provenance metadata file, which provides users with the ability to use 
checksums and UUID’s to accurately identify when each file was called and generated along the entire execution 
of a workflow11. Therefore, a Research Object confirms the reproducibility of our CWL workflows and validates 
the PSet that was generated with a respective runtime by providing rich metadata that tracks data provenance at 
each stage of a workflow.

Harnessing Docker to Create a Reproducible Runtime
PharmacoGx integrates seamlessly with CWL, as we leverage CWL’s Docker capabilities to containerize the pack-
age and run all of our pipelines in an isolated environment11,12,21. Docker is a tool that allows for PharmacoGx to 
be uniformly deployed with all software dependencies, in a containerized runtime environment where all of our 
computations are performed and PSets are produced12,21. The Docker container is invoked upon CWL workflow 
execution, where all the input files for a given pipeline become mounted into the container and all output files 
produced in the isolated environment are recovered into a local environment11,23,24. Another advantage of Docker 
is the ability of containers to utilize and share the hardware resources of the environment it is being run in25. 
Therefore, PharmacoGx deployment is not only consistent, but also portable across both cloud and high perfor-
mance computing environments, as our Docker image is also publicly available through Docker Hub (https://hub.
docker.com/r/bhklab/pharmacogxcwl)24,25. The ability to standardize the manner in which PSets are produced 
through CWL and develop an additional layer of abstraction for pipeline execution through Docker, allowed us to 
create and deploy reproducible and transparent pharmacogenomic pipelines that can be shared with the research 
community and replicated.

Sharing of Data and Pipelines
In order for a study to be computationally reproducible, data and pipelines must be well documented, uniquely 
identified, and easily accessible in a persistent location to other researchers26. To accomplish this, we utilized 
the Harvard Dataverse to share our PSets for both breast cancer pharmacogenomic datasets, along with Code 
Ocean to share our CWL pharmacogenomic pipelines13,18. Harvard Dataverse is an online data repository for 
transparently preserving and sharing research data with other researchers18. By creating a container known as 
a “dataverse” within the platform, researchers are able to deposit their datasets and corresponding metadata, in 
an organized fashion and make them easily discoverable for others to download and share. Each dataset can be 
also assigned a unique DOI, which allows a dataset to possess a persistent location, as well as allow researchers to 
accurately identify and share a specific dataset of interest. In addition, subsequent updates (versions) to a dataset 
can be uploaded, with accompanying metadata that explains the update and its changes, providing a layer of data 
provenance to the research community.

We also transferred our reproducibility measures to the pipeline level, as we deposited and shared our CWL 
workflows through Code Ocean, a reproducibility platform that allows for researchers to upload, share, and run 
published and configured code13. Data is uploaded into a “capsule”, which provides a computational environment 
for others to run code in the capsule, without the need to manually execute it locally with the addition of installing 
any dependencies13,27. Moreover, code can also be assigned a persistent DOI, providing the ability to accurately 
share and retrieve pipelines, as well as verify the reproducibility of published results directly through the compute 
capsule. Because Code Ocean does not currently support running multi-container pipelines, and therefore our 
CWL workflows, we used the platform to host our workflows and raw data, provide execution instructions, and 
run a post-PSet analysis for biomarker discovery.

Our PSets can be found on Harvard Dataverse at the following https://doi.org/10.7910/DVN/BXIY5W 28. Our 
CWL workflows can be found on Code Ocean at the following https://doi.org/10.24433/CO.7378111.v3 29.
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Utilization of PSets for Biomarker Discovery
In order to demonstrate the utilization of our PSets for cancer research, we identified ERBB2 expression as a 
biomarker for lapatinib in both the GRAY 2017 and UHNBreast 2019 datasets (Fig. 3) (see Methods). To investi-
gate this pharmacogenetic association6, we utilized processed RNA-seq expression and computed drug response 
(AAC) from each PSet14–17,19. We subsequently identified 39 cell lines from the GRAY PSet and 50 cell lines from 
the UHNBreast PSet that include both gene expression data for ERBB2 and drug response data for lapatinib 
and computed the strength of significance of this gene-drug association using the concordance index (CI). CI 
estimates the probability that random pairs of samples will be similarly ranked by two variables, in order to iden-
tify the agreement (concordance) between the two variables30–32. We found that ERBB2 expression was strongly 
predictive in both the GRAY and UHNBreast datasets (CI = 0.73, p-value = 4.8E-15 in GRAY and CI = 0.63, 
p-value = 0.015 in UHNBreast). This argues against the null hypothesis that ERBB2 expression is independent of 
lapatinib response. This analysis can be reproduced through our Code Ocean capsule29.

Discussion
The utilization of CWL allows us to create and execute transparent and reproducible pharmacogenomic pipelines 
that can be validated and easily shared with the scientific community11. The standardized architecture of the 
language allows users to create language-agnostic pipelines and workflows that enforce strict parameter specifi-
cations to ensure execution is consistent. In addition, users are able to incorporate Docker into their runtimes, 
where data ingestion, analysis, and exportation all occur in an isolated container environment that promote 
repeatable execution11,23,24. Users are also able to track data provenance across the entire execution time by cre-
ating Research Objects in CWL, which validates each portion of data flow from input to output, through check-
sums and UUID’s11,22. Lastly, CWL pipelines and workflows are scalable and portable across many computing 
environments, such as the cloud, which gives users the ability to easily share their analyses and harness a plethora 
of various hardware resources to successfully execute their workloads that would not be possible with using on 
premise resources11,24,25. A common practice in pharmacogenomics is sharing study data as supplementary files 
through a journal, or through online sharing platforms/repositories such as Synapse and GitHub, which was the 
case for both the GRAY and UHNBreast datasets14–17,19. However, the challenge becomes assembling these data 
into a form that can be successfully analyzed and interpreted when shared. We were able to accomplish this in a 
reproducible manner by utilizing study data from a variety of sources and assembling it into a meaningful and 
useful form for cancer researchers, which are PSets, through CWL and PharmacoGx11,12. Therefore, our pipelines 
form the bridge between raw pharmacogenomic data and assembly in a transparent fashion. With our pipelines 
utilizing the versatile PharmacoSet class, many data types from other datasets can be easily encapsulated for PSet 
generation, such as methylation, chromatin accessibility (e.g., ATAC-seq), metabolomics, protein expression33, 
and radiation therapy response34, given that it follows the PharmacoSet data structure12. This provides many 
opportunities for researchers to process and analyze a plethora of data for their studies. However, our workflows 
do have limitations, including the inability to identify changes to pipelines, input data, and PSets, at the file level, 
when updates are pushed, and the files are taken into an environment outside of Harvard Dataverse and Code 
Ocean. However, with storing our data on Harvard Dataverse and pipelines on Code Ocean with rich metadata, 
users will be able to retrieve any updated files on both repositories and accurately identify the exact changes to 
each file. In addition, CWL Research Objects provide checksums and UUID’s only after a runtime is complete, 
which are bound to the file name and not persistently attached to a file for use in subsequent workflow runs11. 
Thus, if an input file is updated and re-utilized in a workflow, we must manually keep track of all checksums and 
UUID’s that were assigned to it by CWL over time. In the future, we hope to increase transparency and repro-
ducibility by automating these pharmacogenomic pipelines in a manner that keeps track of all input and output 
data at the file level through the use of automatically generated unique identifiers that are persistent. Moreover, 
we hope to provide users with an interface that provides options for processing drug sensitivity and molecular 
profiles in a generated PSet.

Methods
Computation of drug response data.  Our CWL pipelines process raw pharmacological data of the GRAY 
and UHNBreast datasets14,15,17. This encompasses the computation of AAC, IC50, Hill-Slope, Einf, and EC50. With 
regard to the sensitivity metrics, drug potency and efficacy is a measure of AAC, potency is a measure of IC50 
and EC50, while Einf is a measure of efficacy35,36. Our pipelines address the issues of metric summarization incon-
sistency and processing reproducibility across studies through the utilization of PharmacoGx, which efficiency 
standardizes the computation of drug sensitivity parameters for any pharmacogenomic dataset12,30.

PSet

GRAY

UHNBreast

Meta analysis

N

39

50

89

C−index

7.35e−01

6.30e−01

6.92e−01

P−value

4.77e−15

1.53e−02

2.03e−04

0.4 0.5 0.6 0.7 0.8

Concordance Index

Fig. 3  ERBB2 expression as a biomarker for lapatinib in GRAY 2017 and UHN Breast 2019. N: number of 
samples; C-index: concordance index calculated for respective PSet; P-value; p-value calculated for respective 
PSet. Meta analysis represents combined concordance index and p-value across PSets.
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The calculate From Raw function within PharmacoGx was used to compute the GRAY drug response data, 
while the computeSensitivity function was utilized to compute the UHNBreast drug response data12. The two 
functions reflect the data structure and formatting differences of the drug response data between the two breast 
cancer datasets.

Incorporating published drug response data.  The GRAY dataset includes published processed drug 
response data14,17. The published data was curated, annotated, and compiled into a PSet using PharmacoGx12. 
These metrics include growth inhibition (GI) and growth rate inhibition (GR): GI50, GR50, GEC50, GRmax, GRinf, 
hGR, and GRAOC. The sensitivity metrics can be defined as14,17:

GI50: the drug concentration for 50% inhibition of cell proliferation.
GR50: the drug concentration (c) to achieve GR(c = GR50) = 0.5.
GEC50: the drug concentration for which 50% of maximal effect is observed.
GRmax: the GR observed at the highest drug concentration.
GRinf: the effect of the utilization of an infinite drug concentration.
hGR: the fitted curve Hill coefficient.
GRAOC: the effect of a drug across AOC estimated concentrations.

CWL pipeline execution steps.  Each CWL pipeline within a workflow executes a custom R script with 
computational processing procedures for generating each PSet, which follow the same structure, regardless of 
the dataset being analyzed11,12. Each PSet that is generated begins with the execution of an R script that gathers 
curated identifiers for each cell line, tissue, and drug compound within each dataset. The curated identifiers are 
then used to collect cell line and drug metadata and generate a data array of the corresponding cell line and drug 
response experiment. The raw drug response data is then processed using PharmacoGx12, while the published 
drug response data is annotated and compiled. The pre-processed molecular profiles from each dataset are later 
organized into an ExpressionSet, which are data structures with processed data in the form of matrices with 
associated feature, phenotypic, and annotation data37. The last pipeline in our workflow compiles the curated 
unique identifiers, cell line and drug metadata, computed drug response data, published drug response data, and 
molecular profile ExpressionSets into a PSet through the PharmacoSet class in PharmacoGx12.

To execute a CWL workflow, cwltool must be run on the CWL and YAML files that are defined for a dataset 
workflow, where the –-provenance flag generates a Research Object11:

cwltool –-provenance /outputdir getUHN2017_Workflow.cwl getUHN2017_
Workflow.yml

Biomarker discovery.  We utilized the GRAY 2017 and UHNBreast 2019 PSets to identify an associa-
tion between ERBB2 expression and lapatinib drug response across cell lines14–17,19. We identified 39 and 50 
cell lines from the GRAY and UHNBreast PSet’s, respectively, that possessed both ERBB2 gene expression and 
drug response data (AAC) for lapatinib. With AAC being one of the most commonly used drug sensitivity 
metrics, we utilized the gene expression and computed AAC data within the GRAY and UHNBreast PSets to 
assess this gene-drug association (expression-based biomarker) through calculating the concordance index and 
p-value15,30,31.

Our code for this analysis utilizes the summarizeSensitivityProfiles and summarizeMolecularProfiles 
functions in PharmacoGx to extract lapatinib response and ERBB2 expression data from the GRAY 2017 and 
UHNBreast 2019 PSets12. This response and expression data was subsequently used to compute the concordance 
index and p-value between them, for both PSets, using the concordance index function within the survcomp R 
package38.

Data Availability
The GRAY and UHNBreast PSets generated through our CWL workflows can be found on Harvard Dataverse 
at https://doi.org/10.7910/DVN/BXIY5W 28, while the raw pharmacological and molecular data used in this 
manuscript for each respective study can be found on our Code Ocean capsule at https://doi.org/10.24433/
CO.7378111.v3 29. The GRAY RNA-seq, CNV, and 2017 drug response data used in this manuscript is available 
on Synapse (https://www.synapse.org/#!Synapse:syn2346643/wiki/62255). The GRAY processed methylation 
data is located on the NCBI Gene Expression Omnibus (GSE42944), while the mRNA (U133A and Exon 1.0 ST 
array) data is available from ArrayExpress (E-TABM-157 and E-MTAB-181). The UHNBreast RNA-seq data can 
be found on the NCBI Gene Expression Omnibus (GSE73526), while the remaining molecular profile data can be 
found at http://neellab.github.io/bfg/. The UHNBreast 2017 drug response data is available from PharmacoGx, 
while the 2019 data is available on our Code Ocean capsule.

Code Availability
Our CWL workflows, a tutorial describing the installation and execution procedures for our workflows, and the 
code for our biomarker discovery analysis can be found on our Code Ocean capsule (https://doi.org/10.24433/
CO.7378111.v3)29.
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