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ABSTRACT Mathematical models of ionic currents are used to study the electrophysiology of the heart, brain, gut, and several
other organs. Increasingly, these models are being used predictively in the clinic, for example, to predict the risks and results of
genetic mutations, pharmacological treatments, or surgical procedures. These safety-critical applications depend on accurate
characterization of the underlying ionic currents. Four different methods can be found in the literature to fit voltage-sensitive
ion channel models to whole-cell current measurements: method 1, fitting model equations directly to time-constant, steady-
state, and |-V summary curves; method 2, fitting by comparing simulated versions of these summary curves to their experimental
counterparts; method 3, fitting to the current traces themselves from a range of protocols; and method 4, fitting to a single current
trace from a short and rapidly fluctuating voltage-clamp protocol. We compare these methods using a set of experiments in
which hERG1a current was measured in nine Chinese hamster ovary cells. In each cell, the same sequence of fitting protocols
was applied, as well as an independent validation protocol. We show that methods 3 and 4 provide the best predictions on the
independent validation set and that short, rapidly fluctuating protocols like that used in method 4 can replace much longer con-
ventional protocols without loss of predictive ability. Although data for method 2 are most readily available from the literature, we
find it performs poorly compared to methods 3 and 4 both in accuracy of predictions and computational efficiency. Our results
demonstrate how novel experimental and computational approaches can improve the quality of model predictions in safety-crit-
ical applications.

SIGNIFICANCE Mathematical models have been constructed to capture and share our understanding of the kinetics of
ion channel currents for almost 70 years, and hundreds of models have been developed using a variety of techniques. We
compare how well four of the main methods fit data, how reliable and efficient the process of fitting is, and how predictive
the resulting models are for physiological situations. The most widely used traditional approaches based on current-voltage
and time constant-voltage curves do not produce the most predictive models. Short, optimized experimental voltage-clamp
protocols are as predictive as ones derived from traditional protocols, opening up possibilities for measuring ion channel
kinetics faster, more accurately, and in single cells.

INTRODUCTION diac contraction (7), gastric function (8), insulin secretion
(9), and several other aspects of physiology (10,11). In car-
diac arrhythmia research, models of ionic currents are
routinely integrated into models of the AP and used to inves-
tigate the effects of genetic mutations, predict proarrhyth-
mic risk in drug development, and inform clinical
interventions (12-14). Such safety-critical applications
depend on accurate characterization of the underlying ionic
currents.

Several methods have been proposed to fit (parameterize)
models of ionic currents, covering a range including
pen-and-paper methods of the 1950s, detailed mathematical
analysis specific to Hodgkin-Huxley models, and numerical

Computational models of ionic currents have been used to
understand the formation of the cellular action potential
(AP) (1-3), to simulate the effects of genetic mutations
(4), and to study and predict the effects of pharmaceutical
compounds that block various ion channels (5,6). By fitting
mathematical models to experimentally measured currents,
we can learn about the kinetics of the underlying ion chan-
nels in healthy and in pathological situations. The need to
understand voltage-sensitive ion channels’ function is wide-
spread as they are key players in neuronal excitation (1), car-
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dynamic-clamp experiments (17), gating currents caused by
the movement of charged parts of the ion channel proteins
themselves (18), and measurements of fluorophores whose
visibility varies with channel conformation (19).

In this manuscript, we focus on the common problem of
fitting a set of predetermined model equations to voltage-
dependent whole-cell ionic currents recorded under voltage
clamp.

We describe four methods of fitting, each representative
of a wider class of methods used in the electrophysiology
literature. Our case study uses data from a previous study,
in which currents were recorded at room temperature in
nine Chinese hamster ovary (CHO) cells stably expressing
hERG1a (20). Each cell was subjected to a series of training
and validation protocols. All protocols were run on every
cell so that we can apply all four methods to each cell,
creating four model parameterizations, and then evaluate
their ability to predict the current measured in the validation
protocol. Finally, we discuss some of the reasons behind the
observed differences in performance and compare the
methods’ repeatability and time efficiency.

The first publication describing and fitting a model of
ionic currents was by Hodgkin and Huxley (1). Using the
idea that ionic conductance depends on some parts of the
membrane being in one of two states, they postulated simple
“gating” processes, each with a forward and a backward
transition rate from which a time constant and a steady state
could be deduced. They then set about designing protocols
to measure (or approximate) these time constants and steady
states at several voltages, fitted curves through these mea-
surements, and used the resulting (phenomenological) equa-
tions to encode their transition rates. Similar methods of
fitting the equations directly to experimentally derived
points—using mathematical analysis, least-squares fitting,
or manual adjustment—were employed by subsequent mod-
elers (21-30).

In this work, we describe a version of this method and
refer to it as “method 1.” It is important to note that these
methods rely on particular assumptions: 1) that the underly-
ing biophysics is accurately described by one or more inde-
pendent gating processes, each with their own steady-state
and time-constant variables; and 2) that an experimental
method and analysis procedure exists that will yield accu-
rate values for these variables throughout a range of physi-
ologically relevant voltages. The first assumption underlies
all Hodgkin-Huxley-style models and any Markov models
that have an equivalent Hodgkin-Huxley formulation.
(Hodgkin-Huxley models are a subset of a more general
class of Markov models. See, for example, Beattie et al.
(20), which presents the equivalent Markov formulation of
the Hodgkin-Huxley model used in this study, or Rudy
and Silva (3), which provides examples of Markov models
with and without Hodgkin-Huxley counterparts.) Testing
whether the second assumption is violated can be done us-
ing simulated experiments, but proving it holds is chal-
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lenging. A detailed mathematical analysis of two
protocols was performed by Beaumont et al. (31), who
showed that steady states can be obtained from peak cur-
rents only if there is a large difference in the time constants
of the system, and that once these are known, the time con-
stants can be estimated using time-to-peak measurements or
by fitting exponential curves. In a follow-up study, they pre-
sented an iterative procedure to estimate the steady states for
systems with more similar (“nonseparable”) time constants
(32). In Wang and Beaumont (33), this analysis was taken
further, and a method was derived to estimate steady-state
equations and time constants simultaneously and further
improve the results (the idea to fit both parameters together
had also been used previously by Ebihara and Johnson (34)).
Willms et al. (35) provided another mathematical analysis of
fitting two-gate Hodgkin-Huxley models and concluded that
separate estimation of time constants and steady states (“the
disjoint method”) can lead to poor results. A further critique
of method 1 was given by Lee et al. (36), who used mathe-
matical analysis and simulation to point out errors arising
for nonseparable time constants, and introduced methods
aimed to combat this effect.

Despite these critiques, method 1 remains highly popular
due of its simplicity. Estimates for time constants and steady
states at different voltages are easily obtainable from the
literature, which is a distinct advantage when multiple cur-
rents must be considered, e.g., when creating full AP models
(7,37-39).

An alternative to method 1, but using the same data
points, is to simulate the voltage protocols and the subse-
quent analysis to obtain a set of simulated steady states
and time constants to match the experimental ones. The pa-
rameters used in the simulation can then be updated in an
iterative fashion (manually or using numerical optimization)
until the simulated values match the experimental ones. This
procedure allows both Hodgkin-Huxley and more generic
Markov models to be fitted to published time-constant and
steady-state data (although a unique fit is not guaranteed).
If the modeler uses the same analysis method that was
applied to the experimental data, any imperfections in the
approximations of the steady states and time constants are
replicated in the simulation so that good results may be
obtainable even when method 1 approximations are poor
(e.g., if time constants are nonseparable). In this manuscript,
we use the name “method 2” to describe a version of this
method based on numerical optimization.

Like method 1, method 2 is prevalent in the AP-modeling
literature (40-47). Further users include Moreno et al. (48),
who mention the prevalence of published summary curve
data as a reason to use method 2 rather than direct fits to cur-
rent traces, as well as Perissinotti et al. (49), who provide a
software package for performing method 2 optimizations. A
tool by Teed and Silva (50) similarly implements a method 2
but also varies model structure when searching. Rather than
manually tuning model parameters, several optimization
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algorithms have been applied to method 2, including simu-
lated annealing (50), a Davidon-Fletcher-Powell optimizer
(51), subspace trust region methods (45), and the Nelder-
Mead simplex method (45,48).

Instead of fitting to processed “summary data” (time con-
stants and steady states), we can also fit simulated currents
directly to measured currents from the same protocols: in
this manuscript we term this “method 3.” Like method 2,
method 3 is applicable to Markov-style models. Because
method 3 does not require calculation of time constants
and steady states, it is insensitive to errors in this process
and can be more computationally efficient. A downside is
that full current traces are more difficult to obtain and
require the experimenter to have published their findings
in digital format rather than printed tables or summary
graphs.

The applicability of method 3 to Markov models was ex-
ploited by Balser et al. (52), who used numerical optimiza-
tion and whole-current fitting to find the parameters of a
model describing a cardiac potassium current. Similarly,
Irvine et al. (53) formulated a Markov model of the cardiac
fast sodium current and fitted it using method 3 (although
they used additional data sources beyond whole-cell cur-
rents). Several algorithms have been used for the optimiza-
tion step in method 3, including the Levenberg-Marquardt
algorithm (52,54), Nelder-Mead (52), simulated annealing
(53), differential evolution (55), and genetic algorithms
(56,57), as well as hybrid methods combining multiple algo-
rithms (58). Willms et al. (35) used simulated data to show
advantages of method 3 over method 1 and provided a soft-
ware tool for method 3 fitting (59).

Several authors have also compared fitting methodologies
using identifiability analysis. A working definition of prac-
tical parameter identifiability is that fitting a particular
data set constrains the parameters of a model to a small re-
gion of parameter space. As such, identifiability can be used
as a tool to compare model complexity, fitting algorithms,
and protocol designs. An extensive analysis of parameter
estimation and identifiability for Markov models of
ligand-gated channels was given by Milescu et al. (60),
while Fink and Noble (61) used a sensitivity-based method
to detect identifiability issues in published models and opti-
mize voltage protocols. Csercsik et al. (62) investigated a
procedure falling somewhere between methods 1 and 3, in
which the parameters underlying voltage-dependence of
steady states were determined, but time constants were fitted
separately for different voltages. Walch and Eisenberg (63)
considered the problem of estimating time constants and
steady states as scalars for several voltages independently
and concluded that in this case, only the time constants
were identifiable. As Csercsik et al. (62) point out, full iden-
tifiability can be obtained by using voltage-dependent func-
tions for the steady-state and time-constant equations.

In method 3, we do not calculate time constants or steady
states, but we still use protocols designed specifically to
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estimate them. A next natural step, then, is to reconsider
the established protocols and to ask what type of protocol
would work best for method 3. We define “method 4” as
the process of fitting directly to currents from a single pro-
tocol designed to characterize multiple aspects of current ki-
netics at once.

Perhaps the first demonstration of method 4 was by Mill-
onas and Hanck (64), who fit a Markov model of a cardiac
sodium current using a protocol consisting of random fluc-
tuations between two voltages (“dichotomous noise”).
This method was later applied to design protocols specif-
ically to differentiate between competing models (65-67).
A brief mention also occurs in Gurkiewicz and Korngreen
(56), which discusses the benefits of method 3 for semiauto-
matic “high-throughput” construction of ionic current
models and notes that it could be applied to “nonstandard
protocols.” Fink and Noble (61) used identifiability analysis
and simulation to show that standard voltage protocols can
be considerably shortened while still being sufficient to
parameterize various models. Importantly, they showed
that protocols can be created that provide information on pa-
rameters for multiple cardiac currents so that it may be
possible to formulate protocols without extensive preknowl-
edge of the system (as is typical for standard protocols) and
that protocols might be designed that are robust to changes
induced by, e.g., drugs or mutations. Subsequent work by
Clerx et al. (68) showed that the identifiability analysis em-
ployed by Fink and Noble (61) could be extended to take
into account experimental errors. Finally, a study by Beattie
et al. (20) proposed and tested a protocol design based on
sinusoidal voltage clamps. Their work showed that a model
could reliably be fit to the resulting current measurements
and that models created this way outperformed published
models in predicting the response to conventional voltage-
clamp protocols and an AP waveform protocol.

Having discussed the four methods, we should point out
that many studies do not stick to using a single method
but use different approaches for different model parameters
(69). In the remainder of this work, we formulate the four
methods that characterize the approaches discussed above
and evaluate their performance on a previously published
experimental data set.

Terminology and notation

Concepts such as “the time constant of activation” can be
interpreted either as a property of a (macroscopic) current
through the cell membrane or as a property of (microscopic)
transitions of individual channels. Similarly, they can be
seen either as the results of a particular set of (whole-cell)
experiments or as model variables that may or may not
have a physical counterpart. In this manuscript, we will
use terms such as “model time constant” and “experimental
time constant” to distinguish between model variables and
experimentally derived values where necessary. When using



mathematical symbols, we will use a tilde notation to denote
experimentally derived values (e.g., 7, for the experimental
time constant of activation) and a plain notation for model
variables (e.g., 7, for the model time constant of activation).
When referring to a vector of values at different voltages, we
use boldface symbols (e.g., 7, and 7,). Finally, when refer-
ring to the full set of experimentally derived measures, we
have tried to consistently use the term “summary curves”
(based on the notion of a collection of “summary statistics”
or “biomarkers”).

MATERIALS AND METHODS
Current model

To model the hERG current, we use a two-gate Hodgkin-Huxley model
found to provide excellent predictions by Beattie et al. (20) (described there
in equivalent Markov model form). The current is defined by

Ixr = gk a "(V—EK)7 (D

where g, is the maximal conductance, a and r are gating variables (defined
below), Vis the trans-membrane potential, and E is the reversal potential
for potassium ions (note that although the measurements we used were from
CHO cells expressing hERG1a, we use the shorthand terms Ik, and gk,
throughout this work). The Nernst equation was used to calculate a separate
Ex value for each cell:

_RT_[K'],
Ex = 7111@, )

1

where R is the gas constant, F is the Faraday constant, [K™], and [K]; are
the bath (outside membrane) and pipette (inside membrane) concentrations
of potassium ions, and T is the cell-specific temperature measured by Beat-
tie et al. (20). In the nine cells used in this study, calculated values for Ex
ranged from —88.45 to —88.30 mV with the precise value depending on the
temperature at the time of recording.

The two processes represented independently by this Hodgkin-Huxley
model are “activation” (with a representing the fraction of activated chan-
nels) and “inactivation” (with r representing the fraction of channels that
have recovered from inactivation). Both variables a and r are dimensionless
and in the range [0, 1]. Increases in a correspond to “activation” and de-
creases in a to “deactivation,” whereas decreases in r correspond to “inac-
tivation” and increases in r to “recovery” from inactivation. (Note that the
independence assumption means that—somewhat confusingly but perhaps
appropriately—channels can be both “activated” and “inactivated” at the
same time, because the opposite of activation is called deactivation and
the opposite of inactivation is recovery.) We can represent the model as
two independent gating reactions

ky k3
(1—a) —= a r=— (1—=r), 3)

where «a is the fraction of channels in the activated state, (1 — a) is the frac-
tion in the deactivated state, r is the recovered fraction, (1 — r) the inacti-
vated fraction, and k; to k4 are the voltage-dependent transition rates. The
ordinary differential equations governing a and r are then derived with
mass-action Kinetics and can be written in the form

da ax —a dr Tw — T
=== 4)

o dr T
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where a., and r., denote the model’s voltage-dependent steady states and 7,
and 7, denote its voltage-dependent time constants, defined in terms of the
transition rates as

Ta = 1/(k1 +k2)7 T = 1/(/{3 +k4)7 (5)

k4’Tr. (6)

aew = k74, T'w

The voltage dependencies of the transition rates are defined using an Eyr-
ing-derived exponential formulation (53,70-72) as

ki = piexp(p,V), ks = psexp(peV), @)

kz = p3exp(—p4V), k4 p7exp(—ng). (8)

The model parameters to be inferred are therefore the kinetic parameters
D1, P2 ---» Pg and the conductance pg = gk, All model parameters are taken
to be strictly positive: p; > 0 forie 1,2, ..., 9.

Experimental methods

The experimental data used in this study are taken from Beattie et al. (20).
In short, manual patch-clamp recordings were performed at room tempera-
ture (between 21 and 22°C) in CHO cells stably expressing hERG1a (which
encodes the « subunit of the channel carrying /x,). Recordings were taken
from nine cells and seven protocols in each cell (we will refer to these as
cells #1 to #9 and Pr1 to Pr7, with the numbering matching the original pub-
lication). After the final protocol was completed, the I, blocker dofetilide
was washed in, and all protocols were repeated. Each cell’s data was then
postprocessed by first leak-correcting the signals recorded both in the pres-
ence and absence of dofetilide and then subtracting the Ix,-blocked signal
from the unblocked one to remove any endogenous currents. For this study,
we used the already leak-corrected and dofetilide-subtracted data as pub-
lished on https://github.com/mirams/sine-wave. The first protocol, Prl,
did not elicit strong currents in any of the cells and so was not used in
this study.

Following Beattie et al. (20), capacitance artifacts were removed from
the experimental data by discarding the first 5 ms after each discontinuous
voltage step. To obtain similar results from simulated protocols, the same
filtering was applied to all simulated data.

The six protocols used in this study are shown in Fig. 1. The first four,
Pr2-5, are adaptations of common step protocols used to characterize Ix;.
Specifically, Pr2 is used to estimate a single time constant of activation
(for V = 440 mV), Pr3 is used to estimate the steady state of activation,
Pr4 is used to estimate time constants of inactivation, and Pr5 provides
data about both time constants, as well as the steady state of inactivation.
Pr7 is a novel sinusoidal protocol introduced by Beattie et al. (20) and is
intended to provide the same information in a much shorter time. It consists
of an initial step to +40 mV, designed to trigger a large current, followed by
a section consisting of the sum of three sine waves. Finally, Pr6 is a collec-
tion of AP wave forms, representing the membrane potential under physi-
ological and pathological conditions. As in Beattie et al. (20), we used
Pr6 as a validation protocol while either Pr7 or the set Pr2-5 were used
for fitting. Note that the full set of protocols was run on every cell.

A detailed description of all protocols and the associated analysis
methods is given in Supporting Materials and Methods S1, Section S1. In
analyzing these protocols, we found it useful to perform simulations (using
the parameters obtained by Beattie et al. (20)) and plot the model state in a
two-dimensional phase diagram as shown in Fig. 1. A guide to using these
diagrams for analysis is provided in Supporting Materials and Methods,
Section S1.1.

The voltage-step protocols Pr2—5 can be used to derive a set of graphs
that characterize the current, shown in Fig. 2 for all nine cells used in
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FIGURE 1 Voltage protocols, currents measured in cell #5, and simulated phase diagrams for all six protocols (Pr2—7) used in this study. Simulations for

the phase diagrams were performed with the cell #5 parameters obtained in Beattie et al. (20). (A) Pr2 is used to measure the experimental time constant of
activation. We show the voltage-step protocol (top left), the resulting current as measured in cell #5 (lower left), and a phase plane diagram (right). The
protocol is repeated six times, with an increasing duration of the P1 step for each repeat. This is indicated in the plots by using a different color for each
repeat. (B) Pr3 is used to measure the experimental steady state activation curve. It is repeated seven times, with a different voltage for the P1 step at
each repeat. (C) Pr4 is used to measure experimental time constants of inactivation; it repeats 16 times with a different voltage for step P3. (D) Pr5 is
used to measure experimental time constants of activation and inactivation, as well as steady-state inactivation. It has nine repeats with a different voltage
for step P2. (E) Pr6 consists of several (healthy and pathological) AP wave forms and was used as an independent validation data set in this study. The colors
in this plot indicate time so that the voltage and current traces can be related to the phase-plane trajectory on the right. (F) Pr7 is the sine wave protocol
introduced by Beattie et al. (20). As in (E), color is used to indicate time information. To see this figure in color, go online.

this study. They are commonly referred to as the “steady state of activation”
(Fig. 2 A), “steady state of inactivation” (Fig. 2 B), “[Peak/tail] IV curve”
(Fig. 2 C), “time constant of activation” (Fig. 2 D), and “time constant of
inactivation” (Fig. 2 E). In the remainder of the work, we will refer to the
curves in Fig. 2 as the summary curves.

closely follows that of Hodgkin and Huxley, and in fact, the procedure for
finding p; to pg can be done entirely with pen and paper, and only a single
simulation is needed to estimate the ninth parameter g, First, we focus on
the steady state of activation (Eq. 6) and substitute in the parameters p; to p4:

ki 1

as (V) =k, = = , 9

V) ' ki + ks 1+ ky/ky ©

Four ways of fitting

Method 1: Fitting model equations directly to summary curves ~ s pse PV - (10)
= p] epZV )

‘We now describe the four methods of fitting in detail. In method 1, we write
out equations for the model variables a . (V), r» (V), 7,(V), and 7,(V) in terms
of the parameters py, p,, ..., pg and then try to fit these directly to the exper-
imental summary curves @, I« , T4, and 7.. The procedure for doing so
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curve d., derived from Pr3 is shown. (B) The experimental steady state of inactivation 7. derived from Pr5. (C) The IV curve (peak current during the P2 step
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40 mV from Pr2. (E) The experimental time constant of inactivation 7,. Values for V < —30 mV were estimated from Pr5, values for —40 mV and upwards

from Pr4. To see this figure in color, go online.

This can be rewritten as a “Boltzmann curve”

1 1

am(V) = 1_’_e(saha—saV) = 1_|_esa(ha—v)’

12)

where A, is the “midpoint of activation” (the point at which a«(V = h,) =
0.5) and s, is the slope of the activation curve at V = h,. Assuming
dw(V) = aw(V), values for h, and s, can then be obtained numerically
(optimizing on sum of square error) or by plotting d. vs. V and reading
the values from the graph. At this stage we have an equation for a. (V)
and two constraints on the parameters py, pa, p3, P4, namely

Sa = P2 +p47 (13)
1 —1
h, — ogps —logpi. (14)
Sa
Next, we rewrite Eq. 6 to find
am(V)/Ta(V) = ki(V) = pe™, (15)

which allows us to infer values for p; and p, by plotting the quantity a /7, vs.
V (using the fitted equation for a . (V) rather than the measured values d'. to
reduce noise) and fitting an exponential curve. Note that because a, = 0 for
values below —60 mV, any data points for low voltages will contribute very
little to the final fit. As a simple alternative, we can plot the quantity
log(a «»/7,) and fit with a linear equation log(p;) + p,V (note that this is equiv-
alent to doing a graphical fit using semilogarithmic graph paper); this pro-
vides us with more reliable values for p; and p,, after which we can use
P4 =S, — paand p3 = pje*M to find the remaining activation parameters.
Using a similar procedure (but with a slight change in signs), we plot the
logarithm of k4(V) =r« /7, = p7e ", fit to find p; and pg, and then use
pe = —s, — pg and ps = p7e™ to find all four inactivation parameters.

Finally, we find a value for the conductance parameter gk, by performing
a simulation of Pr5, deriving an IV curve, and then calculating the scaling
factor that minimizes the sum-of-squares error between the simulated and
experimental IV curves.

Quantifying goodness of fit

To evaluate the goodness of fit from method 1, we derive an error function
and evaluate it with the obtained parameter values. We write 8 = {p1, p», ...,
Do} for the parameters and introduce symbols representing the experimental
and measured data sets. To denote a cell’s set of experimentally approxi-
mated midpoints of activation, we use dfﬁ” while a™°%! is used to indicate
the value of the model variable (a ), evaluated at the same voltages. Similar
notation is used for the midpoint of inactivation and both time constants.
Next, we define the root mean-squared error (RMSE) between two data

sets x and y as

(16)

where both data sets have equal length n. Using this notation, we can write
the RMSE between experimental results dfj" and model values a™%! as
R(@", @mo%!). With this notation, we can now define the error criterion

as a weighted sum of RMSEs:

EM1(0) — R(&Cell amodel) +R(i’fj“,r’:"dd)

o0 ) =]
~cell _model ~cell _model
+R(1-a ,amodel) R (el pmodel) an
~cell ~cell
max7, max7."

where n,, =7,n,, =8,n,, =9,and n;, = 17. Note that this is a cell-spe-
cific measure because both time-constant terms are normalized with respect
to the largest value found in the cell data used. This weighting corrects for
differences in the scaling of the four RMSEs, ensuring that none of them
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dominate in the end result. No normalization is needed for the steady states,
which are already constrained to the range [0, 1]. In contrast to measures
introduced below, Eyy; is invariant with respect to conductance (po). Finally,
we note that an alternative method 1 could be created by using numerical
optimization to minimize Eyq;; this is explored further in Supporting Mate-
rials and Methods, Section S3.6, but did not create a more predictive model
than the method presented here.

Method 2: Fitting simulated summary curves

In method 2, we accept that the summary curves are imperfect approx-
imations of the model variables, and so we base our fitting on simulated
experiments of Pr2—5, analyzed using the same methods as for the exper-
imental data to arrive at simulated versions of the summary statistic
curves. This gives us two sets of summary curves, one simulated and
one experimental, using which we can define an error measure that quan-
tifies the goodness of fit. By varying the parameters and repeating the
simulations, we can then find a set of parameters that minimizes this
erTor.

To formulate the error measure, we again write &cj“ to denote a cell’s set
of experimentally approximated midpoints of activation, and we introduce
the notation @™ for its simulated counterpart (note that we use a tilde no-
tation here to indicate that éim is not a model variable but a result derived
from a simulated experiment). In this measure, we use the IV curve rather
than the steady state of inactivation because 1) it contains the same data
points (albeit with a different scaling); 2) unlike 7 it does not suffer
from numerical issues near V = Eg (see Supporting Materials and Methods,
Section S1.5.1); and 3) it contains information about gx,, which is lacking
from the other summary curves. Similar symbols denote the remaining

summary curves: experimental midpoint of inactivation (i'ff“), time con-

stant of activation (#°°!"), time constant of inactivation (7"), and the IV
curve from Pr5 (IVl).
The error to minimize for each cell is defined as a weighted sum of
RMSEs
~cell ~si ~cell ~si
R, &™) R(F, &™)

a a 7 7

~cell ~cell
max7 max7,’

R (I‘]cell7 Ivsim)
max IV — min Vel

EM2(0) _ R(&cell dsim) +

w0 ) <]

18)

The number of data points was the same for each cell, with n,, = 9,
n;, = 17, n,, = 17, and n;y = 9 (for a total of 42 cell-specific data
points). As in Eyp, weighting is used here to give every term equal
influence.

Method 3: Fitting current traces from traditional protocols

In method 3, we forgo the summary-curve calculation altogether and simply
perform “whole-trace fitting” on the currents resulting from the “traditional
protocols” Pr2—5. Writing I f"“ for the current recorded from protocol i, and
I?i"‘(ﬂ) for the simulated current in protocol i with parameters @, we define
the function to be optimized as a normalized RMSE:

5 R(Igell I§im)
Enia(0) = L . 19
ws (0) Z max 1" — min 7¢" (19

i=2

Note that the weighting here is not strictly necessary for the optimization
procedure but is used to enable Ey;; value comparisons between cells.

Method 4: Fitting current traces from an optimized protocol

In method 4, we define a similar normalized RMSE measure based on
fitting only the current under the sinusoidal protocol, Pr7:
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cell gsim
Evs(0) = R I™) (20)

max I ;e“ — min I 33"

As in Ey3, the weighting used here allows us to compare values between cells.

Validation and cross comparison

To compare the results of the four fitting methods, we applied each method
to each cell, resulting in four parameter sets per cell. Next, we simulated the
AP waveform protocol (Pr6) with all parameter sets and compared these to
the corresponding measurements. Note that Pr6 was not used in any of the
fitting methods, so this constitutes an independent validation. The results
were quantified using a normalized RMSE:

EAP(o) _ R(Igell’ Izim)
max I¢" — min 1"

@n

where R is defined by Eq. 16, as before.

In addition to the independent validation, we performed cross-validation
by testing how well models fit with one method could predict the fitting data
used by the others. This was shown visually and was quantified by evalu-
ating Enpy, Envio, Ens, and Eygg on the best result found for each cell/method.

Multicell measures of the fitting methods’ performance were defined as
the mean average of the error measure over all nine cells. Writing Eap for
the RMSE in cell k on the AP signal, we defined

1 9
Exvar =5 Y _Eavs. 22)

k=1

Note that Ep; already contains a term to normalize the error with respect to
the magnitude of the current in cell k so that no further weighting is
required. Combined error measures for Eyy; through to Eyyy were defined
in the same manner.

Minimizing the error measures

Methods 2—4 all proceed by finding a parameter set that minimizes an error
function. In previous work, we found that the global optimization algorithm
CMA-ES (73) provided good fits for a range of models from the ion channel
to cell scale (20,74-77), and was both fast and behaved reproducibly (re-
turning the same answer when started from different initial guesses in the
parameter space). For methods 2—4, we used a CMA-ES population size
of 10 and halted the optimization only when the objective function changed
by less than 10~ "" per iteration for 200 successive iterations. Other impor-
tant aspects of making our optimization strategy reliable were 1) placing
physiologically inspired bounds on the parameter space, 2) searching
(and choosing starting points) in a log-transformed space, 3) reducing
solver tolerances to eliminate numerical noise in simulation output, and
4) testing reliability by running repeated fits from different starting points.

Constraints on the parameter space were set as in Beattie et al. (20) and
included upper and lower bounds for the parameters p; to py but also
restricted the value of the reaction rates k; to k4. The resulting boundaries
are visualized in Fig. 3, A and B. Details of how the boundaries were defined
are given in Supporting Materials and Methods, Section S2.2. To implement
these constraints, points outside the boundaries were automatically as-
signed an error of % during optimization.

Several studies (78—80) have found that for strictly positive parameters
(i.e., for all nine parameters in our model), optimization performance can
be improved by searching in a log-transformed parameter space. In at least
some cases, this has been shown to turn nonconvex (i.e., hard) problems
into simpler convex ones (81). For methods 2—4, we used a log transform
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FIGURE 3 Boundaries and transforms on the parameter space and the
effect of solver tolerances. (A) Constraining the transition rates ki—ky
(over physiologically relevant voltages) to relevant timescales creates a
two-dimensional boundary on each parameter pair (Supporting Materials
and Methods, Section S2.2). The gray region indicates valid samples,
with an upper rate constraint in orange and a lower rate constraint in
blue. The horizontal and vertical gray lines indicate the lower and upper
bounds for the parameters p;—pg. (B) The same parameter constraints
with a log transform on one of the parameters are shown. Note this increases
the size of the feasible region for off-the-shelf optimizers that know nothing
about the problem, and we later see the objective function becomes reason-
ably convex and symmetric under this transform (see Fig. 11). (C) Using
default tolerances of adaptive solvers can lead to numerical noise in the
function being optimized. This can be remedied by selecting lower toler-
ances. To see this figure in color, go online.

on parameters py, p3, ps, and p;. As Fig. 3 B shows, the boundaries on these
parameters allowed them to vary over 10 orders of magnitude, so a log
transform seemed most appropriate. The effects of this strategy are further
explored in Supporting Materials and Methods, Section S2.4.

We used an adaptive step time solver for simulations of Pr6 and Pr7. As
shown in Johnstone (82), simulating with lax tolerance settings can lead to
(seemingly random) fluctuations in the error measure for nearby values of
6, which has the effect of creating several local minima in otherwise smooth
regions. To combat this, we set absolute and relative error tolerances of
1078, This is shown in Fig. 3 C. For the voltage-step protocols Pr2—5, we
circumvented the issue entirely by using the model’s analytical solution
for fixed voltages to calculate the time course at each step.

When running the optimizations for methods 2—4, each fit was run
several times from different starting points, sampled uniformly from within
the transformed space shown in Fig. 3 B. Fifty repeats were run per cell for
methods 3 and 4 while 80 repeats per cell were run for method 2. The best
result (lowest error) was used as the final fit for each cell/method. We
comment on the reliability of these fits below in the Reliability and Perfor-
mance part of the Results.

We tested our methods by performing a study on synthetic data, described
in Supporting Materials and Methods, Section S2.3, based on parameters
given in Beattie et al. (20) and Gaussian noise comparable to the strongest
noise encountered in our data set. In this in silico study, we saw that our
methods reliably found a point near the known true solution, that solutions
found by repeated fits had very similar parameter values, and that models
fitted to one data set provided good predictions on the other data sets.

Software and algorithms

Simulations were performed in Myokit (83), using CVODE (84) for Pr6 and
Pr7 simulations with tolerances as described above and an analytical solver
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FIGURE 4 Method 1 goodness of fit and cross-validation on cell #5.
Experimental approximations of the steady states (4. and 7« ) and time
constants (7, and 7,) are shown, derived from measurements in cell #5.
The model curves for a(V), r«(V), 7,(V), and 7(V) are shown for models
fitted with each of the four methods. Note that only method 1 was trained on
this data, making this a goodness-of-fit figure for method 1, whereas for the
other methods, this figure shows a prediction. To see this figure in color,
go online.

for Pr2-5. Further analysis was performed in Python 3.7 using NumPy/
SciPy (85). When deriving experimental time constants, fits to exponential
curves were performed using the Nelder-Mead downhill simplex algorithm
implemented in SciPy. All other fits were performed using CMA-ES (73)
via the PINTS (86) inference framework. When calculating benchmarks,
methods 2—4 were run on a machine with 24 Intel Xeon 2.2 GHz CPU cores
(48 with hyperthreading), with four optimizations running concurrently at
all times. All data, code, results, and figures are available to download
from https://github.com/CardiacModelling/FourWaysOfFitting. A perma-
nently archived version is available on Zenodo at https://doi.org/10.5281/
zenodo.3378030.

RESULTS

We now discuss the results of fitting a model with each of
the four methods, using cell #5 as an example in our
figures. Figures for all nine cells can be found online at
https://github.com/CardiacModelling/FourWaysOfFitting.
For each fit, we discuss the quality of fit but also investigate
whether models made with the other methods do well at pre-
dicting the methods’ fitting data.

In method 1, we equate model variables (e.g., @) with
experimentally derived values (e.g., d). Fig. 4 shows the
experimentally derived values as black squares, whereas
the blue line (fit 1) represents the quality of fit obtained
by method 1. Note that these lines are plotted directly
from Eqs. 5 and 6 and do not involve simulation. Similar
lines are shown for models fit with methods 2—4, labeled
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FIGURE 5 Method 2 goodness of fit and cross-validation on cell #5.
The experimental steady state of activation, the IV curve, and both exper-
imental time constants are shown. By simulating the protocols and per-
forming the same analysis, similar summary curves were derived for
each of the four methods. The fit for method 2 is shown, along with the
predictions from models made with methods 1, 3, and 4. To see this figure
in color, go online.

as “predictions” in the figure. As Fig. 4 shows, the lines
drawn from the method 1 model fit the data well, whereas
the models fitted through simulation (methods 2—4) show
a notable mismatch for both steady states and time con-
stants. However, because the summary curves approximate
but do not equal the model variables, a perfect fit in this
figure is not necessarily desirable. This is discussed further
in Supporting Materials and Methods, Section S1.6.

In Fig. 5, we again plot the experimentally derived data
points (e.g., a*m), but instead of comparing them to model
va_riables, we compare them to simulation results (e.g.,
a®™). Method 2 attempts to minimize the discrepancy be-
tween the two and achieves this well (fit 2 in Fig. 5). By
contrast, the predictions from a model made with method
1 now show a clear shift in the steady state of activation
curve. Interestingly, only the method-2-derived model
shows a close fit to the experimental time-constant data,
although none of the methods are able to match the steep
peak in the 7, points well, which may be due to the fact
that points left of the peak were derived from Pr5, while
the rightmost points were obtained from Pr4.

Fig. 6 shows selected portions of the currents elicited by
Pr2-5. Method 3 minimizes the discrepancy between simu-
lated and measured currents and provides a good fit (fit 3 in
the figure), although some differences can still be seen.
Models made with methods 1 and 2 do not generally predict
the observed currents well, although the qualitative behavior
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is correct in all cases. Models with method 4 provide better
predictions here, although interestingly, only method 3 gets
the slope of the Pr3 currents during the P2 step right, indi-
cating a difference in the deactivation properties of method
3 parameters compared to the others. The negative currents
in Pr4 appear challenging for all methods, whereas method 3
and 4 results match well on the higher potential steps.

Next, we inspected the capability of the different models
to predict the currents from the sine wave protocol (Pr7), as
shown in Fig. 7. The method 4 model obtained a good fit to
the data, although some differences can be seen in the deac-
tivating part of the initial voltage step. Predictions from the
model made with method 3 were relatively good, whereas
models fitted with method 1 and in particular method 2 per-
formed poorly at predicting Pr7 currents.

Figs. 4, 5, 6, and 7 showed that all four methods achieved
good fits, judged by their own criteria, whereas the quality
of predictions outside of the fitting data varied. The AP
waveform is an attempt to test predictions for the most phys-
iologically relevant Iy, behavior. A visual comparison of
predictions made with models from each of the four
methods is shown in Fig. 8, again with the cell #5 results
used as an example. In this cell, the predictions from method
2 were generally poor, whereas methods 3 and 4 provide
much better predictions.

A quantitative view of the validation and cross-validation
results for cell #5 is given in Fig. 9 (top). The top row of this
table shows the RMSE for the independent validation proto-
col. To enable easier comparisons, the RMSEs have been
normalized to the best performing method so that the best
method has relative RMSE 1, whereas a method with a rela-
tive value of 2 has an RMSE that is twice as high. For cell
#5, method 4 provided the best predictions of the indepen-
dent test protocol and also performed well on cross-valida-
tion. As may be expected, each method had the lowest score
on its own fitting data. Data for all nine cells are given in
Supporting Materials and Methods, Section S3.3.

The lower panel in Fig. 9 shows similar relative RMSEs
but now presented as the mean and SD for all nine cells.
Here, method 3 performed best at the AP prediction task,
although method 4 was very close (within SD) and outper-
formed it at cross-validation.

Interestingly, method 2 outperformed method 1 on the
E\p criterion in the averaged data and also in six out of
nine cells. This indicates the advantage of fitting steady
states and time constants simultaneously (as happens in
method 2) over fitting them sequentially (method 1), as
previously described (33,35). Further illustration is pro-
vided in a figure in Supporting Materials and Methods,
Section S3.6, in which we show that small changes in the
slope of the steady-state curve have a strong effect on the
time constants derived by method 1; method 2 can use
this to its advantage by slightly adjusting the model’s
steady-state curve slope to obtain a better fit to experi-
mental time-constant data.
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Reliability and performance

Having inspected the predictive capabilities and quality of
fit of models obtained with each method, we next investi-
gated their reliability. Ideally, a method returns the same
result every time it is applied, and indeed, method 1 lives
up to this ideal. For methods 2-4, however, we used 1)
randomly sampled initial guesses for parameter sets
and 2) a stochastic optimizer. To increase our chances of
finding the best result, we repeated this process 50 times
for methods 3 and 4 and 80 times for method 2. For a reli-
able method, we expect a large number of the methods to re-
turn similar parameter sets, with similar RMSEs.

Fig. 10 gives an indication of each method’s reliability. It
shows that method 3 returned a result similar to the best one
found on 50-84% of the repeats, depending on the cell.
Method 4 appears slightly more reliable, with numbers
ranging from 60 to 94%. For both these methods, results

with a low RMSE value all had parameters clustered in a
small area of the parameter space. For method 2, only a
very small number of repeats returned a result with an
RMSE similar to the lowest one found. In addition, the
method 2 results with the lowest RMSE values were not al-
ways close together in parameter space. Method 1 is a deter-
ministic method and so was omitted from this figure. This is
further explored in Supporting Materials and Methods, Sec-
tion S2.3.2.

To investigate the performance of the different methods,
we measured the computation time for each method and
counted the number of forward simulations that were per-
formed during an optimization. On average, method 2
was much slower than method 3, which itself was slower
than method 4 (shown in Supporting Materials and
Methods, Section S3.4). The number of function evalua-
tions was similar for methods 3 and 4, indicating that
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this difference in performance was due to the increased
simulation time needed for method 3 (228 s of simulation
for method 3 vs. 8 s of simulation for method 4). However,
many repeats of method 2 were seen to terminate with a
low number of evaluations, which may indicate these opti-
mizations terminated early in a local optimum. To explore
this hypothesis, we performed a brute-force exploration of
Enp and Eyyy for cell #5 in the region near the optimum re-
turned by methods 2 and 4, respectively, as shown in
Fig. 11. For Eyy, we see a clear optimum in each panel,
and the function appears smooth (at least within the optimi-
zation boundaries, indicated by the white lines). For Eyp,,
however, a lot of discontinuities can be seen. The darkest
areas in these panels are regions where the intermediate
analysis to derive time constants and steady states from
the simulated experiments failed. As the rightmost panels
show, this can occur in otherwise smooth parts of the
slices, which may prove challenging for optimization rou-
tines. In addition, a lot of “noise” can be seen (e.g., in the
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green areas of the first panel), which may indicate the pres-
ence of many local minima—however, each panel is a two-
dimensional slice of a nine-dimensional space, so this is
not necessarily the case.

DISCUSSION

We defined four methods, each representative of a wider
class, to fit ion current models using whole-cell current re-
cordings. Methods 3 and 4, both based on whole-current
fitting, were found to provide the most accurate predictions,
whereas methods 1 and 2, both based on fitting preprocessed
“summary” data, fared poorly. Of the methods in which we
applied a stochastic optimization routine (2-4), methods 3
and 4 were found to provide the most consistent results,
and method 4 was the most time-efficient both in terms of
experimental and computational effort.

To further compare the results from different methods, we
plotted the fits from each method and each cell in Fig. 12.
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Even in areas where parameter sets overlap, each method
can be seen to introduce its own small bias. The figure
also points to a difference in deactivation for method 3,
which consistently placed the deactivation parameters pj
and py in a different part of the parameter space than the
other methods. We found that models using parameter sets
found by method 3 gave the best AP predictions, although
this was very closely followed by method 4 (see Fig. 9).
Looking at Fig. 6, we can see that many cases in which
method 1, 2, and 4 predictions deviated from the measured
current were during deactivation. This points to an advan-
tage in describing deactivation for method 3 and suggests
an area in which future versions of the sinusoidal protocol
used in method 4 could be improved. In particular, the
slow timescale of activation and deactivation may necessi-
tate the inclusion of long steps similar to those in Pr3/Pr5
or the superposition of a lower frequency sine wave.

For methods 2—4, we observed significant improvements
to the performance of optimization routines by performing a

log transform on some of the parameters, providing appro-
priate constraints on rates and voltage-dependence of the
rates, and refining differential equation numerical solver tol-
erances. At least some of these aspects may address previ-
ous findings that whole-trace fitting is difficult (58), as we
found very consistent results with an “off-the-shelf” opti-
mizer after adopting these simple approaches.

The optimization surface for method 2 is considerably
more ragged than methods 3 and 4, making this a difficult
optimization problem. As method 2 is very common in the
literature on ionic model fitting, this result has some implica-
tions for the cardiac modeling community: its reputation as a
hard problem requiring special methods may be due to the
choice of summary data rather than any intrinsic mathemat-
ical or computational difficulty with the models. Since the
choice of method 2 is typically based on data availability
(48), increased sharing of whole-cell current data is a more
promising way forward than developing and applying novel
optimization algorithms. For experimenters, as well as
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Cell 5 Method 1 Method 2 Method 3 Method 4
AP validation 1.82 4.25 1.29 1.00
Method 1 RMSE 1.00 1.11 4.64 1.99
Cross-validation M2 2.58 1.00 6.33 2.48
Cross-validation M3 2.46 3.88 1.00 2.13
Cross-validation M4 3.78 13.54 1.70 1.00
All cells  Method 1 Method 2 Method 3 Method 4
AP validation 1.7 (0.3) 1.9 (0.8) 1.0(0.1) 1.1(0.2)
Method 1 RMSE 1.2 (0.5) 1.0(0.2) ' 3.3(0.6) 1.9 (0.2)
Cross-validation M2 2.6 (0.7) 1.0 (0.1) | 4.8 (1.0) 2.9 (0.4)
Cross-validation M3 1.7 (0.4) 1.8 (0.4) 1.0 (0.4) 1.7 (0.4)
Cross-validation M4 2.8 (0.9) 3.8 (1.8) 1.8 (0.5) 1.0 (0.3)

FIGURE 9 Validation and cross-validation results. (7op) Results for cell
#5 are shown. Each row shows the relative RMSE for a fitting method,
scaled so that the best performing method is indicated by 1, whereas a
method with a relative score of, e.g., 1.2 had an RMSE that was 1.2 times
larger. The top row shows the relative Eap for each method, with the re-
maining rows showing Eyj, Envp, Emz, and Eyy, respectively. (Bottom)
Mean results over all nine cells are shown, with SDs given in parentheses.
To see this figure in color, go online.

universities, journals, and other publishers of scientific data,
our findings re-emphasize the need for sharing of raw data,
for example, in online repositories or data supplements (87).

In cases in which full currents are not available (i.e., when
using historical data), some steps may be taken to alleviate
the problems associated with method 2. Reviewing Fig. 11,
some of the high error parts of the Ey;, surface arise from
numerical issues during the derivation of summary curves
from simulated experiments (for instance, in deriving time
constants from almost-flat current traces). It may be possible
to standardize and improve these analysis methods and so
remove some of the discontinuities in Eyy,.

Another approach we tried to improve methods 2 and 3 is
to use method 1 to propose an initial guess parameter set for
methods 2 and 3 instead of sampling a point from randomly
within the parameter constraints, as hinted at previously
(88). In initial tests, this gave very similar results to the
“full” methods but with only a single optimization repeat
needed. The full results are shown in Supporting Materials
and Methods, Sections S3.7 and S3.8.

A reason sometimes given to continue using experimental
steady-state and time-constant curves as a summary of cur-
rent kinetics is that they allow comparison to published
data and previous results from the same lab. So, method 3
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FIGURE 10 The percentage of optimizations from different starting
points that found the “best result.” Darker bars in the background indicate
the percentage of optimizations that returned a result with an RMSE within
1% of the best result found. The lighter bars in the foreground indicate the
percentage that was also close in parameter space, (such that no single
parameter varied by more than 1% from the best result found). Note that
for methods 3 and 4, the bars overlap exactly, but the method 2 results
for some cells contain “‘best” points with similar low RMSEs
but different parameter values. To see this figure in color, go online.

may be seen to have an advantage over method 4 in that it
contains the traditional protocols needed to derive these
curves. However, as Vandenberg et al. (89) point out, it is
important to realize that these values can be highly sensitive
to the (occasionally unpublished) details of the protocols and
analysis methods so that making these comparisons is not
without danger. We have seen, though, that method 4 can pro-
vide excellent simulations of these protocols, so comparisons
to previous data could be made by 1) running an experiment
with a novel optimized protocol, 2) quickly and reliably
fitting a model to the raw current data, and 3) simulating
the previously used protocols and performing the analysis.
Indeed, this method could be used to compare data sets
(via modeling) from protocols with slight discrepancies (90).

Limitations and further work

In this work, we characterized four methods of fitting an ion
current model and proceeded to analyze and critique these
methods based on our characterization. Although we tried
not to misrepresent any method, it is therefore important
to highlight any areas in which our efforts may become sub-
jective or otherwise fall short.

Firstly, running both a full set of conventional protocols,
as well as Pr6 and Pr7, in a single cell is experimentally
infeasible. For that reason, the study by Beattie et al. (20)
used truncated version of the conventional protocols (e.g.,
with fewer voltage sweeps) and omitted Pr2 variants with
different P1 voltages. We must therefore admit the possibil-
ity that methods 1 or 2, performed with a larger data set,
would lead to improved results. In particular, the experi-
mental time constants of activation are “missing” in the
range (—30 mV, 30 mV), which is exactly where the peak
value should occur. However, given the excellent perfor-
mance of method 3 in our study, it seems the required infor-
mation was present in the recordings, so the limited
efficiency of both methods still stands.
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FIGURE 11

An exploration of two-dimensional slices of the objective functions. (Top) En, for cell #5 is shown, near the optimum found by method 2

(indicated by an orange “x”). Each panel shows the result of varying two parameters, with the other seven held constant. The parameters varied in the left-
most panels determine the rate of activation, followed by deactivation in the second panel, inactivation in the third, and finally, the rate of recovery. The white
lines indicate the boundaries used during optimization. (Lower) An exploration of Eyy4 for cell #5 is shown, near the optimum found by method 4. The darkest
purple color in the figure represents areas where either summary curve derivation (fop panel) or simulation (lower panel) failed. To see this figure in color,

go online.

Another limitation stemming from the cell-specific nature
of our measurements is that we cannot benefit from averaging
as a noise-reduction strategy. As Fig. 2 shows, the mean sum-
mary curves over all nine cells often show qualitative behavior
that is more like the expected results than our individual cell
measurements. However, it has also been shown that aver-
aging in cellular electrophysiology can lead to erroneous re-
sults (91), and there is a clear benefit of having methods that
work on a single cell, thereby allowing investigations of
cell-to-cell variability, heterogeneity, and measurements of
cells only available in limited quantities (e.g., human tissue).

In our method 1, we did not use time-to-peak information
(as suggested by (31)) and used what Willms et al. (35) refer
to as the “disjoint method” rather than estimating time con-
stants and steady states simultaneously. We did not, unfortu-
nately, find much mention of such improved methodologies
in the applied literature and so believe that our method 1 is
still a good representation of a commonly followed
approach. Similarly, the derivation of the summary curves
might be improved in other ways, which would lead to bet-
ter results for methods 1 and 2. As a counterpoint, we note
that methods 3 and 4 do not require these complex interme-
diate analyses, are easier to implement, and do not rely on
the assumption that the summary curves provide an accurate
representation of the raw current data.

In deriving methods 2 and 3, subjective choices had to be
made regarding weightings of the individual protocols, and
changing these may alter the results. For example, similar

error measures could be derived that do not normalize ac-
cording to the length of each protocol or that use fixed
weightings per protocol instead of the cell-specific maximal
current ones we used. As it is based on a single protocol,
method 4 does not require a weighting per protocol, which
could be seen as an advantage because it means there are
fewer subjective choices to be made during optimization.
However, the lack of scalings could also be viewed as a
weakness because it may be desirable (for method 4 but
also 2 and 3) to scale different parts of the protocol(s) differ-
ently. Such an approach could, for example, compensate for
varying current amplitudes (which otherwise cause the error
function to emphasize fitting regions of the protocol that
elicit stronger currents) or even weight “important” (in
some sense) parts of the currents more strongly than others.
For our study, we thought it advisable to avoid such “tweak-
ing,” hopefully leading to a result that is representative of
standard approaches and easily applicable.

Relatedly, error measures other than RMSE could have
been used for the optimization objective. Using a statistical
likelihood instead of an RMSE has an advantage in that it
opens the door to Bayesian analysis, which would allow
prior information to be used in fitting and could be used
to shed more light on the origins of observed cell-to-cell dif-
ferences (92). However, the assumption of independent and
identically distributed Gaussian noise may not be the most
appropriate one if there are significant drifts in the system
or if the high sampling rate used in recording captures single
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FIGURE 12 Best solutions returned by the four methods for all cells. The
activation rate parameters p; and p, are shown in (A), deactivation in (B),
and inactivation and recovery in (C) and (D), respectively. To see this figure
in color, go online.

bursts of noise in several adjoining time points. Different
“noise models,” e.g., autoregressive or autoregressive mov-
ing average, might be used, but whether these are more
appropriate models of voltage-clamp error is an open ques-
tion that warrants further research. Because such error
measures are not commonly used in the literature, our com-
parison here was restricted to RMSE.

Various models of hERG and I, currents have been pro-
posed and compared in the literature (20,93), and so far, a
consensus has not been reached. All four methods in this
study used the same two-gate Hodgkin-Huxley model and
so share the common limitation that this model may not
be the optimal choice. Studies such as Bett et al. (93)
have shown that some experiments are better fitted with a
five-state Markov model (94), which suggests that the
method 3 and 4 fits shown in Figs. 6 and 7 could be further
improved. The study by Beattie et al. (20) investigated this
question (section H in its Appendix) and confirmed that the
model by Wang et al. (94) provided better fits to the sine
wave data. However, predictions of the AP waveform
(Pr6) response (as well as the metrics derived from Pr2-5)
were no more accurate than those made with the simpler
four-state model. This finding suggests there is still a trade-
off to make between fitting training data precisely and pre-
dictive power in new situations, and the choice of an optimal
model depends on the expected “context of use” (95). How-
ever, we expect that further refinements to either models or
fitting protocols could produce better fits and predictions, an
area in which further work is needed.
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Conversely, one might question whether the model used in
this study is already more complex than the data warrant,
commonly termed “overfitting”: when a model is fitted to
(some of the) noise in the training data, leading to an
improved fit but a loss of predictive power in new situations.
Using methods 3 and 4, however, we found we could accu-
rately predict the response to the independent validation
data of Pr6 (Fig. 8) and that models trained on Pr7 could pre-
dict the response to Pr2—-5 (Fig. 6) and vice versa (Fig. 7), so
we do not believe overfitting is an issue for this simple model.

Finally, it is worth discussing how our results may be
generalized beyond Hodgkin-Huxley-style independent
gating models. As noted in the introduction, method 1 re-
quires a model for which analytic expressions for steady
states and time constants are available, which means it
does not generalize to arbitrary Markov models. For Markov
models of intermediate complexity—but with dependent
gating—we expect our results for methods 2—4 will gener-
alize well, although more complex models with many states
and transition parameters to capture may require more com-
plex “method-4-style” protocols to be devised. We believe
this is an exciting area for future work.

CONCLUSIONS

We presented and compared four methods to fit an ion cur-
rent model, each based on a common class of methods used
in the literature. By performing these methods on a set of
CHO-cell hERG1a measurements, we found that methods
based on whole-current fitting provided both the most accu-
rate and the most reproducible results. Models fitted using a
recently developed sinusoidal protocol were found to have
similar predictive ability as those fitted to conventional
voltage-step protocols while having a lower experimental
and computational cost. Further analysis showed that using
numerical optimization to fit a model to experimental
steady-state and time-constant data was potentially hazard-
ous, and we point toward increased sharing and use of raw
current traces as a viable solution to this problem. Our re-
sults highlight some of the remaining challenges to make
truly predictive models of ionic currents and the possibilities
for novel experimental protocols to enable faster and more
reliable fitting.

SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.
2019.08.001.
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