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Abstract

A remarkable feature of the microtubule cytoskeleton is co-existence of sub-populations having 

different dynamic properties. A prominent example is the anaphase spindle, where stable 

antiparallel bundles exist alongside dynamic microtubules and provide spatial cues for cytokinesis. 

How are dynamics of spatially proximal arrays differentially regulated? We reconstitute a 

minimal system of three midzone proteins: microtubule-crosslinker PRC1, and its interactors 

CLASP1 and Kif4A, proteins that promote and suppress microtubule elongation, respectively. We 

find their collective activity promotes elongation of single microtubules, while simultaneously 

stalling polymerization of crosslinked bundles. This differentiation arises from (i) Strong rescue 

activity of CLASP1, which overcomes weaker effects of Kif4A on single microtubules, (ii) 

Lower microtubule and PRC1-binding affinity of CLASP1, which permit dominance of Kif4A 

at overlaps. In addition to canonical mechanisms where antagonistic regulators set microtubule 

lengths, our findings illuminate design principles by which collective regulator activity creates 

microenvironments of arrays with distinct dynamic properties.

INTRODUCTION

Microtubules form the backbone of micron-sized structures such as mitotic spindles, 

plant cortical arrays and neuronal axons. A remarkable feature of these structures is the 

co-existence of microtubule sub-populations with distinct dynamic properties, each tuned 

to specific functions1,2. For instance, axons contain long stable microtubules that form 

tracks for intra-cellular transport and exist alongside short dynamic microtubules that serve 
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as microtubule seeds and sources of tubulin3. In the plant cortex, microtubule bundles 

are organized into stable arrays that specify the axis of cell elongation4. However, the 

simultaneous presence of dynamic microtubules in the cortex is important in reorienting 

arrays in response to environmental signals. How the dynamics of distinct microtubule 

populations present in close proximity are differentially regulated is a fundamental question.

The presence of substructures with different dynamics is prominent in the mitotic spindle, 

which consists of different microtubule subpopulations such as interpolar, midzone, astral 

and kinetochore microtubules5-7. During the metaphase to anaphase transition, spindle 

microtubules are reorganized to form a crosslinked, antiparallel array at the cell center 

known as the spindle midzone8. This structure keeps separating chromosomes apart and 

provides positional cues for cell cleavage. Antiparallel microtubule arrays at the cell 

center are stable with low tubulin turnover frequencies9,10. In addition, the cell center also 

contains single dynamic microtubules arising from nucleation and polymerization of new 

microtubules in the inter-polar region of the cell11-13. How newly nucleated microtubules 

continue to grow while the crosslinked bundles present alongside them are largely stabilized 

is unclear.

The dynamics of microtubule populations at the spindle midzone are regulated by several 

Microtubule Associated Proteins (MAPs). In particular, the localization of three classes 

of MAPs to the cell center is conserved: (i) cross-linkers of antiparallel microtubules 

such as Protein Regulator of Cytokinesis-1 (PRC1)14-18 (ii) suppressors of microtubule 

growth such as kinesin Kif4A 19-21, and (iii) growth promoters, which are most often 

homologues of mammalian CLASP122-24. In this study, we focus on the collective activity 

of the mammalian PRC1-Kif4A-CLASP1 module in regulating the dynamics of different 

microtubule sub-populations.

PRC1 is a conserved non-motor MAP that specifically cross-links microtubules in an 

antiparallel orientation25,26. PRC1 directly binds and recruits other proteins to the cell 

center, including CLASP1 and Kif4A27-30. During anaphase, CLASP1 contributes to 

initiating the assembly of microtubules in the central spindle, and is important for 

their growth and stability22-24,31,32, while Kif4A regulates the length of microtubules 

in the spindle midzone19,27. In vitro, CLASP1 and Kif4A can each autonomously bind 

microtubules and regulate dynamics. CLASP1 is a rescue factor that suppresses microtubule 

catastrophes and promotes rescues, to increase the lengths of dynamic microtubules. While 

Kif4A also inhibits catastrophes, it reduces microtubule growth rate to limit polymer length. 

Microtubules are less dynamic in the presence of Kif4A due to the reduction of tubulin 

turnover at their plus-ends33-39. The individual activities of CLASP1 and Kif4A thus have 

opposite outcomes on the lengths and dynamicity of microtubules, with CLASP1 promoting 

elongation and Kif4A suppressing growth. The regulation of microtubule dynamics by the 

collective activity of CLASP1 and Kif4A has not been studied either in the context of single 

microtubules or antiparallel bundles.

A largely unexplored question in regulating the architecture of complex microtubule 

networks with different subpopulations such as the spindle midzone, is how can the 

dynamics of distinct spatially proximal microtubule arrays be differentially regulated? 
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An intuitive mechanism is to spatially segregate MAPs among subsets of microtubules40. 

However, segregation is difficult at the cell center where dynamic microtubule tips and 

stable overlaps occur within 0.6-0.7 μm of each other13, and microtubule-MAP interactions 

are typically characterized by micromolar binding affinities. Moreover, this strategy does 

not permit individual arrays to switch between stable and dynamic states. An alternate 

mechanism that would allow for such switching is to modulate MAP activity on specific 

arrays through post-translational modifications. However, when MAPs are present at high 

cytosolic concentrations and turnover rapidly between microtubule-bound and soluble 

fractions, it is challenging to regulate only a subset of MAP molecules through post­

translational modifications. Overall, it is unclear if the dynamics of proximal microtubule 

arrays can be differentially regulated simply by the collective activity of a set of MAPs in 

the absence of external factors such as regulatory proteins. Further, it is not known how they 

can do so in a manner that allows individual arrays to switch between dynamic states, which 

would be essential in forming large adaptive microtubule networks such as the spindle.

Here we report that a minimal protein module comprising of three spindle midzone 

proteins, PRC1, Kif4A and CLASP1, promotes the elongation of single microtubules, 

while simultaneously suppressing the growth of crosslinked microtubules. Central to this 

differential regulation is an “inverse microtubule affinity-activity relationship” for each 

regulator, with high rescue activity-low microtubule affinity of CLASP1 molecules and low 

growth suppression activity-high microtubule affinity of Kif4A motors, along with different 

PRC1-binding affinities. Our findings illuminate a design principle underlying differential 

regulation of proximal microtubule arrays by the collective activity of MAPs that have 

opposite effects on microtubule length and dynamicity.

RESULTS

CLASP1 dominates over Kif4A on single microtubules

We first determined the collective effect of Kif4A and CLASP1 on the length-regulation 

of single microtubules in the absence of PRC1. Recombinant CLASP1-GFP and Kif4A 

were purified from Sf9 cells (Extended data Fig. 1a). SEC-MALS (Size Exclusion 

Chromatography coupled with Multi-Angle Light Scattering) analysis of three constructs of 

CLASP1 that included different subsets of domains tagged with GFP (1-654, 654-1471 and 

805-1471) showed that they are all monomeric in solution (Extended data Fig. 1b). Dynamic 

light scattering studies further showed that CLASP1(805-1471)-GFP had low polydispersity 

and was elongated in shape (Extended data Fig. 1c). Full-length CLASP1 is thus likely to be 

a monomer in solution41.

The dynamics of single microtubules in the presence of soluble tubulin, full-length CLASP1 

and Kif4A was visualized using multi-wavelength TIRF microscopy (Methods). In controls 

with tubulin alone, microtubules exhibited dynamic instability, where rescue events were 

rare and most catastrophe events result in depolymerization of the microtubule back to the 

seed (hereafter referred to as “complete catastrophe”) (Fig. 1a). In experiments with 200 

nM CLASP1-GFP alone, a dramatic reduction of complete catastrophes was observed. With 

1000nM Kif4A alone, we saw a striking reduction in microtubule growth from seeds and an 
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increase in duration of pauses where no polymerization was recorded, consistent with known 

activities of these proteins34,35,37 (Fig. 1a).

We next held the CLASP1-GFP concentration constant (200 nM) and titrated in increasing 

amounts of Kif4A (125 - 1000 nM). Addition of increasing amounts of Kif4A resulted in 

lowering of polymerization rates and an increase in the frequency of the pause-state where 

polymerization is stalled (Fig. 1a-1b). In addition to pause frequency, pause duration also 

increased (Extended data Fig. 2a). We computed a “duration-weighted growth rate” for each 

kymograph to quantify growth rate while accounting for differences in duration of each 

phase (Methods, Fig. 1c). This parameter decreased systematically with increasing ratios 

of Kif4A:CLASP1, consistent with lower growth rate and increased duration of pausing at 

higher Kif4A concentrations.

We next examined how the combined activities of these proteins regulates microtubule 

length. Compared to tubulin-control, experiments with 200 nM CLASP1-GFP showed that 

the maximum length a microtubule grew from the seeds in the 20 min observation time, 

and the average microtubule length before any catastrophe event increased 2-fold (Fig. 

1d, Extended data Fig. 2b). Addition of increasing amounts of Kif4A along with 200 nM 

CLASP1-GFP systematically decreased the maximum microtubule length (Fig. 1d). We 

noticed that the tubulin control and experiments with 200 nM CLASP1-GFP + 250 nM 

Kif4A resulted in similar maximum microtubule lengths, even though the duration-weighted 

growth rate dropped by a factor of ~3 (Fig. 1c). The maximum microtubule length became 

lower than the tubulin-control only with the addition of 1000 nM Kif4A (Fig. 1d). This 

suggests that the activity of CLASP1 in promoting the elongation of microtubules dominates 

over the growth-suppressing activity of Kif4A and nearly 5-fold excess of Kif4A over 

CLASP1 is needed before Kif4A can effectively suppress microtubule elongation.

How does CLASP1 counteract growth suppression by Kif4A?

The ability of CLASP1 to override Kif4A activity on length regulation of single 

microtubules could arise due to either (i) higher microtubule-binding of CLASP1 compared 

to Kif4A, or (ii) suppression of catastrophes by CLASP1, or (iii) promotion of rescues by 

CLASP1.

We compared microtubule-binding of Kif4A and CLASP1, through fluorescence intensity 

analysis of respective GFP-tagged proteins on stabilized microtubules. The experiments 

were performed at low ATP (150 nM), where Kif4A binds uniformly along the microtubule 

lattice. The fluorescence intensity/pixel of Kif4A-GFP on microtubules was 4-9 fold 

higher than CLASP1-GFP (Fig. 1e). Similar results from experiments with higher ATP 

concentrations excluded the possibility that low concentrations of ATP promoted stronger 

Kif4A-GFP binding (Extended data Fig. 2c). These results indicate that Kif4A has a stronger 

affinity for microtubule-binding than CLASP1. We next compared the affinity of each 

protein for the ends of dynamic microtubules by performing single molecule experiments 

with CLASP1-GFP and Kif4A-GFP. Single molecules of CLASP1 bound and diffused all 

along the microtubule lattice, whereas Kif4A molecules moved processively towards and 

accumulated at the plus-end (Extended data fig. 2d). Ratio of tip to lattice fluorescence 

intensities showed that the plus-end occupancy of Kif4A was higher than CLASP1 under 
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conditions where the total microtubule-bound intensities of both proteins were similar 

(Extended data Figs. 2e-2f). Therefore, the elongation of microtubules in mixtures of 

CLASP1 and Kif4A does not arise from a higher microtubule-occupancy of CLASP1 

relative to Kif4A.

Next, we considered if the increased microtubule elongation could arise from suppression 

of catastrophe by Kif4A and CLASP1. However, under all assay conditions, the catastrophe 

frequency was uniformly ~ 2-2.5 fold less than control (Extended data Fig. 2g). Finally, 

we examined rescue frequency and found it increased 20-fold with 200 nM CLASP1-GFP 

compared to tubulin-control. No rescue events were observed with 1000 nM Kif4A alone. 

However, in all Kif4A:CLASP1 ratios tested, the rescue frequency remained higher than 

tubulin-control, with nearly 100% of all catastrophe events being rescued by 200 nM 

CLASP1-GFP (Fig. 1f, Extended data Fig. 2h). Remarkably, even with a 5-fold excess 

of Kif4A over CLASP1, nearly 40% of catastrophe events are rescued, despite a systematic 

decrease in the levels of microtubule-bound CLASP1-GFP with increasing Kif4A (Extended 

data Fig. 2i).

Together the data suggest that CLASP1’s activity as a rescue-promoting factor dominates 

on single microtubules over a wide concentration range, counteracting growth suppression 

by Kif4A to promote polymer elongation. Remarkably, this activity of CLASP1 dominates 

despite its weaker microtubule-binding affinity relative to Kif4A.

Differential regulation of single and crosslinked microtubules

In addition to binding to microtubules, both Kif4A and CLASP1 are known to bind to 

PRC127,28, raising the question if dynamics of PRC1-crosslinked microtubules are similar to 

those of single microtubules in the presence of Kif4A and CLASP1.

To answer this, we reconstituted the collective activity of Kif4A, CLASP1 and PRC1 

in assays where we can simultaneously visualize the dynamics of both crosslinked and 

single microtubules (Fig. 2a, hereafter referred to as “dynamic bundles assay”). In these 

experiments we can observe the elongation of preformed antiparallel microtubule overlaps 

and the formation of new overlaps from cross-linking of growing microtubules. In the 

presence of 0.5 nM PRC1 and 5 nM Kif4A, microtubule dynamics were suppressed, and 

microtubules exhibited relative sliding42,43 (Extended data Fig. 3a). With 0.5 nM PRC1 and 

200 nM CLASP1-GFP, kymographs and montages reveal a near-continuous extension of 

microtubules from plus-ends of both single microtubules and preformed overlaps for the 

duration of the experiment indicating that CLASP1 is active on both sets of microtubules 

under this condition (Figs. 2b-2c, Extended data Fig. 3b, Supplementary video 1). The 

addition of 10 nM Kif4A along with 0.5 nM PRC1 and 200 nM CLASP1-GFP resulted 

in continuous elongation of single microtubules, as they did in the absence of Kif4A. 

However, crosslinked microtubules in the same field of view showed a dramatic suppression 

of microtubule polymerization (Figs. 2d-2e, Extended data Fig. 3c, Supplementary video 2). 

Thus, a minimal system consisting of three proteins can differentially regulate the dynamics 

of single and crosslinked microtubules.
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Quantitative analysis of dynamics of crosslinked microtubules

How does the collective activity of PRC1, Kif4A and CLASP1 regulate the dynamics of 

crosslinked overlaps? We systematically increased the Kif4A concentration from 10 – 125 

nM while keeping CLASP1-GFP concentration constant at 200 nM and found that there 

was no microtubule elongation in over 70% of all preformed bundles analyzed (Extended 

data Fig. 4a). Instead, polymerization stalled when two anti-parallel microtubules formed a 

bundle and relative sliding was observed (Fig. 3a, Extended data Figs. 4b-4c). In contrast, 

at Kif4A concentrations below 10 nM, microtubule elongation was observed at all overlaps 

(Fig. 3b-3c, Extended data Fig. 4a). Consistent with this, duration-weighted growth rate 

for microtubule overlaps was close to 0 at Kif4A concentrations greater than 10 nM, and 

significant polymerization was apparent when Kif4A concentration is reduced to 5 nM (Fig. 

4a). Similarly, plots of maximum microtubule length and average length of overlaps revealed 

no extension until the Kif4A concentration was reduced to 5 nM in the presence of 200 nM 

CLASP1-GFP and 0.5 nM PRC1 (Fig. 4b, Extended data Fig. 5a). Together, these data show 

that Kif4A has a dominant effect in regulating the dynamics of crosslinked microtubules 

over a wide concentration range.

Does CLASP1 activity regulate the lengths of crosslinked microtubules in the presence 

of Kif4A? To answer this question, we lowered the Kif4A concentration to 5 nM where 

microtubule dynamics reinitiate, and measured the maximum microtubule overlap lengths 

at varying CLASP1-GFP concentrations. We found that increasing CLASP1-GFP from 0 to 

200 nM caused a 7-fold increase in the maximum overlap length (Fig. 4b). Consistent with 

this, over 90% of all catastrophes are rescued with 5 nM Kif4A and 200 nM CLASP1-GFP 

(Fig. 4c, Extended data Fig. 5b). Together these data indicate that at low Kif4A (<5 nM in 

our assay), CLASP1 activity contributes to elongation of microtubule overlaps.

We next examined the dynamics of single microtubules present in the same field of view 

as the crosslinked bundles. We found that increasing Kif4A concentration systematically 

from 0-125 nM in the presence of 200 nM CLASP1-GFP reduced the duration-weighted 

growth rate and maximum microtubule length 2-3-fold, but dynamics were not suppressed 

(Figs. 4d-4e). Consistent with this, the majority of catastrophe events are rescued under all 

conditions (Fig. 4f). Further, the trends observed in these quantities were consistent with the 

dynamics of single microtubules recorded in the absence of PRC1 (Figs. 1c-1d, 1f).

In summary, Kif4A activity is dominant on crosslinked microtubules resulting in the 

formation of stable overlaps under the same conditions where single microtubules continue 

to grow.

Why does Kif4A dominate over CLASP1 on crosslinked microtubules?

We performed TIRF assays to simultaneously visualize the localization of CLASP1-GFP 

and either Alexa 647-labeled Kif4A or Alexa 647-labeled PRC1, starting from the time 

point of initial encounter between two microtubules to the formation of a stable crosslinked 

bundle (Methods). In experiments with 200 nM CLASP1-GFP, 50 nM Kif4A and 0.5 

nM Alexa 647-labeled PRC1, PRC1 was distributed uniformly and enriched rapidly along 

overlaps (Extended data figs. 6a-6b). Next, the same experiment was performed using 200 
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nM CLASP1-GFP, 0.5 nM unlabeled PRC1 and either 5 nM or 50 nM Alexa 647-labeled 

Kif4A. Following the initial encounter between two growing microtubules, both CLASP1 

and Kif4A were enriched on the overlap relative to single microtubules (Extended data Fig. 

6c-6f and Supplementary video 3). Kif4A localizes to microtubule ends and we observed 

relative sliding as reported previously42,43. CLASP1 is uniformly distributed along the entire 

overlap, indicating that exclusion of CLASP1 from microtubule ends by Kif4A does not 

contribute to differential regulation of crosslinked and single microtubules (Extended data 

fig. 6b, 6d, 6f).

To quantitatively compare the enrichment of CLASP1 and Kif4A on bundles relative to 

single microtubules, we performed the dynamic bundle assays with GFP-tagged proteins. In 

assays performed with 0.5 nM PRC1 and 200 nM CLASP1-GFP, CLASP1 showed a 3-fold 

enrichment on overlaps (Extended data Fig. 7a). In contrast, with 0.5 nM PRC1 and 10 nM 

Kif4A-GFP, the enrichment of Kif4A was 14-fold on crosslinked microtubules compared to 

single microtubules (Extended data Fig. 7b).

What leads to these differences in enrichment? The dominant effects of Kif4A could 

arise from (i) stronger PRC1-Kif4A binding affinity compared to PRC1-CLASP1, or 

(ii) competition between Kif4A and CLASP1 for PRC1-binding. To investigate the first 

possibility, we performed BioLayer Interferometry (BLI) assays. We identified the main 

PRC1-binding region on CLASP1 as the SR-rich region between residues 654-805. The 

construct CLASP1(654-1471)-GFP bound to full-length PRC1 with a binding KD of 1.19 

± 0.2 μM (Fig. 5a). Under the same conditions, KIf4A-GFP displayed strikingly tighter 

binding to PRC1 with a KD of 12.47± 2.1 nM (Fig. 5b).

To test for competition between Kif4A and CLASP1 for PRC1-binding, we first identified 

that the CLASP1-binding region on PRC1 lies within residues 1-486 of PRC1 (Extended 

data Fig. 7c). The construct PRC1(1-486) binds Kif4A with the same affinity as full-length 

PRC133. We tested if PRC1(1-486) could simultaneously bind to Kif4A and CLASP1 in 

solution using a pull-down assay, where Kif4A was immobilized on magnetic beads and 

incubated with either PRC1, CLASP1 or a mixture of the two (Fig. 5c). An analysis of 

the SDS-PAGE gel of bound proteins showed that CLASP1 (654-1471)-GFP did not bind 

to Kif4A, but appeared in the Kif4A-bound fraction when it was incubated along with 

PRC1(1-486) (Fig. 5d, Extended data Fig. 7d). This indicates that PRC1 can bind to both 

KIF4A and CLASP1 simultaneously in solution.

Together these results suggest that higher enrichment of Kif4A compared to CLASP1 on 

PRC1-crosslinked overlaps does not arise from competition between Kif4A and CLASP1 

for PRC1-binding, but stems from the difference in their PRC1-binding affinities.

Is differential regulation altered in the presence of EB protein?

EB (End-Binding) proteins are known to localize CLASP to tips of dynamic 

microtubules35,37. Therefore, can the presence of EB enrich CLASP1 at tips of crosslinked 

microtubules so that bundles start elongating, and the differential regulation imparted by 

the PRC1-Kif4A-CLASP1 module is lost? To answer this question, we systematically 
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included Alexa 647-labeled EB3 in microscopy assays, in combination with the other 

protein components.

We first examined whether the two microtubule-end localizing proteins EB3 and Kif4A can 

simultaneously be present on microtubule tips, in a dynamic bundle assay. Kymographs 

of single microtubules showed that while 50 nM Alexa 647-labeled EB3 alone tracked 

growing tips, the addition of 5 nM Kif4A resulted in either EB3 or Kif4A being present at 

microtubule tips, but not both proteins simultaneously. The addition of 50 nm Kif4A almost 

completely abolished EB3 tip-tracking on both single and crosslinked microtubules, with 

only Kif4A occupying microtubule ends (Extended data Fig. 8a-c).

The SR-rich domain of CLASP1 contains the PRC1-binding region as well as the EB­

binding SxIP motif (Fig. 5a and Extended data fig. 1a). Therefore, we asked if CLASP1 

localized with PRC1 at overlaps or at microtubule tips with EB3 when both proteins are 

present. In dynamic bundle assays with 200 nM CLASP1-GFP, 50 nM Alexa 647-labeled 

EB3 and 0.5 nM PRC1, we found that CLASP1 is enriched at overlaps. Notably, EB3 

did not recruit CLASP1 to the tips of growing microtubules (Extended data Fig. 9a). To 

understand why, we compared CLASP1-PRC1 and CLASP1-EB3 binding. The KD for 

CLASP1-PRC1 binding is 1.19 ± 0.2 μM (Fig. 5a) in assay buffer that has 50 mM KCl. 

A precise dissociation constant for the CLASP1-EB3 interaction was difficult to measure 

in the same buffer due to low binding. In the absence of KCl, the SxIP-motif containing 

CLASP1(654-1471) protein bound to EB1 with a KD of 1.1 ± 0.3 μM44. The binding 

response of CLASP1(654-1471)-GFP to SNAP-EB3 (EB3 with SNAP-tag) decreased 

systematically as salt concentration was increased from 10 -50 mM KCl, showing that at 

50 mM KCl, binding affinity of CLASP-PRC1 interaction is higher than for CLASP1-EB3 

(Extended data Fig. 9b). The recruitment of CLASP1 by PRC1 would be further favored due 

to the high local concentration of PRC1 at overlaps where it binds cooperatively. Together 

these results suggested that the addition of EB3 would not alter differential regulation 

of single and crosslinked microtubules in the CLASP1-PRC1-Kif4A system. Subsequent 

dynamic bundle assays with CLASP1, Kif4A, PRC1 and EB3 confirmed that this is indeed 

the case (Extended data Fig. 9c)

DISCUSSION

It is well established that the length of a microtubule or the overlap between two 

microtubules can be tuned by the collective activity of MAPs with opposite functions, such 

as tubulin polymerases and depolymerases, or inward-outward sliding by plus- and minus­

end directed motors45. This study illustrates that in addition to these canonical mechanisms 

of length regulation that operate on a single microtubule or one type of array, the collective 

activity of MAPs on an ensemble of microtubule arrays can differentially regulate the 

dynamics and size of its constituent sub-populations.

We find that a minimal protein module comprised of three MAPs: the antiparallel crosslinker 

PRC1, a kinesin that suppresses microtubule dynamics Kif4A, and a rescue factor CLASP1, 

can establish a system where single microtubules predominantly elongate while tubulin 

polymerization is completely suppressed in crosslinked bundles under identical reaction 
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conditions (Fig 6a). In contrast to a simple model where differential regulation arises 

by restriction of CLASP1 localization to single microtubules and Kif4A to crosslinked 

overlaps, we find that all proteins are present on both microtubule populations. The length 

regulation of both single and crosslinked microtubules is neither a simple function of the 

Kif4A/CLASP1 ratio in solution, nor directly related to the lattice-bound concentration of 

either protein (Figs. 1d,1e,4b and 4e). Instead, it is determined by a combination of multiple 

parameters such as the geometry of microtubule arrays, microtubule- and PRC1-binding 

affinities and intrinsic activity of regulators on dynamic microtubules.

How are single and crosslinked microtubules differentially regulated by the PRC1-Kif4A­

CLASP1 module? We find that on single microtubules, CLASP1 activity dominates to 

promote rescue and thereby microtubule elongation even at a 5-fold lower concentration 

than Kif4A (Fig. 1). In this regime, microtubule-binding of CLASP1 is at least 4-9 fold 

weaker compared to Kif4A (Fig. 1e), which could arise from the transient nature of 

CLASP binding to the lattice35,37,39. We propose that similar to its isoform CLASP2, a low 

number of CLASP1 molecules bound along the microtubule lattice are sufficient to initiate a 

rescue, whereas high concentrations of Kif4A at the tips is needed to suppress microtubule 

dynamics35. This raises the question: how do low nanomolar concentrations of Kif4A 

overcome CLASP1 activity on crosslinked microtubules? The change in dynamics arises 

primarily from the 10-28 fold greater accumulation of PRC134,46 and the subsequent 14-fold 

enrichment of Kif4A that we observe at overlaps compared to single microtubules (Extended 

data Fig.7b). In comparison, CLASP1 is enriched only 3-fold at overlaps over single 

microtubules, due to lower PRC1-binding affinity relative to Kif4A. In combination with the 

lower microtubule-affinity of CLASP1, the strong recruitment of Kif4A to overlaps allows 

growth suppression by Kif4A to dominate on crosslinked microtubules. The concentration of 

PRC1 could serve as an additional knob to fine-tune the dynamics in this system, by altering 

the switch points shown in Fig.6a.

These studies show that in addition to differences in PRC1-binding affinity, an inverse 

relationship between intrinsic properties of Kif4A and CLASP1, i.e., lower activity-higher 

microtubule affinity of Kif4A and higher activity-lower microtubule affinity of CLASP1, 

is essential for differential regulation (Fig. 6b). While the contribution of PRC1-binding 

affinity to differential regulation is intuitive, the importance of the inverse relationship 

between the intrinsic microtubule-binding affinity and activity of the two regulators can be 

better understood by considering possible outcomes in its absence. For example, in addition 

to lower PRC1-binding affinity, if CLASP1 had high microtubule binding affinity, then 

its high activity would result in the elongation of bundles as well as single microtubules. 

Similarly, if Kif4A had both high activity and high microtubule binding affinity relative to 

CLASP1, both single and crosslinked microtubules would elongate less.

In contrast to a mechanism involving spatial segregation of proteins into different arrays, the 

concurrent activity of both Kif4A and CLASP1 on single and crosslinked microtubules as 

described here, has several advantages. First, tight spatial partitioning is difficult to achieve 

in dynamic systems where proteins are characterized by fast turnover on microtubules, as 

is the case for PRC1, CLASP1 and Kif4A at the cell center13,24,47. Second, this system 

permits the modulation of stability and length of single and crosslinked microtubules by 
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both regulators. Third, the presence of both proteins allows individual microtubule arrays 

to independently switch between dynamic states. This property would be advantageous in 

re-initiating microtubule growth in case of damage to either array. Finally, the simultaneous 

presence of all three proteins imparts remarkable robustness to the system, as exemplified 

by experiments with EB proteins, where we find that the protein-protein interactions 

that characterize the CLASP1-PRC1-Kif4A module are not perturbed by addition of EB 

(Extended data figs. 8 & 9). Thus, the characteristic features of the PRC1-Kif4A-CLASP1 

module presents a highly robust, yet versatile and tunable system.

How might such a module, which consists of regulators with opposite effects on microtubule 

dynamicity and lengths, promote microtubule organization at the cell center during 

anaphase? Features of the anaphase spindle differ widely across cell types, with the number 

of inter-polar microtubules varying from fewer than 10 to many 100s, and with spindle 

elongation lengths ranging from 1 to 10 μm48. In the face of such diversity, the presence of 

both the growth promoter and suppressor on single and crosslinked microtubules provides 

a flexible strategy whereby the dominant regulator could change depending on the spindle 

type and the need of the system. This is seen in systems such as Xenopus egg extracts 

and Drosophila spermatocytes at anaphase where CLASP homologs increase the stability 

of all spindle microtubules, including bundles23,49 . In fission and budding yeast, the 

spindle localization of the growth suppressors of the Kinesin-8 family is independent of 

the cross-linker Ase1p21,50. This may reflect an adaptation suited to the large elongation of 

its spindle, which is chiefly mediated by the activity of rescue factors and polymerases such 

as CLASP and XMAP215 homologs on crosslinked microtubules22,50. In yet other systems, 

the nucleation and elongation of non-centrosomal microtubules at anaphase onset contribute 

significantly to spindle assembly. In these systems, CLASP activity on single microtubules 

is essential for initial microtubule assembly31. Together, the three-protein module provides 

an adaptable, versatile platform which can promote the nucleation and elongation of new 

microtubules, and tune the lengths and stability of single and crosslinked arrays separately, 

through differential regulation of their dynamics.

On a broader note, the “inverse activity-microtubule affinity relationship” that underlies 

differential regulation does not rely on features specific to the anaphase spindle, and 

these design principles can be extended to other cytoskeletal structures across the cellular 

cytoplasm.

METHODS

Protein expression and purification

Full-length human CLASP1 protein (GenBank: BC112940.1) and all deletion constructs 

(CLASP1(1-654), CLASP1(654-1471) and CLASP1(805-1471)) were cloned into a 

modified pFastBac expression vector (Thermo Fischer Scientific) that contained a 

PreScission Protease cleavable N-terminal Twin-Strep-Tag and a C-terminal GFP followed 

by a Tobacco etch Virus (TEV) cleavable 6x-His tag. Proteins were expressed in the Sf9 

insect cell line using the Bac-to-Bac® Baculovirus Expression System (Thermo Fischer 

Scientific), and cells were grown in HyClone™ CCM3 SFM (GE Life Sciences). Pellets of 

all deletion constructs were lysed by a short sonication in buffer A (50 mM Phosphate buffer 
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pH 8.0, 300 mM NaCl, 10 % glycerol, and 30 mM imidazole) supplemented with 0.15 % 

tween, 0.5 % Igepal 630, 2 mM TCEP, 1 mM PMSF, 0.5 mM Benzamidine Hydrochloride, 

75 U Benzonase and protease inhibitor cocktail (Thermo Scientific). The lysate was clarified 

by ultracentrifugation (70,000 x g, 30 min) and supernatant was incubated with Ni-NTA 

resin (Qiagen) for 1 hour. The resin was washed with buffer A supplemented with 0.15 

% tween and 0.5 mM TCEP and bound protein was eluted with 50 mM Phosphate buffer 

pH 8.0, 300 mM NaCl, 5 % glycerol and 400 mM imidazole. Peak protein fractions were 

pooled and incubated with TEV and PreScission protease (30:1 w/w of protein:protease) 

overnight at 4 °C. The proteins were further purified by size exclusion chromatography 

(SEC; HiLoad 16/600 Superdex 200 pg, GE Healthcare) in 50 mM phosphate pH 8.0, 

300 mM NaCl, 5 % glycerol and 5 mM β-mercaptoethanol, and flash-frozen in liquid 

nitrogen. Full-length CLASP1-GFP was purified similar to the protocol described above, 

with the following modifications: Lysis buffer contained 50 mM Phosphate buffer pH 7.5, 

500 mM NaCl, 10 % glycerol, 30 mM imidazole, 100 mM arginine, supplemented with 

0.15 % tween, 0.5 % Igepal 630, 2 mM TCEP, 1 mM PMSF, 75 U Benzonase and protease 

inhibitor cocktail (Thermo Scientific). Following a short sonication and ultracentrifugation, 

the clarified supernatant was passed through a Ni-NTA superflow cartridge (Qiagen). After 

elution, fractions containing pure protein were pooled and diluted with elution buffer, such 

that protein concentration did not exceed 1 mg/ml. The 6x-His tag was cleaved with TEV 

protease in the presence of 100 mM arginine, 2 mM β-mercaptoethanol, 5 mM EDTA and 

0.1 % tween. The cleaved protein was further purified through SEC in a Superose 6 increase 

10/300 GL column (GE Healthcare), in buffer containing 50 mM phosphate pH 7.5, 500 mM 

NaCl and 10% glycerol.

Kif4A-GFP, Kif4A33 and PRC146 were purified as previously described. Kif4A-CLIP and 

SNAP-PRC1 were purified similar to their respective full-length proteins.

Full-length human EB3 gene was expressed in Rosetta (DE3) cells from a pST50Tr­

HISDHFR plasmid, with an N-terminal His-tag followed by a TEV cleavage site and the 

SNAP protein (Plasmid from Dr. Julie Welburn’s lab, University of Edinburgh, Scotland). 

Protein expression was induced by the addition of 0.1 mM IPTG, and cells were grown 

overnight at 18°C and centrifuged. Frozen cell pellets were thawed and lysed by sonication 

in PBS buffer at pH 8.0, supplemented with 30 mM Imidazole, 0.15 % tween, 0.5 % 

Igepal 630, 2 mM TCEP, 1 mM PMSF, 0.5 mM Benzamidine Hydrochloride, 75 U 

Benzonase and protease inhibitor cocktail (Thermo Scientific). Lysate was clarified through 

ultracentrifugation at 80,000xg for 40 minutes, and the supernatant was incubated with 

Ni-NTA resin for 1 hour. The resin was washed with lysis buffer and bound-protein was 

eluted with lysis-buffer supplemented with 400 mM Imidazole. Subsequently, cleavage of 

the purification tag and further purification by SEC through a Superdex 200 10/300 GL 

column were performed as described for CLASP deletion constructs.

Tubulin was purified51 or purchased from either PurSolutions, LLC or Cytoskeleton, Inc.. 

Tubulin was labeled in 1:10 proportions with biotin or X-rhodamine according to published 

protocols or mixed with prelabeled tubulin purchased from Cytoskeleton, Inc.
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Fluorescent labeling of proteins

CLIP and SNAP tagged proteins were labeled using CLIP Surface-647 and SNAP 

Surface-647 dyes (New England Bio Labs), respectively. Purified protein at a concentration 

of 2 mg/ mL was incubated with 10 mM β-mercaptoethanol and 4x molar excess of dye 

at room temperature for 5 min, and then on ice overnight. Unlabeled dye was removed 

through dialysis in a Mini Dialysis Kit, 8 kDa cut-off (Cytiva) for 4 hours at 4°C, in buffer 

containing 50 mM phosphate pH 8.0, 300 mM NaCl, 5% glycerol, 30% sucrose, 10 mM 

β-mercaptoethanol, followed by multiple rounds of concentration and dilution through an 

Amicon Ultra 0.5 mL concentrator (Sigma-Aldrich). Labeling efficiency was calculated 

by measuring absorbance at 280 nm and 650 nm (A280 and A650) and using extinction 

coefficients of protein and dye (ε280 and ε650 ), as

% labeling efficiency = 100 x (A650 ∕ ε650) ∕ (A280 ∕ ε280)

The labeling efficiency for the proteins used in TIRF assays were Alexa 647-labeled Kif4A: 

47%; Alexa 647-labeled PRC1: 17% and Alexa 647-labeled EB3: 45%.

Solution light scattering studies

For SEC-MALS studies, between 600-900 μg of each CLASP1 protein was injected into 

a Superose 6 column (GE Healthcare) in a buffer containing 50 mM phosphate pH 

7.6, 200 mM NaCl, 5% Glycerol and 1 mM DTT. The column was connected to High 

Performance Liquid Chromatography System (HPLC), Agilent 1200, (Agilent Technologies, 

Wilmington, DE) equipped with an autosampler. The elution from SEC was monitored 

by a photodiode array (PDA) UV/VIS detector (Agilent Technologies, Wilmington, DE), 

differential refractometer (OPTI-Lab rEx Wyatt Corp., Santa Barbara, CA), static and 

dynamic, multiangle laser light scattering (LS) detector (HELEOS II with QELS capability, 

Wyatt Corp., Santa Barbara, CA). Two software packages were used for data collection and 

analysis: the Chemstation software (Agilent Technologies, Wilmington, DE) controlled the 

HPLC operation and data collection from the multi-wavelength UV/VIS detector, while the 

ASTRA software (Wyatt Corp., Santa Barbara, CA) collected data from the refractive index 

detector, the light scattering detectors, and recorded the UV trace at 280 nm sent from the 

PDA detector. The weight average molecular masses, Mw, were determined across the entire 

elution profile in the intervals of 1 sec from static LS measurement using ASTRA software 

as previously described52. Hydrodynamic radii, Rh, were measured from an “on-line” 

dynamic LS measurement every 2 sec. The dynamic light scattering signal was analyzed 

by the method of cumulants53.

The SEC-LS/UV/RI instrumentation was supported by NIH Award Number 

1S10RR023748-01. The content of this paper is solely the responsibility of the authors 

and does not necessarily represent the official views of the National Institutes of Health.

Total Internal Reflection Fluorescence Microscopy Assays

Microscope chambers were constructed using a 24 x 60 mm PEG-Biotin coated glass slide 

and 18 x 18 mm PEG coated glass slide separated by double-sided tape to create two 
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channels for exchange of solutions. Standard assay buffer was 1 x BRB80 (80 mM K-PIPES 

at pH 6.8, 2 mM MgCl2 and 1 mM EGTA ), 50 mM KCl, 1 mM ATP, 1 mM GTP, 0.1 % 

methylcellulose and 3 % sucrose. Imaging was carried out in the presence of an antifade 

reagent mix (40 mg/ml Glucose Oxidase, 35 mg/ml Catalase, 25 mM Glucose, 0.5% 

β-mercaptoethanol and 10 mM Trolox reagent). Images were acquired using NIS-Elements 

(Nikon) and analyzed using ImageJ. Data were analyzed from experiments performed on 

three independent days, unless specified otherwise.

Dynamic Microtubule Assay of Single Microtubules: Experiments with dynamic 

microtubules were carried out as described in Jiang et al., 201944. X-rhodamine 

(1:10 labeled to unlabeled) and biotin (1:10 labeled to unlabeled) labeled microtubules 

were polymerized in the presence of GMPCPP, a non-hydrolysable GTP-analogue, and 

immobilized on a neutravidin coated glass coverslip. Coverslips were briefly incubated with 

casein to block non-specific surface binding. A low concentration of CLASP1-GFP (1 nM) 

was added and accumulation of protein preferentially to the plus-end of seed was used as 

an indicator of microtubule polarity. Subsequently, 16 μM tubulin (1 X-rhodamine-labelled 

tubulin:10 unlabeled tubulin) in assay buffer and antifade reagent along with CLASP1 and 

Kif4A protein and ATP were added. Images were recorded every 10 seconds for 20 minutes. 

In all microtubule experiments, concentrations of monomeric CLASP1 and dimeric Kif4A 

are reported, unless otherwise specified.

Dynamic Microtubule Assay of Microtubule Bundles (“Dynamic bundle 
assay”): HiLyte647 (1:10 labeled to unlabeled) and biotin (1:10 labeled to unlabeled) 

labeled microtubules were polymerized in the presence of GMPCPP, a non-hydrolysable 

GTP-analogue, and immobilized on a neutravidin coated glass coverslip. Coverslips were 

briefly incubated with casein to block non-specific surface binding. Microtubule bundles 

were formed through the addition of 5 nM PRC1 and GMPCPP-polymerized X-rhodamine 

microtubules. CLASP1, Kif4A, PRC1 and tubulin were subsequently added in the presence 

of antifade reagents. Images were recorded every 10 seconds for 20 minutes. For 

experiments performed to quantify the enrichment of Kif4A-GFP on bundles in the absence 

of CLASP1, data from 2 sets of experiments from two independent days of experiments 

were analyzed. In all microtubule experiments, concentrations of monomeric CLASP1 and 

dimeric Kif4A and PRC1 are reported, unless otherwise specified.

For experiments performed with EB3, dynamic bundle assays were performed as described 

above, with the only difference being the use of X-rhodamine-labeled GMPCPP microtubule 

seeds. For images shown in Extended data fig. 8c, kymographs from 45 bundles from 3 

independent days of experiments were visually examined and a representative kymograph 

was chosen. Similarly, for Extended data figs. 9a and 9c, 73 and 67 kymographs were 

respectively examined.

Simultaneous visualization of CLASP1 and either Kif4A or PRC1 on 
bundles: A high density of X-rhodamine labeled, GMPCPP microtubule seeds were 

immobilized on the coverslip as described above. Microtubule polymerization was initiated 

by the addition of X-rhodamine labeled tubulin, 50 mM KCl, 1 mM ATP, GTP, CLASP1­

GFP and a combination of either Alexa 647-labeled Kif4A-CLIP and unlabeled PRC1, 
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or Alexa 647-labeled SNAP-PRC1 and unlabeled Kif4A. Data were collected from 2 

independent experiments for CLASP1-GFP + Alexa 647-labeled PRC1 + Kif4A, and PRC1 

localization and enrichment were found to be consistent with published reports. Data were 

collected from 3 independent experiments for CLASP1-GFP + Alexa 647-labeled Kif4A + 

PRC1. All videos from 3 independent experiments were visually analyzed and representative 

bundles where 2 growing tips encounter each other to form a crosslinked overlap were 

chosen for the montages and line-scans shown in Extended data fig. 6. Time point t=0 

was set at the first frame where microtubules encountered each other, as judged from the 

intensity in the X-rhodamine channel. For line-scans, intensities were normalized from 0 

(0 intensity) to 100 (maximum intensity recorded over all time points in each individual 

channel).

Single molecule imaging: Microtubule seed immobilization and polymerization 

were performed as described in the section “Dynamic Microtubule Assay of Single 

Microtubules”. For single molecule imaging, assays were performed in the absence of 

KCl. A time-lapse sequence of images was acquired at a rate of 0.3 frames/s using an 

ANDOR iXon Ultra EMCCD camera. Kif4A concentrations in these experiments refer to 

the monomer.

Kif4A-GFP and CLASP1-GFP binding to single microtubules: HiLyte647 (1:10 

labeled to unlabeled) and biotin (1:10 labeled to unlabeled) labeled microtubules were 

polymerized in the presence of GMPCPP and taxol, and immobilized on a neutravidin 

coated glass coverslip. Coverslips were briefly incubated with casein to block non­

specific surface binding. Kif4A-GFP or CLASP1-GFP were subsequently added, along 

with standard assay buffer, antifade reagent, ATP and 50 mM KCl. For steady-state 

analysis of GFP intensity, Kif4A-GFP and CLASP1-GFP were incubated with immobilized 

microtubules for 5 min before still images were recorded. Data from two independent days 

of experiments were combined. Data from a third day was collected and analyzed and 

showed consistently higher intensity values owing to changes in the microscope’s settings. 

These data were separately analyzed and showed the same trends as data from the other two 

sets. Concentrations of monomeric Kif4A-GFP were used in these experiments to enable 

direct comparison between CLASP1-GFP and Kif4A-GFP intensities.

Quantification and Statistical Analysis:

Kymographs from growing microtubules were generated using the multiple kymograph 

plugin in ImageJ. Quantitative analyses were carried out in GraphPad Prism. “n” numbers 

in all experiments refer to the unique number of microtubules used for the dataset and 

standard deviations correspond to deviations from the mean. Ordinary one-way ANOVA 

tests with Dunnett correction for multiple comparisons were perfomed on GraphPad Prism 

to determine P-values for statistical significance.

Growth Rate Analysis: For each event in a kymograph, growth rates were calculated as:

xfinal − xinitial
yfinal − yinitial
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The output was the growth rate in nm/s. These values were used to plot the growth rate of 

each event and the distribution of growth rates.

Distribution plot of growth rates: Individual growth rates from each event on a 

kymograph were plotted on a distribution plot using GraphPad Prism. Relative frequency 

values were plotted with a bin width of 3 nm/s.

Duration-weighted growth rate: 

For the illustrative kymograph shown above, the growth rate over each phase is uniform, and 

depolymerization events are rapid and occur within the time gap between successive images.

The growth rates for each of the 4 phases thus become x2 − x1
y2 − y1 , x4 − x3

y4 − y3 , x5 − x4
y5 − y4  and x6 − x5

y6 − y5 .

The average growth rate over the entire kymograph, accounting for the differences in 

duration of each phase equates to:

x2 − x1
y2 − y1 × y2 − y1

Y total + x4 − x3
y4 − y3 × y4 − y3

Y total + x5 − x4
y5 − y4 × y5 − y4

Y total + x6 − x5
y6 − y5 × y6 − y5

Y total

In general, the average growth rate of a microtubule weighted by the duration of each of the 

‘n’ phases it goes through is

∑
n

x(n + 1) − x(n)
Y total

Fraction of time microtubule stalled plot: Instantaneous growth rates were recorded 

and all values <3 nm/s were considered as stalling events. (Pixel size of the Zyla CMOS 

camera is 65 nm. Frames were recorded every 10 seconds for all images. Therefore at 3 
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nm/s, there would only be 30 nm growth which is less than 1 pixel). The fraction of time 

each microtubule stalled was calculated as below:

time spent in growtℎ rate of less tℎan 3 nm ∕ s
Total time of kymograpℎ

Average microtubule length before catastrophe event analysis: Microtubule 

lengths were measured from the tip of a growing microtubule to the seed for each 

catastrophe event. Length at the last timepoint was excluded from the calculation as no 

catastrophe could be recorded. Each individual length from all kymographs analyzed were 

plotted.

Maximum microtubule length analysis: For each kymograph, the maximum length 

each microtubule reached was recorded. Lengths were measured from the tip of the 

microtubule to the seed. Length at the last timepoint was included. Each individual value for 

each kymograph was plotted.

Average number of rescues: For each kymograph, the number of rescue events were 

recorded. Rescue events were defined as catastrophe events which did not depolymerize to 

the GMPCPP microtubule seed.

Rescue as a fraction of total number of catastrophes: For each kymograph, the 

number of rescue events and catastrophe events were recorded. Rescue events were defined 

as above and catastrophe events were defined as all depolymerization events. The frequency 

of rescue events as a fraction of total number of catastrophe events were plotted for each 

individual kymograph.

Intensity analysis: ImageJ was used to assess GFP fluorescence intensities on 

microtubules. For all average intensity per pixel values recorded, a rectangular area along 

the microtubule was selected with a width of 5 pixels. Background intensities were also 

subtracted locally from regions of interest using a box of the same size close to the 

selected microtubule. Intensities were not analyzed for microtubules found at the edges 

of the camera’s field of view.

Single molecule GFP Intensities: Tip intensity was determined for individual growth 

events from kymographs using a 7-pixel wide line. The same line was also drawn on a 

region of the microtubule lattice to determine lattice intensity. Total intensity was calculated 

as the sum of the tip intensity and lattice intensity. The intensity values were corrected by 

subtraction of the mean intensity of the background.

EB3 tip intensities: The tip intensity for EB3 in the presence of Kif4A was determined 

over a region of fixed length and 7-pixel width for individual growth events. The intensity 

values were corrected by subtraction of the mean intensity of the background.
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BioLayer Interferometry (BLI) Assays

BLI experiments were performed in an Octet Red 96 instrument (ForteBio). Full length 

PRC1 or PRC1(1-486) (the ‘ligand’ protein) was immobilized on an Amine-Reactive 

Second-Generation (AR2G) sensor at a concentration of 12 μg/ml in sodium acetate buffer 

pH 5, using the AR2G Reagent kit (ForteBio). The analyte proteins (CLASP1(1-654)-GFP, 

CLASP1(1-805)-GFP, CLASP1(805-1471)-GFP and Kif4A-GFP) were diluted in binding 

buffer: 1X BRB80 (80 mM K-PIPES at pH 7.2, 1 mM MgCl2 and 1 mM EGTA ) 

supplemented with 50 mM KCl, 1 mM DTT and 0.1 % tween, at concentrations ranging 

from 0-10 μM for CLASP proteins and 0-120 nM for Kif4A-GFP. Ligand-bound sensors 

were first dipped into quenching solution (1 M ethanolamine), and then in pre-blocking 

solution containing binding buffer with 1 mg/ml α-casein, to reduce non-specific binding 

of analyte. Following this, they were dipped briefly in binding buffer and then into analyte 

proteins to record the binding response for association of analyte to ligand, and then into 

plain binding buffer for dissociation. The assay was repeated sans ligand protein to measure 

non-specific binding of analyte to the sensor. Data were analyzed using Data Analysis 9.0 

software (ForteBio) and double referencing was performed to correct for drift of ligand from 

sensor and non-specific binding of analyte. Binding responses at 180s in the association step 

from three independent experiments were plotted against analyte concentrations and data 

were fit to a Hill equation to determine the binding KD.

For EB3-CLASP1 experiments, master stocks of 20 μg/ml SNAP-EB3 in sodium acetate 

buffer pH 5 (ligand protein), and 1 μM CLASP1(654-1471)-GFP (analyte) in binding buffer 

without KCl were prepared. Proteins were aliquoted into wells of a 96 plate for BLI 

experiments, and salt concentrations were changed by the addition of KCl. The assay was 

performed as described above and ch anges in the binding response of CLASP1with salt 

were verified from three independent experiments.

Pull-down assays

Anti-Flag M2 magnetic beads (Sigma Aldrich) were equilibrated in assay buffer containing 

1X BRB80 at pH 7.2, 50 mM NaCl, 0.1% CHAPS, 1 μg/ μl of α-casein and 0.5 mM 

TCEP. Kif4A-CLIP protein with an N-terminal Flag tag, at a concentration of 2.5 μM 

in assay buffer with 100 μM ATP was immobilized on equilibrated beads placed on ice. 

The beads were then washed 3 times with an excess of assay buffer and all liquid from 

the tubes were removed using a magnetic separation rack. Reaction mixtures containing 

either 5 μM PRC1(1-486), 5 or 10 μM CLASP1(654-1471)-GFP or combinations of the two 

proteins in assay buffer were incubated with the beads for one hour. To measure non-specific 

binding of PRC1 and CLASP1, equal volumes of reaction mixtures were incubated with 

equilibrated beads that were not bound to Flag-Kif4A-CLIP. Following incubation, unbound 

proteins were collected from the beads and mixed with SDS-gel loading dye. The beads 

were then washed with assay buffer 3 times and then incubated at 98°C for 3 min in the 

presence of SDS-gel loading dye to elute bound proteins. Protein samples were run on 

an NOVEX WW 4-12% TG GEL (Thermo Fisher Scientific), and gels were stained with 

Coomassie. Intensities of gel bands were quantified by measuring absorbance at 635 nm on 

an Amersham™ Typhoon™ Biomolecular Imager (Cytiva life sciences). Measurements of 

gel bands of known concentrations of BSA under the same gel loading, staining and imaging 
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conditions confirmed that the detector showed a linear response in the range of intensities 

being imaged.

Quantitative analysis of gel intensities: In order to account for differences in the 

volume of beads per reaction and the volume of sample loaded, intensities of all bands 

were normalized against the intensity of anti-flag antibody present in the same sample. 

Normalized intensities from three independent pull-down experiments were plotted, and 

differences between band intensities were tested for statistical significance using an ordinary 

one-way ANOVA test on GraphPad Prism.

Extended Data

Extended Data Fig. 1. Related to Fig. 1
a. Domain diagram of CLASP1 constructs used in this study (top), along with SDS-PAGE 

gel of all purified proteins used in this study (bottom). SR-rich: Serine Arginine rich, CLIP­

ID: CLIP-Interacting Domain, M: molecular weight marker, with corresponding masses in 

kDa on the side.

b. SEC-MALS profiles showing elution volumes of CLASP1 constructs from a Superose-6 

column, and their corresponding molecular weights in solution. Mean and standard deviation 
of calculated Molecular weight (expected weight of monomer): CLASP1(1-654)-GFP 

(black) 108.8 ± 0.8 kDa (101.5 kDa); CLASP1(805-1471)-GFP (red) 107.6 ± 10.8 kDa 

(102.2 kDa); CLASP1(654-1471)-GFP (blue):128.7 ± 0.3 kDa (120 kDa).

c. Auto-correlation function for apex of eluting peak of CLASP1(805-1471)-GFP shown in 

(b), obtained through dynamic light scattering studies. Calculated hydrodynamic radius, Rh= 

5.49 ± 0.12 nm.
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Extended Data Fig. 2. Related to Fig. 1
n = number of kymographs analyzed from 3 independent experiments, except where 

indicated.

P values were calculated from an ordinary one-way ANOVA test with Dunnett correction for 

multiple comparisons.

a. Scatter plot with bar graph showing mean of fraction of time microtubules are stalled. 

Error bars indicate standard deviation. Assay conditions: tubulin control (0.0 ± 0.1, n = 59), 

200 nM CLASP1 (0.0 ± 0.0, n = 67), 200 nM CLASP1 + 125 nM Kif4A (0.3 ± 0.3, n = 67), 

200 nM CLASP1 + 250 nM Kif4A (0.4 ± 0.3, n = 73), 200 nM CLASP1 + 1000 nM Kif4A 

(0.6 ± 0.4, n = 73) and 1000 nM Kif4A (0.9 ± 0.1, n = 39).

b. Box and whisker plot of average length of microtubule before catastrophe. Plus-sign 

indicates mean. Horizontal lines within box indicate the 25th, median (center line) and 75th 

percentile. Error bars indicate minimum and maximum range. Mean and standard deviation 

for assay conditions: Tubulin control (3.0 ± 2.4 μm, n = 241), 200 nM CLASP1 (6.1 ± 3.2 
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μm, n = 150), 200 nM CLASP1 + 125 nM Kif4A (4.0 ± 1.9 μm, n = 82), 200 nM CLASP1 

+ 250 nM Kif4A (3.2 ± 1.8 μm, n = 107), 200 nM CLASP1 + 1000 nM Kif4A (1.7 ± 1.0 

μm, n = 152) and 1000 nM Kif4A (0.9 ± 0.6 μm, n = 24). P < <0.0001 for 1000 nM Kif4A 

compared to tubulin control.

c. Scatter plot of Kif4A-GFP intensity per pixel on taxol-stabilized microtubules in the 

presence of 150 μM ATP (n = number of microtubules analyzed from 2 independent 

experiments). Concentrations refer to monomeric Kif4A. Mean and standard deviation of 

intensity for assay conditions with Kif4A-GFP: 20 nM (504.2 ± 395.8, n=54), 100 nM (2556 

± 1182, n=69), 400 nM (7823 ± 1961, n=68), 1000 nM (8276 ± 3386, n=69).

d. Representative kymographs generated from single molecule TIRF experiments of 1 nM 

CLASP1-GFP on dynamic microtubules (left, 25 kymographs examined) and 12 nM Kif4A­

GFP (right, 34 kymographs analyzed), showing GFP channels. Scale bars: x= 2 μm and 

y=15 s. Schematic indicates position and polarity of microtubule at the start of imaging. 

Red lines on kymographs indicate the position of the microtubule as deduced from the 

X-rhodamine channel.

e. Scatter plot of tip to lattice GFP intensity ratio. Horizontal line indicates the mean. Error 

bars indicate standard deviation. Tip to lattice intensity ratios for 1 nM CLASP1-GFP (1.01 

± 0.04; n =25); 10 nM CLASP1-GFP (0.99 ± 0.12; n =17); 4 nM Kif4A-GFP (1.36 ± 0.36; n 

=33); 12 nM Kif4A-GFP (1.71 ± 0.66; n =34). P = 0.0066 for 1 nM CLASP1 compared to 4 

nM Kif4A.

f. Scatter plot of the total GFP intensity. Horizontal line indicates the mean. Error bars 

indicate standard deviation. Total intensity values for 1 nM CLASP1-GFP (0.41 x 106±0.18 

x 106; n = 25); 10 nM CLASP1-GFP (1.58 x 106±0.44 x 106; n = 17); 4 nM Kif4A-GFP 

(0.43 x 106±0.26 x 106; n=33); 12 nM Kif4A-GFP (0.67 x 106±0.35 x 106; n =34). P is not 

significant for for 1 nM CLASP1 compared to 4 nM Kif4A.

g. Box and whisker plot of average number of catastrophes in 20 minutes. Plus-sign 

indicates mean. Horizontal lines within box indicate the 25th, median (center line) and 75th 

percentile. Error bars indicate minimum and maximum range. Mean and standard deviation 

for assay conditions: tubulin control (5.1 ± 2.2, n = 65), 200 nM CLASP1 (1.9 ± 1.6, n = 

76), 200 nM CLASP1 + 125 nM Kif4A (1.5 ± 1.5, n = 69), 200 nM CLASP1 + 250 nM 

Kif4A (1.8 ± 1.7, n = 73), 200 nM CLASP1 + 1000 nM Kif4A (2.3 ± 2.5, n = 73) and 1000 

nM Kif4A (1.6 ± 3.2, n = 38). P < 0.0001 for (i) tubulin control to 200 nM CLASP1. P is not 

significant (> 0.05) for 200 nM CLASP1 to (i) 200 nM CLASP1 + 125 nM Kif4A, (ii) 200 

nM CLASP1 + 250 nM Kif4A, (iii) 200 nM CLASP1 + 1000 nM Kif4A and to (iv) 1000 

nM Kif4A.

h. Box and whisker plot of average number of rescues in 20 minutes. Plus-sign indicates 

mean. Horizontal lines within box indicate the 25th, median (center line) and 75th percentile. 

Error bars indicate minimum and maximum range. Mean and standard deviation for assay 

conditions: tubulin control (0.1 ± 0.4, n = 60), 200 nM CLASP1 (2.0 ± 1.5, n = 67), 200 nM 

CLASP1 + 125 nM Kif4A (1.4 ± 1.5, n = 67), 200 nM CLASP1 + 250 nM Kif4A (1.4 ± 1.5, 

n = 73), 200 nM CLASP1 + 1000 nM Kif4A (0.9 ± 1.3, n = 73) and 1000 nM Kif4A (0.0 ± 

0.0, n = 37). P < 0.0001 for tubulin control to 200 nM CLASP1 and P = 0.0025 for 200 nM 

CLASP1 + 1000 nM Kif4A to 1000 nM Kif4A.

i. Scatter plot of CLASP1-GFP fluorescence intensity per pixel on single microtubules in the 

presence of CLASP1-GFP and Kif4A at indicated concentrations. Red bars indicate mean 

Mani et al. Page 20

Nat Chem Biol. Author manuscript; available in PMC 2021 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(center line) and standard error of mean. Mean and standard deviation of intensity per pixel 

for assay conditions: 200 nM CLASP1 (25.9 ± 4.6, n = 59), 200 nM CLASP1 + 125 nM 

Kif4A (23.0 ± 6.5, n = 59), 200 nM CLASP1 + 250 nM Kif4A (18.4 ± 6.3, n = 60) and 200 

nM CLASP1 + 1000 nM Kif4A (12.8 ± 6.3, n = 59). P values < 0.0001 for 200 nM CLASP1 

when compared to (i) 200 nM CLASP1 + 250 nM Kif4A and (ii) 200 nM CLASP1 and 1000 

nM Kif4A. n is number of microtubules analyzed from 3 independent experiments.

Extended Data Fig. 3. Related to Fig. 2
a. Schematics and montages of representative microtubule bundles (red) grown from 

microtubule seeds (blue) in the presence of 5 nM Kif4A and 0.5 nM PRC1. A total of 20 

events were examined. Schematics indicate the plus end (+) of the microtubules within the 

bundle. Velocity arrow indicates direction of microtubule sliding. X-Rh MT: X-Rhodamine 

microtubules. Scale bar represents 2 μm.

b & c. Representative image of single microtubule (left) and cross-linked microtubule 

(right), showing HiLyte 647 (top), X-Rhodamine (middle) and merged (bottom) channels at 

the start (T=0) and end (T=20 min) of dynamic bundle assay. Scale bars represent 2 μm. The 
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schematics below the montages indicate the positions of the seed (blue), microtubules (red) 

at the start and end of the experiment. Assay conditions are (b) 0.5 nM PRC1 + 200 nM 

CLASP1-GFP (Events examined: 47 single and 29 overlaps), and (c) 0.5 nM PRC1 + 200 

nM CLASP1-GFP + 10 nM Kif4A (Events examined: 42 single and 49 overlaps).

Extended Data Fig. 4. Related to Fig. 3
a. Summary of dynamics of PRC1 cross-linked microtubules, showing percentage of 

microtubules exhibiting dynamic instability, no growth or only growth in black. For all 

kymographs, the total number of events, percentage of events that are complete catastrophes 

and rescues in the presence of CLASP1-GFP, PRC1 and Kif4A at varying concentrations are 

shown in blue.

b & c. Schematics and representative montages of microtubule bundles (red) grown from 

microtubule seeds (blue). Schematics indicate the plus end of the microtubules within the 

bundle. Velocity arrow indicates direction of microtubule sliding. Dotted gray lines indicate 

regions of overlap. X-Rh MT: X-Rhodamine microtubules. Scale bar represents 2 μm. Assay 

conditions and number of events (n) examined across 3 independent experiments are (b) 200 

nM CLASP1-GFP + 0.5 nM PRC1 + 125 nM Kif4A (n=30) and (c) 200 nM CLASP1-GFP 

+ 0.5 nM PRC1 + 50 nM Kif4A (n=39).
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Extended Data Fig. 5. Related to Fig. 4
n = number of kymographs of cross-linked microtubules analyzed

a. Box and whisker plot of average microtubule length before catastrophe of cross-linked 

microtubules. Plus-sign indicates mean. Horizontal lines within box indicate the 25th, 

median (center line) and 75th percentile. Error bars indicate minimum and maximum range. 

Mean and standard deviation for assay conditions: 200 nM CLASP1 + 0.5 nM PRC1 + 125 

nM Kif4A (0.0 ± 0.0 μm, n = 30), 200 nM CLASP1 + 0.5 nM PRC1 + 50 nM Kif4A (0.4 ± 

1.0 μm, n = 39), 200 nM CLASP1 + 0.5 nM PRC1 + 10 nM Kif4A (0.3 ± 0.7 μm, n = 36), 

200 nM CLASP1 + 0.5 nM PRC1 + 5 nM Kif4A (3.9 ± 1.9 μm, n = 28), 200 nM + 0.5 nM 

PRC1 (9.1 ± 3.6 μm, n = 53), 20 nM CLASP1 + 0.5 nM PRC1 + 5 nM Kif4A (1.5 ± 0.9 μm, 

n = 55) and 0.5 nM PRC1 + 5 nM Kif4A (0.9 ± 0.4 μm, n = 37).

c. Box and whisker plot of average number of rescues in 20 minutes for cross-linked 

microtubules. Plus-sign indicates mean. Horizontal lines within box indicate the 25th, 

median (center line) and 75th percentile. Error bars indicate minimum and maximum range. 

Mean and standard deviation for assay conditions 200 nM CLASP1 + 0.5 nM PRC1 + 

125 nM Kif4A (Not Determined, n = 30), 200 nM CLASP1 + 0.5 nM PRC1 + 50 nM 

Kif4A (Not Determined, n = 39), 200 nM CLASP1 + 0.5 nM PRC1 + 10 nM Kif4A (Not 
Determined, n = 36), 200 nM CLASP1 + 0.5 nM PRC1 + 5 nM Kif4A (0.7 ± 1.2, n = 37), 

200 nM + 0.5 nM PRC1 (1.6 ± 1.5, n = 33), 20 nM CLASP1 + 0.5 nM PRC1 + 5 nM Kif4A 

(0.9 ± 1.3, n = 23) and 0.5 nM PRC1 + 5 nM Kif4A (Not Determined n = 20).
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Extended Data Fig. 6. Related to Fig. 5
a, c, e. Schematics and montages of X-rhodamine labeled microtubules (red) which grow 

from X-rhodamine labeled seeds (red) and form new bundles. Time T= 0 refers to the 

first image where the two growing ends encounter each other, as judged by the intensity 

in the tubulin channel. Schematics indicate the plus end of the microtubules within 

the bundle. Velocity arrow indicates direction of microtubule sliding. Dotted red arrows 

indicate microtubule growth. Dotted gray lines indicate regions of overlap. X-Rho MT: 

X-Rhodamine microtubules. Scale bar represents 2 μm.

b, d, f. Line scans of intensities of GFP (top) and Alexa-647 (bottom) channels along a line 

joining the two microtubules and containing the overlap, at times T = 0, 10s 30s and 90s 

following bundle formation. Intensities were normalized to a value of 100 for the maximum 

intensity recorded for each channel, across all time points.

Assay conditions are

a & b: 200 nM CLASP1-GFP + 0.5 nM Alexa 647-labeled PRC1 + 50 nM Kif4A (8 events 

analyzed from 2 independent experiments)
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c & d: 200 nM CLASP1-GFP + 0.5 nM PRC1 + 50 nM Alexa 647-labeled Kif4A (31 events 

analyzed from 3 independent experiments)

e & f: 200 nM CLASP1-GFP + 0.5 nM PRC1 + 5 nM Alexa 647-labeled Kif4A (22 events 

analyzed from 3 independent experiments)

Extended Data Fig. 7. Related to Fig. 5
a. Scatter plot of CLASP1-GFP fluorescence intensities on single and cross-linked 

microtubules. Error bars indicate standard error of mean. Mean intensity and standard 

error of mean for assay conditions: 0.5 nM PRC1 + 200 nM CLASP1-GFP, single 

microtubules (24.2 ± 0.9, n=54), cross-linked microtubules (80.2 ± 8.1, n=30). n = number 

of microtubules analyzed from 3 independent experiments in each condition.

b. Scatter plot of Kif4A-GFP fluorescence intensities on single and cross-linked 

microtubules. Error bars indicate standard error of mean. Mean intensity and standard error 

of mean for assay conditions: 0.5 nM PRC1 + 10 nM Kif4A-GFP, single microtubules (80.1 

± 13, n=46), cross-linked microtubules (1106 ± 90.1, n=57). n = number of microtubules 

analyzed from 3 independent experiments in each condition.

c. Bio-Layer interferometry assay to quantify the binding affinity of CLASP1(654-1471)­

GFP to PRC1(1-486). Error bars represent standard error of mean. Data from 3 independent 

experiments were fit to a Hill equation. KD : 1.04 ± 0.44 μM (R2 of fit = 0.90).

d. Representative SDS-PAGE gel showing input proteins (lanes 2-4) and proteins appearing 

in the bound fraction (lanes 5-11) of pull-down assay with immobilized Flag-Kif4A, from 

one of 3 independent experiments. Reaction conditions corresponding to each lane are 

described in the table below the gel. Concentration of CLASP1(654-1471)-GFP used in 
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each reaction is indicated in parentheses below the table. M: molecular weight marker, with 

corresponding masses in kDa on the side.

Extended Data Fig. 8. Related to Fig. 5
a. Representative kymographs of dynamic single X-rhodamine-labeled microtubules (X-Rho 

MTs) with 50 nM Alexa 647-labeled EB3 + 0.5 nM PRC1 (n = 70), 50 nM Alexa 647­

labeled EB3 + 0.5 nM PRC1 + 5 nM Kif4A-GFP (n = 93), 50 nM Alexa 647-labeled EB3 

+ 0.5 nM PRC1 + 50 nM Kif4A-GFP (n = 60). Scale bar represents 2 μm. n = number of 

Kymographs analyzed from 3 independent experiments

b. Scatter plot of intensities of EB3 at microtubule tips with increasing concentrations of 

Kif4A-GFP. Mean and standard deviation are indicated by black bars. Assay condition 

(n=number of growth events analyzed): 50 nM Alexa 647-labeled EB3 + 0.5 nM PRC1 

(186.40 ± 173.80, n=281), 50 nM Alexa 647-labeled EB3 + 0.5 nM PRC1 + 5 nM 

Kif4A-GFP (143.80 ± 155.20, n=98), 50 nM Alexa 647-labeled EB3 + 0.5 nM PRC1 + 

50 nM Kif4A-GFP (28.11 ± 47.85, n=43). For 50 nM Alexa 647-labeled EB3 + 0.5 nM 

PRC1compared to (i) 50 nM Alexa 647-labeled EB3 + 0.5 nM PRC1 + 5 nM Kif4A-GFP, 

P= 0.048, (ii) 50 nM Alexa 647-labeled EB3 + 0.5 nM PRC1 + 50 nM Kif4A-GFP, 

P < <0.0001, in an ordinary one-way ANOVA test with Dunnett correction for multiple 

comparisons.
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c. Representative kymographs of a cross-linked X-rhodamine-labeled microtubule bundle 

in the presence of 50 nM Alexa 647-labeled EB3, 0.5 nM PRC1 and 5 nM Kif4A-GFP. 

Schematics above and below the merged kymograph indicate positions of the microtubules 

(red) and PRC1 (gray dashed line) at the start and end of the experiment, respectively. + 

indicates microtubule polarity. Scale bar represents 2 μm. A total of 45 kymographs from 3 

independent experiments were examined.

Extended Data Fig. 9. Related to Fig. 5
a. Representative kymographs of cross-linked X-rhodamine-labeled microtubule bundle (X­

Rho MTs) in the presence of 0.5 nM PRC1, 200 nM CLASP1-GFP and 50 nM Alexa 647­

labeled EB3. Intensity profile below merged kymograph shows the normalized intensities of 

the GFP (green) and Alexa 647 (magenta) channels at the time-point represented by dashed 

yellow line on kymograph. Gray box indicates the position of microtubule seeds. Intensities 

were normalized to a value of 100 for the maximum intensity recorded for each channel. 

Schematics on bottom right represent the positions of microtubules (red), EB3 (magenta) 
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and PRC1 (gray dashed lines) at the same time-point. Scale bar represents 2 μm. A total of 

73 kymographs from 3 independent experiments were examined.

b. Representative BLI sensorgram of the binding response of 1μM CLASP1(654-1471)-GFP 

in solution to immobilized EB3, in the presence of 10 mM (black), 25 mM (blue) and 50 

mM (red) KCl. Vertical dotted black line demarcates the binding and dissociation phases. 

The sensorgrams have been corrected for drift of EB3 from the sensor and non-specific 

binding of CLASP1(654-1471)-GFP to the sensor. Binding curves from 3 independent 

experiments were analyzed.

c. Representative kymographs of cross-linked X-rhodamine-labeled microtubules (X-Rho 

MTs) in the presence of 0.5 nM PRC1, 200 nM CLASP1-GFP, 50 nM Kif4A and 

50 nM Alexa 647-labeled EB3. Intensity profile below merged kymograph shows the 

normalized intensities of the GFP (green) and Alexa-647 (magenta) channels at the time­

point represented by dashed yellow line on kymograph. Gray box indicates the position 

of microtubule seeds. Intensities were normalized to a value of 100 for the maximum 

intensity recorded for each channel. Schematics on bottom right represent the positions of 

microtubules (red), EB3 (magenta) and PRC1 (gray dashed lines) at the same time-point. 

Scale bar represents 2 μm. A total of 67 kymographs from 3 independent experiments were 

examined.
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Figure 1: The rescue activity of CLASP1 overrides growth suppression by Kif4A on single 
microtubules.
Also see Extended data Figs. 1 and 2

n = total number of kymographs analyzed from a total of 3 independent experiments for 

each condition, except where indicated.

All concentrations correspond to dimeric Kif4A and monomeric CLASP1-GFP, except 

where indicated.

P-values were calculated from an ordinary one-way ANOVA test with Dunnett correction for 

multiple comparisons.

a. Representative kymographs of X-rhodamine-microtubules in the presence of Kif4A and 

CLASP1-GFP. GMPCPP-seeds are not shown. → indicates growth event and direction 

of growth. Curved arrow indicates a catastrophe event. * indicates a rescue event on the 

microtubule. ∣ indicates a period of stalled growth (‘pause’) on the microtubule. Scale bar 

represents 2 μm. Number of kymographs examined: tubulin control (65), 200 nM CLASP1 
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(76), 200 nM CLASP1 + 125 nM Kif4A (69), 200 nM CLASP1 + 250 nM Kif4A (73), 200 

nM CLASP1 + 1000 nM Kif4A (73) and 1000 nM Kif4A (38).

b. Histogram of growth rates for each condition seen in (a). Number of events analyzed: 

tubulin control (306), 200 nM CLASP1 (218), 200 nM CLASP1 + 125 nM Kif4A (308), 200 

nM CLASP1 + 250 nM Kif4A (381), 200 nM CLASP1 + 1000 nM Kif4A (331) and 1000 

nM Kif4A (78).

c. Scatter plot of duration-weighted microtubule growth rate. Mean (center line) and 

standard deviation as indicated by red bars, for assay conditions: tubulin control (16.4 ± 

2.6 nm/s, n = 58), 200 nM CLASP1 (12.4 ± 2.2 nm/s, n = 66), 200 nM CLASP1 + 125 nM 

Kif4A (6.9 ± 2.8 nm/s, n = 67), 200 nM CLASP1 + 250 nM Kif4A (5.7 ± 2.6 nm/s, n = 73), 

200 nM CLASP1 + 1000 nM Kif4A (3.7 ± 3.7 nm/s, n = 73) and 1000 nM Kif4A (0.3 ± 0.8 

nm/s, n = 38). P < 0.0001 for each column when compared to tubulin alone.

d. Box and whisker plot of maximum microtubule length. Horizontal lines within box 

indicate the 25th, median (center line) and 75th percentile. Plus-sign indicates mean. Error 

bars indicate minimum and maximum range. Mean and standard deviation for assay 

conditions with tubulin alone (6.0 ± 2.9 μm, n = 60), 200 nM CLASP1 (12.1 ± 3.2 μm, 

n = 68), 200 nM CLASP1 + 125 nM Kif4A (7.0 ± 2.3 μm, n = 67), 200 nM CLASP1 + 

250 nM Kif4A (5.4 ± 2.1 μm, n = 72), 200 nM CLASP1 + 1000 nM Kif4A (2.2 ± 1.4 μm, 

n = 74) and 1000 nM Kif4A (0.6 ± 0.5 μm, n = 40). P < 0.0001 for 1000 nM Kif4A when 

compared to the tubulin control.

e. Scatter plot of GFP intensity per pixel on taxol-stabilized microtubules in the presence 

of 150 nM ATP, Kif4A-GFP (blue dots) or CLASP1-GFP (red dots). All concentrations 

refer to monomeric proteins. Inset shows magnified region containing intensities for 

CLASP1-GFP(red dots). Mean and standard deviation of intensities for assay conditions 

with CLASP1-GFP: 8 nM (26.9 ±18, n=76), 40 nM (95.3 ± 41.8, n=70), 60 nM (109 ± 30.0, 

n=70), 80 nM (400.1 ± 166.9, n=70), 160 nM (397.6 ± 90.3, n=70), 400 nM (754.5 ± 154.3, 

n=70), 800 nM (854.3 ± 122.1, n=35). Assay conditions with Kif4A-GFP: 20 nM (894.0 ± 

253.9, n=70), 100 nM (1856 ± 380.3, n=70), 150 nM (2649 ± 1527, n=70), 200 nM (3982 

± 2346, n=70), 400 nM (6814 ± 2085, n=70), 1000 nM (7542 ± 1640, n=70). n refers to 

number of microtubules analyzed from 2 independent experiments for each condition.

f. Scatter plot and Bar graph showing mean of the ratio of rescue to total number of 

catastrophe events in 20 minutes. Error bars indicate standard deviation. Assay conditions: 

Tubulin control (0.0 ± 0.1, n = 60), 200 nM CLASP1 (1.0 ± 0.2, n = 57), 200 nM CLASP1 

+ 125 nM Kif4A (0.9 ± 0.3, n = 43), 200 nM CLASP1 + 250 nM Kif4A (0.9 ± 0.3, n = 49), 

200 nM CLASP1 + 1000 nM Kif4A (0.4 ± 0.3, n = 42) and 1000 nM Kif4A (0.0 ± 0.0, n 

= 10). P < 0.0001 for tubulin control to 200 nM CLASP1, for 200 nM CLASP1 + 250 nM 

Kif4A to 200 nM CLASP1 + 1000 nM Kif4A and to 1000 nM Kif4A. P is not significant for 

200 nM CLASP1 to (i) 200 nM CLASP1 + 125 nM Kif4A and to (ii) 200 nM CLASP1 + 

250 nM Kif4A.
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Figure 2: The collective activity of Kif4A, CLASP1 and PRC1 differentially regulates the 
dynamics of single and cross-linked microtubules
Also see Extended data Fig. 3, Supplementary Video 1 and Supplementary Video 2.

a. Schematic of the dynamic microtubule assay used to examine the collective activity of 

PRC1, Kif4A and CLASP1-GFP on cross-linked and single microtubules.

b-e. Representative kymograph of X-Rhodamine channel of single (b,d) and cross-linked 

microtubule (c,e). The position of the seed is shown as a blue box. The schematics above 

and below the kymograph indicate the positions of the seed (blue) and microtubules (red) 

at the start and end of the experiment, respectively. Scale bar represents 2 μm. Assay 

conditions: (b,c) 0.5 nM PRC1 + 200 nM CLASP1-GFP (Kymographs of 47 single and 29 

cross-linked microtubules were examined), (d,e) 0.5 nM PRC1 + 200 nM CLASP1-GFP + 

10 nM Kif4A (Kymographs of 42 single and 49 cross-linked microtubules were examined).
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Figure 3: Dynamics of cross-linked microtubules in presence of Kif4A, CLASP1 and PRC1
Also see Extended data Fig. 4

Schematics and representative montages of microtubule bundles (red) grown from 

microtubule seeds (blue) in 3 independent experiments. Schematics indicate the plus end 

of the microtubules within the bundle. Velocity arrow indicates direction of microtubule 

sliding. Dotted red arrows indicate microtubule growth. Dotted gray lines indicate regions of 

overlap. X-Rh MT: X-Rhodamine microtubules. Scale bar represents 2 μm. Assay conditions 

and number of events (n) examined are (a) 200 nM CLASP1-GFP + 0.5 nM PRC1 + 10 nM 

Kif4A (n=36), (b) 200 nM CLASP1-GFP + 0.5 nM PRC1 + 5 nM Kif4A (n=37), (c) 200 

nM CLASP1-GFP + 0.5 nM PRC1 (n = 33)
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Figure 4: Kif4A activity dominates to suppress dynamics of cross-linked microtubules while 
CLASP1 activity promotes the elongation of single microtubules under identical reaction 
conditions
Also see Extended data Fig. 5

n = total number of kymographs of overlaps (a-c) and single microtubules (d-f) analyzed 

from 3 independent experiments in each condition

a. Scatter plot of duration-weighted growth rate of cross-linked microtubules. Black bars 

indicate mean (center line) and standard deviation. Assay conditions: 200 nM CLASP1 + 0.5 

nM PRC1 + 125 nM Kif4A 0.0 ± 0.0 nm/s [n = 30]; 200 nM CLASP1 + 0.5 nM PRC1 + 50 

nM Kif4A 0.4 ± 0.8 nm/s [n = 39]; 200 nM CLASP1 + 0.5 nM PRC1 + 10 nM Kif4A 0.3 ± 

0.6 nm/s [n = 35]; 200 nM CLASP1 + 0.5 nM PRC1 + 5 nM Kif4A 6.1 ± 2.8 nm/s [n = 36] 

and 200 nM + 0.5 nM PRC1 11.8 ± 2.3 nm/s [n = 33]

b. Box and whisker plot of maximum length of cross-linked overlap. Plus-sign indicates 

mean. Horizontal lines within box indicate the 25th, median (center line) and 75th percentile. 

Error bars indicate minimum and maximum range. Mean and standard deviation for assay 

conditions: 200 nM CLASP1 + 0.5 nM PRC1 + 125 nM Kif4A (0.0 ± 0.0 μm, n = 30), 200 

nM CLASP1 + 0.5 nM PRC1 + 50 nM Kif4A (0.3 ± 0.6 μm, n = 33), 200 nM CLASP1 + 

0.5 nM PRC1 + 10 nM Kif4A (0.3 ± 0.7 μm, n = 36), 200 nM CLASP1 + 0.5 nM PRC1 + 5 

nM Kif4A (5.7 ± 2.1 μm, n = 37), 200 nM + 0.5 nM PRC1 (15.2 ± 4.4 μm, n = 33), 20 nM 

CLASP1 + 0.5 nM PRC1 + 5 nM Kif4A (1.5 ± 1.3 μm, n = 24) and 0.5 nM PRC1 + 5 nM 

Kif4A (0.8 ± 0.7 μm, n = 20).

c. Scatter plot of the ratio of rescues to total number of catastrophe events in microtubule 

bundles in 20 minutes. Black bars indicate mean (center line) and standard deviation. ND: 

Not determined because no dynamics were observed. Assay conditions: 200 nM CLASP1 

+ 0.5 nM PRC1 + 125 nM Kif4A (Not Determined, n = 30), 200 nM CLASP1 + 0.5 nM 

PRC1 + 50 nM Kif4A (Not Determined, n = 39), 200 nM CLASP1 + 0.5 nM PRC1 + 10 nM 
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Kif4A (Not Determined, n = 36), 200 nM CLASP1 + 0.5 nM PRC1 + 5 nM Kif4A (0.9 ± 

0.3, n = 15), 200 nM + 0.5 nM PRC1 (1.0 ± 0.1, n = 24), 20 nM CLASP1 + 0.5 nM PRC1 + 

5 nM Kif4A (0.3 ± 0.4, n = 17) and 0.5 nM PRC1 + 5 nM Kif4A (0.0 ± 0.0, n = 12).

d. Scatter plot of duration-weighted growth rates of single microtubules. Black bars indicate 

mean (center line) and standard deviation. Assay conditions: 200 nM CLASP1 + 0.5 nM 

PRC1 + 125 nM Kif4A (3.9 ± 2.9 nm/s, n = 76); 200 nM CLASP1 + 0.5 nM PRC1 + 50 nM 

Kif4A (8.4 ± 2.1 nm/s, n = 69); 200 nM CLASP1 + 0.5 nM PRC1 + 10 nM Kif4A (11.3 ± 

2.5 nm/s, n = 60); 200 nM CLASP1 + 0.5 nM PRC1 + 5 nM Kif4A (12.5 ± 1.7 nm/s, n = 

52); and 200 nM + 0.5 nM PRC1 (12.7 ± 2.1 nm/s, n = 47).

e. Box and whisker plot of maximum length of single microtubules. Plus-sign indicates 

mean. Horizontal lines within box indicate the 25th, median (center line) and 75th percentile. 

Error bars indicate minimum and maximum range. Mean and standard deviation for assay 

conditions: 200 nM CLASP1 + 0.5 nM PRC1 + 125 nM Kif4A (5.0 ± 2.1 μm, n = 76); 200 

nM CLASP1 + 0.5 nM PRC1 + 50 nM Kif4A (8.4 ± 2.8 μm, n = 69); 200 nM CLASP1 + 

0.5 nM PRC1 + 10 nM Kif4A (12.1 ± 3.3 μm, n = 60); 200 nM CLASP1 + 0.5 nM PRC1 + 

5 nM Kif4A (11.1 ± 3.8 μm, n = 53); and 200 nM + 0.5 nM PRC1 (12.2 ± 3.4 μm, n = 47). 

20 nM CLASP1 + 0.5 nM PRC1 +5 nM Kif4A (6.1 ± 1.7 μm, n = 39); 0.5 nM PRC1 + 5 nM 

Kif4A (4.1 ± 1.8 μm, n = 50).

f. Scatter plot of the ratio of rescues to total number of catastrophe events in single 

microtubules in 20 minutes. Black bars indicate mean (center line) and standard deviation. 

Assay conditions: 200 nM CLASP1 + 0.5 nM PRC1 + 125 nM Kif4A (0.93 ± 0.18, n = 41); 

200 nM CLASP1 + 0.5 nM PRC1 + 50 nM Kif4A (0.95 ± 0.18, n = 63); 200 nM CLASP1 

+ 0.5 nM PRC1 + 10 nM Kif4A (0.99 ± 0.06, n = 52), 200 nM CLASP1 + 0.5 nM PRC1 + 

5 nM Kif4A (0.95 ± 0.15, n = 50), 200 nM + 0.5 nM PRC1 (0.93 ± 0.18, n = 45); 20 nM 

CLASP1 + 0.5 nM PRC1 + 5 nM Kif4A (0.20 ± 0.26, n = 39); 0.5 nM PRC1 + 5 nM Kif4A 

(0.0 ± 0.0, n = 50).
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Figure 5: The stronger recruitment of Kif4A to cross-linked overlaps relative to CLASP1 
recruitment arises from differences in the PRC1-binding affinities of Kif4A and CLASP1.
Also see Extended data Figs. 6-9 and Supplementary Video 3

a. BLI assay to quantify the binding affinity of CLASP1 constructs to PRC1. Error bars 

represent standard error of mean. Data collected from 3 independent experiments were fit 

to a Hill equation. KD : CLASP1(1-654)-GFP > 10 μM; CLASP1(805-1471)-GFP > 10 μM 

and CLASP1(654-1471)-GFP: 1.19 ± 0.24 μM (R2 of fit = 0.98).

b. BLI assay to quantify the binding affinity of Kif4A-GFP to PRC1. Error bars represent 

standard error of mean. Data collected from 3 independent experiments were fit to a Hill 

equation. KD : 12.47± 2.09 nM (R2 of fit = 0.98).

c. Schematic of pull-down assay used to test for competition between Kif4A and CLASP1 

for PRC1-binding. Anti-Flag antibody coated magnetic beads were incubated first with 

Flag-Kif4A, washed and then incubated with either PRC1(1-486) or a combination of 

PRC1(1-486) + CLASP1(654-1471)-GFP. PRC1(1-486) is known to directly bind to Kif4A. 

For CLASP1(654-1471)-GFP to appear in the Kif4A-bound protein fraction, PRC1(1-486) 

needs to be able to bind to Kif4A and CLASP1 simultaneously in solution.

d. Scatter plot with bar graph showing mean of normalized intensities of protein bands 

of PRC1(1-486) (left side) and CLASP1(654-1471)-GFP (right side, gray box) from SDS­

PAGE gels of pull-down assay described in (c). Error bars indicate standard deviation of 

intensities from 3 independent experiments. Normalized intensities and standard deviation 

of PRC1(1-486) bands in sample containing PRC1(1-486): 0.18 ± 0.10; FLAG-Kif4A + 

PRC1(1-486): 0.80 ± 0.12; FLAG-Kif4A + PRC1(1-486) + 5 μM CLASP1(654-1471)-GFP: 

1.36 ± 0.67; FLAG-Kif4A + PRC1(1-486) + 10 μM CLASP1(654-1471)-GFP: 1.12 ± 
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0.12. P-values for PRC1(1-486) compared to FLAG-Kif4A + PRC1(1-486) + 5 μM and 10 

μM CLASP1(654-1471)-GFP are 0.0079 and 0.0252, in an ordinary one-way ANOVA test 

with Dunnett correction for multiple comparisons. (Note: the intensity of the PRC1(1-486) 
band in Flag-Kif4A sample was >3x higher than in sample without Flag-Kif4A in every 
repeat of 3 independent experiments. The statistical significance in the difference between 
these samples is difficult to assess due to the high variation in the SDS-gel background 
relative to the low signal in the control lane without Flag-Kif4A). Normalized intensities 

of CLASP1(654-1471)-GFP in sample containing CLASP1(654-1471)-GFP: 0.16 ± 0.15; 

FLAG-Kif4A + CLASP1(654-1471)-GFP: 0.25 ± 0.07; FLAG-Kif4A- + PRC1(1-486) + 

5 μM CLASP1(654-1471)-GFP: 1.62 ± 0.95; FLAG-Kif4A + PRC1(1-486) + 10 μM 

CLASP1(654-1471)-GFP: 1.60 ± 0.66. P values for CLASP1(654-1471)-GFP compared 

to FLAG-Kif4A + PRC1(1-486) + 5 μM and 10 μM CLASP1(654-1471)-GFP are 0.0386 

and 0.0405 in an ordinary one-way ANOVA test with Dunnett correction for multiple 

comparisons. P value is not significant for CLASP1(654-1471)-GFP compared to FLAG­

Kif4A + CLASP1(654-1471)-GFP.
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Figure 6: An inverse microtubule affinity-activity relationship along with differences in PRC1­
binding affinity between CLASP1 and Kif4A underlie differential regulation of single and cross­
linked microtubules by the PRC1-CLASP1-Kif4A protein module.
a. The dynamics of single microtubules (top) and cross-linked microtubules (bottom) are 

differentially regulated by the PRC1-CLASP1-Kif4A protein module. Box with dotted lines 

indicates regime where dynamics switch between continuous growth (→) and no elongation 

(┤). In the presence of constant CLASP1 concentration, the switch for each microtubule 

populations occurs at strikingly different Kif4A concentrations.

b. (i) Differences in three properties of CLASP1 compared to Kif4A underlie this 

differentiation: Lower intrinsic microtubule-binding affinity of CLASP1 relative to Kif4A, 

higher intrinsic activity of CLASP1 relative to Kif4A, and higher PRC1-binding affinity 

of Kif4A compared to CLASP1. As a result, (ii) the high activity of CLASP1 as a rescue 

factor overcomes Kif4A activity on single microtubules, despite lower CLASP1 microtubule 

affinity. (iii) However, on cross-linked microtubules, the enrichment of Kif4A through its 

stronger PRC1-binding and microtubule-binding helps it overcome CLASP1 activity. The 

low affinity of CLASP1 for microtubules permits Kif4A activity to suppress the growth of 

crosslinked microtubules.
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