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Cardiorespiratory complications are frequent symptoms of Duchenne muscular dystrophy, a neuromuscular disorder caused by
primary abnormalities in the dystrophin gene. Loss of cardiac dystrophin initially leads to changes in dystrophin-associated
glycoproteins and subsequently triggers secondarily sarcolemmal disintegration, fibre necrosis, fibrosis, fatty tissue replacement,
and interstitial inflammation. This results in progressive cardiac disease, which is the cause of death in a considerable number
of patients afflicted with X-linked muscular dystrophy. In order to better define the molecular pathogenesis of this type of
cardiomyopathy, several studies have applied mass spectrometry-based proteomics to determine proteome-wide alterations
in dystrophinopathy-associated cardiomyopathy. Proteomic studies included both gel-based and label-free mass spectrometric
surveys of dystrophin-deficient heart muscle from the established mdx animal model of dystrophinopathy. Comparative cardiac
proteomics revealed novel changes in proteins associated with mitochondrial energy metabolism, glycolysis, signaling, iron
binding, antibody response, fibre contraction, basal lamina stabilisation, and cytoskeletal organisation. This review summarizes
the importance of studying cardiomyopathy within the field of muscular dystrophy research, outlines key features of themdx heart
and its suitability as a model system for studying cardiac pathogenesis, and discusses the impact of recent proteomic findings for
exploring molecular and cellular aspects of cardiac abnormalities in inherited muscular dystrophies.

1. Introduction

Primary genetic abnormalities in the dystrophin gene result
in the early-onset and debilitating muscle wasting disease
Duchenne muscular dystrophy or the delayed-onset and
milder disorder Becker muscular dystrophy [1–3]. In addi-
tion, mutations in cardiac dystrophin are linked to X-
linked dilated cardiomyopathy in teenage men [4–6]. A
variety of primary or secondary abnormalities in dystrophin-
associated proteins are involved in several forms of limb-
girdle muscular dystrophy, congenital muscular dystrophy,
and dystroglycanopathy [7–9].TheDuchenne type ofmuscu-
lar dystrophy is the most frequently inherited neuromuscular
disorder of childhood [10]. It occurs in approximately 1 in
3,500 live born males with substantial regional and national
differences in disease frequency [11–13]. Early symptoms
of muscular weakness are usually present before 5 years
of age and drastically increased levels of serum creatine

kinase, pyruvate kinase, and carbonic anhydrase isoformCA3
are characteristic for this type of inherited muscle disease
[14–16].The highly progressive nature of symmetrical muscle
wasting often causes a loss of unassisted ambulation around
12 years of age.

Muscle biopsies show an abnormal variation in fibre
diameter, large numbers of fibres with central nucleation,
necrosis, and a certain degree of regenerating fibres, as
well as a progressive increase in fat and connective tissue
[10, 20, 21]. In muscle biopsy specimens from Duchenne
patients, dystrophin isoform Dp427 is completely or almost
completely absent from contractile fibres [22]. In some cases,
rare reverting mutants may account for a small percentage
of dystrophin-positive muscle fibres [23]. Besides effects on
skeletal muscle integrity, abnormalities in dystrophin are also
linked to nonprogressive forms ofmental retardation [24, 25],
scoliosis [26, 27], impaired respiratory function [28, 29],
and cardiomyopathic complications [30, 31]. The fact that
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respiratory care of Duchenne patients has greatly improved
over the years gives the treatment of dystrophinopathy-
associated cardiomyopathic side effects a more prominent
role in the overall therapy of Duchenne muscular dystrophy
[32–34].

This review briefly outlines the pathophysiological sig-
nificance of cardiomyopathic complications in dystrophin-
opathies and then focuses on the scientific impact of recent
mass spectrometry-based studies of cardiac abnormalities
in X-linked muscular dystrophy. Below sections summarize
the clinical cardiac symptoms of dystrophinopathy and the
pathoanatomical, pathophysiological, and pathobiochemi-
cal aspects of themdxmouse heart model of Duchenne mus-
cular dystrophy. Following a brief introduction into the prin-
ciples of cardiac proteomics as a major biomarker discovery
tool for improving our general understanding of cardiac dis-
ease mechanisms, recent findings from gel-based proteomic
analyses of dystrophin-deficient cardiac tissue and label-free
mass spectrometric studies of the aging mdx heart are dis-
cussed. The considerable influence of cardiac proteomics on
the field ofmuscular dystrophy research and the usefulness of
newly discovered proteomic biomarkers for improving diag-
nostic procedures, prognosis of cardiomyopathic complica-
tions in dystrophinopathies, and the evaluation of novel phar-
macological or cell-based treatment strategies is examined.

2. Cardiac Dystrophin-Glycoprotein Complex

For a full comprehension of the molecular and cellular
complexity of dystrophinopathy, it is important to point out
that dystrophin does not exist in isolation within the sub-
sarcolemmal membrane cytoskeleton. Although its overall
protein structure and sequence similarity to members of the
spectrin-like superfamily of proteins suggest that it possibly
forms an intertwined lattice of dystrophin molecules under-
neath the sarcolemma [35], the linkage to nondystrophin
molecules appears to be absolutely vital for sarcolemmal
integrity and proper muscle functioning [36–38]. It is well
established that the full-length protein product of the dys-
trophin gene with an apparent molecular mass of 427 kDa
forms a supramolecular protein complex at the plasmalemma
of both skeletal and cardiacmuscle fibres.The core element of
the dystrophin-glycoprotein complex consists of the integral
glycoprotein 𝛽-dystroglycan of 43 kDa that directly interacts
on the one hand with the actin-binding protein dystrophin
in the subsarcolemmal domain and on the other hand with
the extracellular laminin-receptor 𝛼-dystroglycan [39]. This
large assembly of surface proteins forms a stabilizing linkage
between the basal lamina on the outside of muscle fibres and
the actin membrane cytoskeleton in the inside of contractile
cells [40]. In addition to the core 𝛼/𝛽-dystroglycan complex,
a large number of additional dystrophin-associated proteins
exist, including sarcoglycans, sarcospan, dystrobrevins, and
syntrophins [41–44].

Differences exist between the dystrophin-associated gly-
coprotein complex from skeletal muscle and heart with
respect to subcellular localization and protein composition.

While the muscle complex is highly enriched in the sar-
colemma [45] and at the neuromuscular junction [46], in
coexistence with the utrophin-glycoprotein complex [47], the
cardiac dystrophin complex is also present in the transverse
tubular system [48, 49].The cardiac dystrophin-glycoprotein
complex partially associates with costameric vinculin, sug-
gesting a mechanical role in the maintenance of surface
membrane integrity andmembrane domain organization [50,
51]. Of note, the recent proteomic analysis of the cardiac
dystrophin complex suggests a different range of indirectly
associated proteins as compared to skeletal muscle fibres.
The cardiac complex appears to lack an interaction with
the signaling enzyme nNOS, has a differential composition
of syntrophins and dystrobrevins, and displays additional
binding partners, including Cavin-1, Ahnak-1, Cypher, and
Cryab [52].

3. Dystrophinopathy-Associated
Cardiomyopathy

Although dystrophinopathies are primarily categorised as
disorders of the neuromuscular system [10], heart disease
also plays a crucial role in the etiology of X-linked muscular
dystrophy [53]. Almost all patients afflicted with Duchenne
muscular dystrophy show clinical cardiac symptoms, espe-
cially during the second decade of life [54]. These cardiac
abnormalities may include arrhythmias, cardiomyopathy,
and regional wall abnormalities [55–59]. A gradual replace-
ment of contractile cardiac fibres by noncontracting cell
populations, such as connective and fatty tissue, causes a
critical loss of cellular function in the heart of Duchenne
patients [55].The highly progressive decline in the cardiomy-
ocyte population is probably closely connected to the limited
regenerative capacity of dystrophin-deficient heart fibres. In
contrast to dystrophic skeletal muscles, the heart does not
undergo extensive cycles of fibre degeneration and regener-
ation in dystrophinopathy. In a large number of Duchenne
cases, serious cardiac complications result in death [54],
warranting special attention to the pathophysiological role of
cardiac dystrophin and its associated glycoprotein complex.
The primary loss of cardiac dystrophin results initially in
changes in dystrophin-associated glycoproteins which in
turn triggers a plethora of secondary cellular abnormalities,
including sarcolemmal disintegration, necrosis, fibrosis, fatty
tissue replacement, and interstitial inflammation. Cellular
degeneration leads to progressive cardiac disease and thus
fatal complications in Duchenne muscular dystrophy [60].

4. The Cardiac mdx Model of
Dystrophinopathy

Thepathological status of themdxmousemodel ofDuchenne
muscular dystrophy is based on a pointmutation in exon 23 of
the dystrophin gene, resulting in a truncated protein product
that is quickly degraded in dystrophic fibres [61]. Interest-
ingly, different types ofmuscle exhibit greatly varying degrees
of tissue degeneration. While laryngeal, extraocular, and
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interosseus muscles show a relatively mild phenotype [62–
64] and leg muscles such as soleus, gastrocnemius, extensor
digitalis longus, or tibialis anterior are moderately weakened
by segmental necrosis [65–67], the diaphragm represents
the most severely disturbed skeletal muscle type [68, 69] in
the mdx mouse. Besides the skeletal musculature, the mdx
heart is also affected by a large number of cellular, physio-
logical, and biochemical abnormalities, as recently discussed
in several extensive reviews on the cardiac phenotype of
dystrophinopathy [70–72].Thus, if one takes into account the
biological limitations of genetic mouse models as surrogates
for human disorders, the mdx mouse can be employed as
an excellent model system to study basic pathophysiological
mechanisms of muscular dystrophy [73].

The dystrophin-deficient heart from mdx mice clearly
exhibits abnormal histological features, including necrosis,
fibrosis, and inflammation [74]. On the subcellular level,
a considerable disorganization of the cardiac membrane
surface and disruption of the transverse tubular networkwere
revealed by scanning ion conductancemicroscopy [75]. Signs
of overt cardiomyopathy are more pronounced in aged mdx
mice as compared to milder cardiac alterations in young
animals [76, 77]. Aged mdx mice showed a widespread and
patchy increase in ventricular wall fibrosis [78], whereby the
basal region exhibited a greater degree of fibrotic changes
than the apex of the dystrophic heart [79]. The onset of
fibrosis in the mdx heart was found to be associated with an
increased expression of collagen and the connective tissue
growth factor CTGF [80]. At a later stage of fibrosis, a
drastic increase in connective tissue volume was accompa-
nied by the activation of key profibrotic genes, including
the heart-specific induction of the Nox4 gene [81]. Coro-
nary endothelial cells are implicated in mediating cardiac
fibrosis via transmural TGF-𝛽 signaling mechanisms [82].
Interestingly, physical exercise was shown to accelerate the
cardiomyopathic process [83, 84]. Exercisedmdx hearts were
characterized by an increase in inflammatory cell infiltration,
elevated levels of interstitial fibrosis, and a higher degree
of adipose tissue deposition [83]. In the absence of the
membrane cytoskeletal protein dystrophin, cardiomyocyte
injury was increased considerably by workload-induced
cell damage or an acute elevation of mechanical stress
[85].

Histopathological features of the mdx heart correlate
well with the assessment of functional deficits in cardiac
output. The dystrophin-deficient heart showed an abnor-
mal electrocardiogram [86] with significant tachycardia and
decreased heart rate variability [87]. In vivo cardiac MRI
studies demonstrated larger right ventricular end-diastolic
and end-systolic volumes and lower right ventricular ejection
fractions inmdxmice [88]. High-resolution doppler echocar-
diography confirmed that the extent of changes in posterior
wall thickness and left ventricular mass are dependent on
the age of mdx mice [89]. The contractile properties of
the mdx heart are markedly altered with a reduced force
amplitude [90] and considerably prolonged half-relaxation
time [91]. The pathophysiological basis of these functional
abnormalities is associated with hypersensitive excitation-
contraction coupling [92], increased ion fluxes through

the fragile plasmalemma [93–95], elevated Ca2+-levels in
the cytosol [96, 97], impaired cytosolic and luminal Ca2+-
handling [98, 99], enhanced intracellular Ca2+-responses to
mechanical challenges [97], an altered mitochondrial redox
state, and an increased production of reactive oxygen species
[97, 100]. Deficiency in cardiac dystrophin is postulated to
cause plasmalemmal fragility, which in turn alters ion fluxes
and signaling events at the surface membrane ultimately
leading to a pathophysiologically elevated cytosolic Ca2+-
concentration [101]. The Ca2+-dependent activation of prote-
olytic processes and mitochondrial dysfunction probably act
as the starting point for the formation of fibrotic patches in
the dystrophic heart, as recently reviewed by Shirokova and
Niggli [72].

Besides dysregulation of excitation-contraction cou-
pling and Ca2+-handling due to membrane perturbation,
metabolic disturbances may predispose the Dp427-deficient
heart to contractile dysfunction [102]. Pathobiochemically,
the primary loss in cardiac dystrophin isoform Dp427
appears to affect the dystrophin-associated glycoprotein com-
plex in a less severe way as compared to skeletal mus-
cle, possibly due to the upregulation of the dystrophin
homologue utrophin [47]. In normal heart, the cardiac-
specific dystrophin-glycoprotein complex localizes to the
sarcolemma and transverse tubules [48, 49, 103] and probably
functions as amembrane-stabilizing linker during excitation-
contraction-relaxation cycles in a similar way as the skeletal
muscle complex [50, 51], although differences in its composi-
tion suggest additional functions [52]. In dystrophy-related
cardiomyopathy, both the abundance and glycosylation of
𝛼-dystroglycan were shown to be altered in dystrophin-
deficient heart muscle [104, 105]. In order to study global
changes downstream from the primary defect in dystrophin
and secondary alterations in the dystroglycan complex, mass
spectrometry-based proteomics was employed for the large-
scale analysis of the dystrophic heart.

5. Cardiac Proteomics

Over the last few years,mass-spectrometry-based proteomics
has been widely applied to studying cardiac tissues in
health and disease. A variety of extensive reviews have
been published that summarize and discuss the underly-
ing objectives of cardioproteomic strategies [106, 107], the
usefulness of proteomic biomarker research for improving
diagnostic, prognostic and therapeutic approaches [108–
110], the application of clinical proteomics in the study
of cardiovascular diseases [111–113], the evaluation of post-
translational modifications in cardiac proteins [114, 115], and
technological advances in the field of mass spectrometry
and cardiac proteomics [106, 116]. Mass spectrometry-based
proteomics was instrumental in the cataloging of the protein
constellation of normal heart tissue [117–121], the global
assessment of changes in the cardiac proteome during devel-
opment [122], the determination of functional adaptations
following exercise [123–125], and the establishment of protein
changes during the natural aging process [126–130], as well
as the biomedical analysis of a variety of heart diseases in
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patients or animal models of heart disease, including dilated
cardiomyopathy, atrial fibrillation, the diabetic heart, and
cardiac failure [131–136].The total number of proteins belong-
ing to cardiac tissues is not known, since no one proteomic
method can completely separate and accurately identify all
proteins within a complex tissue that exhibits a wide dynamic
concentration range. Most likely, the cardiac proteome con-
sists of several thousand different protein species with a
wide range of posttranslational modifications [117–121]. For
a comprehensive analysis of changes in cardiac proteins with
greatly differing physicochemical properties with respect to
size, charge, and hydrophobicity, a combination of various
proteomic techniques is often advantageous.

Diverse proteomic approaches and methods have been
applied in global studies of the heart. For the initial large-scale
separation of distinct protein populations, both gel-based
and/or liquid chromatography-focused techniques have been
employed. Labeling methodology or label-free applications
were routinely used for the high-throughput identification
of cardiac proteins. Proteomic methods that involve gel
electrophoresis are highly suitable for the analysis of con-
tractile proteins, regulatory proteins, metabolic enzymes,
metabolite transporters, and molecular chaperones [118].
Two-dimensional gel electrophoresis can conveniently sepa-
rate cardiac proteins in the range of approximately 10 kDa to
200 kDa and isoelectric points ranging frompH3 to pH11 [117,
118, 120]. Combinations of isoelectric focusing with narrow-
or wide-range immobilised pH gradients, native gel elec-
trophoresis, nonreducing gel electrophoresis, and reducing
gel electrophoresis can be used for various two-dimensional
applications [137–140]. While post-electrophoretic staining
with protein dyes is relatively cheap and fast, the differ-
ential pre-electrophoretic labeling with fluorescent CyDyes
usually results in a larger number of identified cardiac
proteins and greatly reduces gel-to-gel variations [141, 142].
One-dimensional gradient gels, in combination with on-
membrane digestion protocols, can also cover the separation
of high-molecular-mass proteins following detergent solubi-
lization [143]. However, low-abundance proteins, hydropho-
bic proteins, and components with extreme pI-values are
difficult to study using routine gel electrophoretic methods
[137, 140].

The usefulness of alternative gel-free proteomic labeling
methods, such as iTRAQ (isobaric tags for relative and
absolute quantitation) or SILAC (stable isotope labeling by
amino acids in cell culture), which have been successfully
applied to studying cardiac cells [144, 145], has been described
in recent reviews [106, 107]. One of the most advanced
proteomic approaches involves label-free mass spectrometry.
The advantages of thismethod are that it (i) requires only very
small amounts of protein samples, (ii) has broad applicability,
(iii) detects a large range of cardiac protein species, and,
most importantly, (iv) does not require protein labeling
[146]. Thus, in order to overcome some of the problems
associated with gel-based methods in cardiac proteomics,
label-free mass spectrometry has recently been applied to
investigate cardiomyopathic tissue from the agedmdxmodel
of Duchenne muscular dystrophy [18].

Figure 1 gives an overview of the key methods employed
in comparative cardioproteomic studies and illustrates typical
findings from a gel-based analysis of the dystrophic heart
proteome. Shown are two-dimensional gels representing the
urea-soluble proteome from the young versus the aged mdx
heart, post-electrophoretically labeled with the fluorescent
dye RuBPs (ruthenium II tris bathophenantroline disul-
fonate) [147]. Fluorescent labeling with RuBPs dye is an
excellent and cheap alternative to the more labor-intensive
2D-DIGE approach with its relatively expensive CyDyes
[148]. The individual analytical steps performed to achieve
the two-dimensional gel image depicted in Figure 1 have been
previously described in detail by our laboratory [17].

6. Gel-Based Analysis of Cardiac Changes in
Dystrophinopathy

Prior to the development of the proteomic concept and
the streamlining of established biochemical techniques for
the large-scale analysis of entire protein populations, pro-
tein biochemical studies of the dystrophic mdx heart have
mostly focused on individual proteins, protein complexes,
specific pathways, or signalling cascades. Such focused pro-
tein chemical approaches, also highly informative about
specific aspects of a disease process, inevitably generate
biomedical data sets with limited scope. Hence, in order
to better complement findings from detailed physiological,
cell biological, and histological studies of cardiomyopathic
changes, mass spectrometry-based proteomics was used to
establish proteome-wide alterations inmdx preparations.The
parallel analysis of hundreds of cardiac proteins promised
to swiftly determine their molecular fate in dystrophin-
deficient heart tissues and thus decisively improve our
understanding of the molecular pathogenesis of dystrophy-
associated cardiomyopathy. Initially, comparative proteomic
studies used gel-based surveys of the mdx heart muscle and
revealed novel changes in proteins mostly associated with
mitochondrial energy metabolism, the contractile apparatus,
the cytoskeleton, and the cellular stress response [141, 142].
Both studies used fluorescence two-dimensional difference
in-gel electrophoresis (2D-DIGE) for the analysis of the
dystrophic heart.

The 2D-DIGE technique is an extremely powerful pre-
electrophoretic labeling approach that can swiftly determine
potential changes in the concentration of thousands of pro-
teins in large analytical gel systems [149–151] and has proven
to be an excellent biomarker discovery tool for comparative
studies of contractile fibres [152]. The 2D-DIGE method has
beenwidely applied to studying various subtypes ofmuscle in
animal models of Duchenne muscular dystrophy [153–158].
It is one of the key techniques in comparative gel-based pro-
teomics and is employed with fluorescent 2-CyDye [159] or
3-CyDye [160] labeling systems for the differential tagging of
proteins from dissimilar mixtures prior to two-dimensional
gel electrophoresis [149].The optimized analysis of 2D-DIGE
images with advanced 2D software analysis tools [161–163]
can highly accurately quantitate multiple protein samples
on the same two-dimensional gel [164, 165]. Importantly,
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Figure 1: Overview of proteomic methods used in comparative studies of the heart. Shown is a flowchart of the various techniques used to
identify changes in the cardiac proteome, including label-free mass spectrometry, gel-based methods (GE, gel electrophoresis), and cellular
analyses (SILAC, stable isotope labeling by amino acids in cell culture; iTRAQ, isobaric tags for relative and absolute quantitation). To illustrate
the typical work flow of a gel-based analysis of the dystrophic heart proteome, two-dimensional gels representing the urea-soluble proteome
from the young versus the aged mdx heart are shown. The post-electrophoretic labeling of cardiac proteins with the fluorescent dye RuBPs
(ruthenium II tris bathophenantroline disulfonate) was carried out by standard methodology [17].

the completion of reverse DIGE labeling controls is not usu-
ally necessary, since selective labeling artifacts were shown
not to play a significant role in the analysis of soluble proteins
[166], which considerably lowers the overall time and costs
involved in large-scale 2D-DIGE studies. The analysis of the
murine heart proteomewith the 2-CyDye labeling systemand
the combination of pH 4–7 and pH 6–11 gels resulted in the
identification of 2,509 distinct protein spots [142], illustrating
the powerful separation and labeling capabilities of the 2D-
DIGE technique within the field of gel-based comparative
cardiac proteomics [106].

The proteomic profiling of 1-to-9-month-old mdx heart
extracts by Gulston et al. [141] revealed differential expres-
sion patterns for ATP synthase, glyceraldehyde-3-phosphate
dehydrogenase, serine proteinase inhibitor, trifunctional
enzyme, and hemoglobin. Additional metabolomic analyses
suggestmetabolic disturbances in the dystrophic heart, agree-
ing with the altered concentration of key mitochondrial and
glycolytic enzymes [141]. Since abnormal heart function was
shown to be prominent at 9 months of age [81], a detailed
2D-DIGE analysis of potential changes in the concentration
of distinct proteins was carried out with cardiac proteins at

this age of mdx mice [142]. Electrospray ionization MS/MS
analysis identified 26 proteins with a decreased abundance,
including various myosin light chains, tropomyosin, actin,
adenylate kinase, creatine kinase, vimentin, fatty acid binding
protein isoform FABP3, isocitrate dehydrogenase, NADH
dehydrogenase, myozenin, porin, and peroxiredoxin. In con-
trast, 3 heart-associated proteins were found to be signifi-
cantly increased, including lamin andnucleoside diphosphate
kinase. An independent verification of the DIGE analysis
was performed by immunoblotting and confocal microscopy
of a select group of cardiac proteins. The comparative
immunoblot analysis showed a drastic decrease in the enzyme
adenylate kinase, the fatty acid binding protein FABP3, isoc-
itrate dehydrogenase, and mitochondrial porin in 9-month-
old mdx heart tissue [142]. The decreased abundance of the
AK1 isoform of adenylate kinase did not correspond with a
previous combined metabolomic and proteomic analysis of
the mdx heart [141] but agrees with several comprehensive
proteomic surveys of dystrophin-deficient muscle prepara-
tions [152, 153, 167–169]. Since the proteomic result was
independently confirmed by immunoblotting, it appears that
cardiac nucleotide metabolism that involves adenylate kinase
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and creatine kinase is perturbed in the dystrophin-deficient
heart.

Mitochondrial dysfunction and accompanied oxidative
stress have been linked to various cardiac pathologies, includ-
ing cardiomyopathy, congestive heart failure, and ischaemia
reperfusion injury [170], conveying considerable importance
to the results from the proteomic profiling of the mdx heart
with respect to explaining abnormal mitochondrial function
in dystrophy-associated cardiomyopathy [97].Themitochon-
drial proteome fromheart tissue has beenwell catalogued and
studied using proteomic techniques, focusing especially on
the role of mitochondrial proteins in bioenergetics, pathol-
ogy, and the natural aging process [171–173]. The proteomic
finding that a variety of mitochondrial proteins exhibit an
altered concentration in the mdx heart [141, 142] necessi-
tated microscopical studies in order to evaluate whether
these protein alterations were due to a reduced number of
organelles in cardiomyopathic tissue or based on internal
changeswithin themitochondrial proteome. Amicroscopical
survey using the fluorescent labeling of mitochondria with
the MitoTracker dye CMXRos, staining of nuclei with the
DNA binding dye DAPI, and immunofluorescence staining
of cardiac marker proteins revealed no statistically signif-
icant differences in mitochondrial content, the number of
nuclei, and the subcellular localization of key mitochondrial
enzymes between normal and dystrophic heart [142]. Thus,
the overall isoform complement of mitochondrial enzymes
is not majorly altered, but certain subspecies of distinct
cardiac protein isoforms are changed due to the deficiency
in dystrophin. Since cardiac mitochondria are the primary
site for energy generation via oxidative phosphorylation,
even subtle changes in the protein population responsible for
oxidative phosphorylation complexes, the citric acid cycle,
andmetabolite transport can be assumed to have an extensive
effect on the bioenergetic status of the mdx heart. Besides
energy metabolism, cardiac mitochondria are also involved
in calcium signaling, the regulation of apoptosis, cell cycle
progression, and the production of heme and iron-sulfur
clusters [170]. Therefore, alterations in the mitochondrial
proteome may affect these crucial cellular functions and
render the mdx heart more susceptible to damage pathways
and ultimately to extensive fibrosis.

7. Label-Free MS Analysis of Cardiac Changes
in Dystrophinopathy

Based on the above outlined findings from gel-based pro-
teomic analyses of the dystrophic heart, it was concluded
that changes in proteins involved in fibre contraction,
nucleotide metabolism, the cellular stress response, mito-
chondrial bioenergetics, and fatty acid transportation play
a central role in the progressive loss of cardiac function
in the mdx model of Duchenne muscular dystrophy [141,
142]. However, since two-dimensional gel electrophoresis
does not properly display very large proteins, these analyses
did not produce any information on a key member of
the wider network of the cardiac dystrophin-glycoprotein
complex, namely, the basal lamina protein laminin. In skeletal

muscle, the concentration of laminin is unexpectedly not
altered in dystrophin-deficient fibres [40, 152, 174], so it
was of considerable interest to determine its molecular fate
in cardiac tissue and evaluate whether differences exist in
the extracellular matrix of both types of contractile mdx
tissues. Label-free mass spectrometry suggested itself as an
ideal analytical way to study high-molecular-mass cardiac
proteins andwas therefore applied to determine global down-
stream effects due to dystrophin deficiency within the cardiac
system.

Prior to the proteomic profiling of age-related changes
in the mdx heart, a label-free LC-MS/MS analysis of 7-
week-old dystrophic versus age-matched normal mice was
carried out to initially establish potential differences between
unaffected and dystrophic heart tissue at an age prior to
the occurrence of extensive cardiomyopathic changes [18].
Comparative proteomics established moderate changes in 20
cardiac proteins, which clearly agrees with the relatively mild
pathological phenotype in young mdx mice. A differential
expression pattern was shown for various mitochondrial
enzymes, including succinyl-CoA ligase, methylmalonate-
semialdehyde dehydrogenase, 3-hydroxyacyl-CoA dehydro-
genase, 2,4-dienoyl-CoA reductase, 3-ketoacyl-CoA thio-
lase, glutamate dehydrogenase, succinyl-CoA: 3-ketoacid-
coenzyme A transferase, 2-oxoglutarate dehydrogenase, and
isocitrate dehydrogenase.

The detailed proteomic profiling of the aging process
in 7-week-old to 20-month-old mdx hearts by label-free
mass spectrometry demonstrated that aged dystrophic hearts
exhibit a generally perturbed expression pattern of key
cardiac proteins involved in the stabilization of the basal
lamina, the organization of the cytoskeletal network, cellular
iron homeostasis, antibody response, fibre contraction, and
energy metabolism [18]. Age-related changes were found
in 67 cardiac protein species, of which 39 proteins were
shown to be increased and 28 proteins were identified as
being decreased in their concentration. Of note, the most
drastic alterations were increases in transferrin and various
immunoglobulin chains and decreases in laminin, nidogen,
and annexin. Thus, the collapse of the dystrophin network
in the heart and resulting sarcolemmal fragility appears
to trigger serious secondary alterations, including the dis-
integration of the basal lamina structure and cytoskeletal
network, an increased level of antibodies in a potential
autoimmune reaction of the degenerating heart, and the
compensatory binding of excess iron in dystrophinopathy-
related cardiomyopathy. Figure 2 shows the bioinformatic
STRING analysis of the proteomic data from the recent
label-free mass spectrometric study of the aging mdx heart.
For the evaluation of protein-protein interactions of the
mass spectrometrically identified proteins with a changed
abundance in the dystrophic mdx heart, bioinformatic anal-
ysis was carried out with the publically available STRING
(http://string-db.org/; version 9.1) database of known and
predicted protein interactions that include direct physical and
indirect functional protein associations [19]. The interaction
map illustrates the enormous complexity of potential protein
interactions, especially with respect tomitochondrial compo-
nents.

http://string-db.org/
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Figure 2: Bioinformatic STRING analysis of the proteomic data from the label-free mass spectrometric study of the aged mdx heart. For
the evaluation of protein-protein interactions of the mass spectrometrically identified proteins with a changed abundance in the dystrophic
mdx heart [18], bioinformatic analysis was carried out with the publically available STRING (http://string-db.org/; version 9.1) database of
known and predicted protein interactions that include direct physical and indirect functional protein associations [19].The interactionmap of
cardiac proteins with a changed abundance in the dystrophicmdx heart illustrates the enormous complexity of potential protein interactions,
especially with respect to mitochondrial components.

Functional analyses, confocal microscopy, and/or
immunoblotting are routinely used to independently verify
proteomic data. A comprehensive immunoblot analysis of
young and senescent wild type versusmdx hearts has verified
key proteomic results and clarified differences in protein
changes due to natural aging versus muscular dystrophy
[18]. While antibody decoration demonstrated that the
concentration of laminin, nidogen, and annexin increased
during the natural aging process, a drastic decrease in the
expression levels of these 3 cardiac proteins was observed in
the aged dystrophin-deficient heart. Both, the proteomic data
and their confirmation by immunoblotting strongly suggest
that the maintenance and architecture of the extracellular
matrix, basement membrane, and cytoskeletal network
are severely impaired in the aged mdx heart. The loss of
cardiac dystrophin seems to indirectly affect the essential
laminin component of the basement membrane [175] via

alterations in the dystroglycan subcomplex. The reduced
levels of laminin in turn appear to lower the concentration of
nidogen, a sulfated glycoprotein present in many specialized
basement membranes [176] and annexin, which is crucial for
the maintenance of the cytoskeleton and the extracellular
matrix, as well as cardiac Ca2+-homeostasis [177]. This loss
in surface integrity of the dystrophin-deficient heart could
be one of the major triggering factors that induce progressive
fibrosis in dystrophinopathy-associated cardiomyopathy.

The main findings from recent proteomic studies that
have focused on the cardiac dystrophin-glycoprotein com-
plex and dystrophin-deficient mdx heart tissues are listed
in Table 1. The overall emphasis of the individual stud-
ies, the main technological approach, and major findings
with respect to novel proteomic biomarker candidates of
dystrophinopathy-associated cardiomyopathy are displayed.
In addition, the flowchart in Figure 3 summarizes the variety

http://string-db.org/
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Table 1: Proteomic profiling of the dystrophin-deficientmdx heart.

Proteomic study Methods Major findings References

Proteomic analysis of the
cardiac-specific dystrophin
complex

IP-based
copurification,

LC-MS/MS, IB, CM

Confirmation of main dystrophin-associated proteins:
dystroglycans, sarcoglycans, dystrobrevins, sarcospan,
and syntrophins; plus identification of novel
dystrophin-associated proteins: Cavin-1, Ahnak-1,
Cypher, and Cryab

Johnson et al.,
2012 [52]

Comparative proteomic
study of 1-month to
9-month-oldmdx hearts
versus age-matched normal
hearts

2D-DIGE,
LC-MS/MS

Differential expression of ATP synthase, serine
proteinase inhibitor, glyceraldehyde-3-phosphate
dehydrogenase, trifunctional enzyme, and hemoglobin

Gulston et al.,
2008 [141]

Comparative proteomic
analysis of 9-month-old
mdx hearts versus
age-matched normal hearts

2D-DIGE,
LC-MS/MS, IB, CM

Increased levels of lamin and nucleoside diphosphate
kinase; drastic decrease in myosin light chains,
tropomyosin, actin, adenylate kinase, creatine kinase,
vimentin, fatty acid binding protein FABP3, isocitrate
dehydrogenase, NADH dehydrogenase, myozenin,
porin, and peroxiredoxin.

Lewis et al.,
2010 [142]

Comparative proteomic
analysis of 7-week-oldmdx
hearts versus age-matched
normal hearts

Label-free MS
analysis, IB

Moderate changes in youngmdx hearts: actin, biglycan,
troponin, protein disulphide isomerase, succinyl-CoA
ligase

Holland et al.,
2013 [18]

Proteomic analysis of the
aging process in 7-week to
20-month-oldmdx hearts

Label-free MS
analysis, IB

Severe changes in agedmdx hearts: drastic reduction in
laminin, nidogen, annexin, vimentin, ATP synthase,
cytochromes, NADH dehydrogenase; increases in
various IgG molecules, hydroxybutyrate
dehydrogenase, ferritin, transferrin, catalase,
glutathione transferase

Holland et al.,
2013 [18]

Listed are major findings from recent proteomic studies that have focused on the cardiac dystrophin-glycoprotein complex and dystrophin-deficient
mdx heart tissues. Abbreviations used: 2D-DIGE: two-dimensional difference in-gel electrophoresis; CM: confocal microscopy; IB: immunoblotting; IP:
immunoprecipitation; LC: liquid chromatography; MS: mass spectrometry.

Normal heart muscle
Stabilization of sarcolemma and transverse tubular system

via dystrophin-glycoprotein complex

Dystrophin Dp427 deficiency in X-linked muscular dystrophy

Fragile sarcolemma membrane in heart muscle

Dystrophinopathy-associated cardiomyopathy

Extensive fibrosis

Functional deficits in dystrophic heart

Chronic heart disease

Major physiological changes:
- Hypersensitive EC-coupling
- Increased sarcolemmal Ca2+-fluxes
- Elevated cytosolic Ca2+-levels
- Impaired Ca2+-buffering

Major biochemical changes:
- Impaired mitochondrial metabolism
- Abnormal contractile protein function
- Impaired cellular signaling mechanisms
- Increased cellular stress response

Figure 3: Molecular pathogenesis of muscular dystrophy-associated cardiomyopathy. Shown is a flowchart of major pathophysiological and
pathobiochemical changes that render the dystrophin-deficient heart more susceptible to fibre degeneration and fibrosis, which eventually
triggers chronic heart disease in dystrophinopathy. Key changes in the physiological regulation of the dystrophic heart are associated with
abnormal calcium handling and hypersensitive excitation-contraction (EC) coupling.
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of biochemical, physiological, and cellular abnormalities that
result in cardiac fibrosis and progressive functional decline of
the cardiovascular system.

8. Conclusions

Heart disease is a common clinical manifestation of X-linked
muscular dystrophies. Hence, future approaches to treating
the overall medical complications present in dystrophinopa-
thy have to take into account the remodeling of incapacitating
cardiac fibrosis and resulting functional abnormalities in the
dystrophin-deficient heart. As recently reported by Wasala
et al. [178], the exclusive correction of abnormalities in
the dystrophic skeletal musculature unfortunately does not
modulate cardiac pathogenesis in the aged mdx model of
Duchenne cardiomyopathy. To address this biomedical issue
and the fact that a high frequency of cardiomyopathy exists in
teenage patients suffering from inherited X-linked muscular
dystrophy, a large and diverse number of novel therapeutic
approaches are currently tested to specifically address cardiac
symptoms in dystrophinopathy. This includes various forms
of gene therapy [179–182], exon-skipping therapy [183], and
a large number of experimental drug treatments [184–192].
This in turn makes the availability of both a substantial array
of reliable proteomic biomarkers and established animal
models of muscular dystrophy an important prerequisite
for the high-throughput and large-scale testing of new
therapeutic options. In order to evaluate the long-term
usefulness and potential cytotoxic side effects of gene therapy,
exon-skipping, stem cell therapy, and/or pharmacological
interventions, simple, cost-effective, and reliable assays with
significant protein biomarkers are needed [193].

As outlined in this review, mass spectrometry-based
proteomic profiling studies have clearly established the mdx
mouse as a suitable animal model for exploring molec-
ular and cellular aspects of cardiac pathogenesis and the
aged mdx heart as a highly appropriate organ system for
studying the progressive aspects of muscular dystrophy-
associated cardiomyopathy. Most importantly, the applica-
tion of comparative proteomics has identified a large number
of new changes in cardiac proteins associated with cellular
signaling mechanisms, mitochondrial energy metabolism,
glycolysis, antibody response, iron binding, the contraction-
relaxation cycle, basal lamina stabilisation, and cytoskeletal
organisation.These novel proteinmarker candidates can now
be used for the systematic screening of the cardiac mdx
heart following experimental therapeutic interventions. The
combined utilization of both label-free mass spectrometry
and gel-based techniques promises the most comprehen-
sive coverage of the cardiac proteome, including highly
hydrophobic components, low-abundance elements, proteins
with extreme isoelectric points, and proteins with extensive
posttranslational modifications.
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