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Generalized structured component analysis (GSCA) is a theoretically well-founded

approach to component-based structural equation modeling (SEM). This approach

utilizes the bootstrap method to estimate the confidence intervals of its parameter

estimates without recourse to distributional assumptions, such as multivariate normality.

It currently provides the bootstrap percentile confidence intervals only. Recently,

the potential usefulness of the bias-corrected and accelerated bootstrap (BCa)

confidence intervals (CIs) over the percentile method has attracted attention for another

component-based SEM approach—partial least squares path modeling. Thus, in this

study, we implemented the BCa CI method into GSCA and conducted a rigorous

simulation to evaluate the performance of three bootstrap CI methods, including

percentile, BCa, and Student’s t methods, in terms of coverage and balance. We found

that the percentile method produced CIs closer to the desired level of coverage than

the other methods, while the BCa method was less prone to imbalance than the other

two methods. Study findings and implications are discussed, as well as limitations and

directions for future research.

Keywords: structural equation modeling (SEM), bootstrap methods, generalized structured component analysis

(GSCA), confidence intervals, Monte Carlo simulation

INTRODUCTION

Generalized structured component analysis (GSCA; Hwang and Takane, 2004, 2014) is an approach
to component-based structure equation modeling (SEM), where constructs are represented by
weighted composites or components of indicators (observed variables; Tenenhaus, 2008; Rigdon,
2012). Since Hwang and Takane (2004) seminal work, the data-analytic capability of GSCA has
been markedly improved allowing for applied researchers, for example, to handle cluster-level
respondent heterogeneity (Hwang et al., 2007a), multilevel modeling (Hwang et al., 2007b; Jung
et al., 2016), moderating effects of constructs (Hwang et al., 2010), and longitudinal data and time
series/functional data (Jung et al., 2012, 2016; Suk and Hwang, 2016).

GSCA uses an alternating least squares (De Leeuw et al., 1976) algorithm to minimize a single
least squares function for parameter estimation without requiring distributional assumptions such
as multivariate normality. Thus, it is a distribution-free approach. As a trade-off, however, it
cannot estimate the standard errors or confidence intervals of its parameter estimates based on
asymptotic (normal theory) approximations (Hwang and Takane, 2014, pp. 24–25). Instead, it
utilizes the bootstrap method (Efron, 1982) to obtain the standard errors and confidence intervals
non-parametrically. In the first step, random samples of size n (equal to the size of the original data
set) are repeatedly sampled from the original data set with replacement. In the second step, the
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parameters are estimated using each bootstrap sample. Lastly,
the standard errors and confidence intervals are derived
from the relative frequency distribution of the estimates over
the resamples considered as an empirical approximation of
its sampling distribution. The bootstrap standard errors and
confidence intervals can be used to test statistical significance
of the parameter estimates. For example, a bootstrap t statistic,
also called critical ratio (CR), can be calculated by dividing
a parameter estimate by its bootstrap standard error. If the
bootstrap t value is equal to or greater than the critical value of
a t distribution, the parameter estimate is considered statistically
significant at the nominal alpha level under the assumption
that the empirical sampling distribution of the parameter is
approximately t-distributed. GSCA currently provides percentile
confidence intervals (Kim et al., 2017; Hwang et al., 2019).
A confidence interval (CI) is defined as the interval between
the lower and upper bounds of a parameter estimate at a
prespecified confidence level (e.g., 95% confidence interval).
The use of percentile CIs is recommended over critical ratios
because the percentile CIs deliver more information about
the properties of parameter estimates, including precision, and
statistical significance without the normality assumption of the
estimates (Efron, 1982).

Recently, bias-corrected and accelerated bootstrap (BCa) CI
has been suggested for its use with partial least square path
modeling (Hair et al., 2016, pp. 155–159), another approach to
component-based SEM (Wold, 1982). More recently, Aguirre-
Urreta and Rönkkö (2018) conducted a rigorous simulation
study and showed that, overall, the percentile method tended
to produce more conservative CIs—overcoverage (i.e., wider
CIs), whereas the BCa method tended to provide too narrow
CIs—undercoverage (i.e., narrower CIs). Nevertheless, this study
recommended the use of the percentile method over the BCa
method for partial least square path modeling because the
population value was not often enough covered by BCa CIs.
No study has yet investigated the performance of the bootstrap
CI methods for GSCA. Thus, in this study, we implement
the BCa CI method into GSCA and conduct a rigorous
simulation to examine the performance of different bootstrap CI
methods for GSCA, including the percentile, BCa, and Student’s
t methods.

The organization of the article is as follows: we begin by
providing a description of the different bootstrap CI methods.
We then discuss the design and analysis procedure of our Monte
Carlo simulation study and report its results. The final section
summarizes the findings and implications of the study as well as
discusses its limitations and directions for future research.

BOOTSTRAP CONFIDENCE INTERVAL
METHODS

As stated, we focus on the three bootstrap CI methods that
are most popular in practice: percentile, bias-corrected and
accelerated CI, and Student’s t (Efron and Tibshirani, 1993;
Chernick, 2011).

Percentile Bootstrap Method
The percentile bootstrap interval is just the interval between the
100 ×

(
α
2

)
and 100 ×

(
1− α

2

)
percentiles of the distribution

of θ estimates obtained from resampling, where θ represents
a parameter of interest and α is the level of significance (e.g.,
α = 0.05 for 95% CIs) (Efron, 1982). A bootstrap percentile
CI of θ̂ (an estimator of θ) can be obtained as follows: (1)
B random bootstrap samples are generated, (2) a parameter
estimate is calculated from each bootstrap sample, (3) all B
bootstrap parameter estimates are ordered from the lowest to
highest, and (4) the CI is constructed as follows,

[
θ̂lower limit, θ̂upper limit

]
=

[
θ̂∗j , θ̂∗k

]
,

where θ̂∗j denotes the jth quantile (lower limit), and θ̂∗
k
denotes

the kth quantile (upper limit); j =
[

α
2 × B

]
, k =

[
(1− α

2 )× B
]
.

For example, a 95% percentile bootstrap CI with 1,000 bootstrap
samples is the interval between the 25th quantile value and the
975th quantile value of the 1,000 bootstrap parameter estimates.

Bias-Corrected and Accelerated Bootstrap
Method
To overcome the overcoverage issues in percentile bootstrap
CIs (Efron and Tibshirani, 1993), the BCa method corrects for
both bias and skewness of the bootstrap parameter estimates by
incorporating a bias-correction factor and an acceleration factor
(Efron, 1987; Efron and Tibshirani, 1993). The bias-correction
factor ẑ0 is estimated as the proportion of the bootstrap estimates
less than the original parameter estimate θ̂ ,

ẑ0 = 8−1(
#{θ̂∗ < θ̂}

B
),

where 8−1 is the inverse function of a standard normal
cumulative distribution function (e.g., 8−1 (0.975) = 1.96). The
acceleration factor â is estimated through jackknife resampling
(i.e., “leave one out” resampling), which involves generating
n replicates of the original sample, where n is the number
of observations in the sample. The first jackknife replicate is
obtained by leaving out the first case (i = 1) of the original
sample, the second by leaving out the second case (i = 2), and
so on, until n samples of size n − 1 are obtained. For each of
the jackknife resamples, θ̂(−i) is obtained. The average of these
estimates is,

θ̂(·) =
∑n

i= 1

θ̂(−i)

n

Then, the acceleration factor â is calculated as follows,

â =

∑n
i= 1

(
θ̂(·) − θ̂(−i)

)3

6

{∑n
i= 1

(
θ̂(·) − θ̂(−i)

)2 }3/2
.
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With the values of ẑ0 and â, the values α1and α2 are calculated,

α1 = 8

{
ẑ0 +

ẑ0 + z(α/2)

1− â(ẑ0 + z(α/2))

}

α2 = 8

{
ẑ0 +

ẑ0 + z(1−α/2)

1− â(ẑ0 + z(1−α/2))

}

Here, z(α/2) is the 100 × (α
2 )th percentile point of a standard

normal distribution (e.g., z(.05/2) = −1.96). Then, a CI
[
θ̂∗j , θ̂∗

k

]

is constructed with the values of α1 and α2 multiplied by the
number of bootstrap samples, j = α1 × B and k = α2 × B.

Bootstrap Student’s t Method
Student’s t method assumes that θ̂−θ

ŝe is approximately t-

distributed, where θ is a parameter, θ̂ is an estimate of the
parameter, and ŝe is the standard error of the parameter.
Bootstrap Student’s t CI for a certain alpha level (e.g., α = 0.05
for 95% CIs) is constructed as follows,

[
θ̂ − t

( a
2 )

n−1 · ŝe, θ̂ + t
(1− a

2 )
n−1 · ŝe

]
.

The bootstrap standard error of each estimate, ŝe(θ̂∗), is used for
ŝe. Note that Student’s t confidence interval has no feature to
adjust the confidence interval, accounting for any other types of
deviation from the t distribution.

SIMULATION DESIGN

We evaluate the performance of the three bootstrap methods
(percentile, BCa, and Student’s t) in GSCA, using a Monte
Carlo simulation. Figure 1 depicts the structural layout of the
data-generating model (i.e., population model), which was also
previously employed in Cho et al. (2019)1. The structural model
contains four exogenous and two endogenous latent variables2,
and a few regression paths were specified between them with
path coefficient values ranging from−0.75 to 0.55. The variances
of the endogenous latent variables explained by the exogenous
latent variables (R2) were 0.168 for γ5 and 0.383 for γ6. The
measurement part of the population model (i.e., measurement
model) was homogeneous for the latent variables. That is,
each latent variable had three indicators of which standardized
loadings were 0.7, 0.8, or 0.9. Note that the symbols for the error
terms in the measurement and structural models are omitted in
the figure for simplicity.

We considered two different distributions for the indicators—
normally distributed with a zero mean and unit variance vs.
non-normally distributed through lognormal transformation
of the normally distributed indicators. For the non-normally
distributed indicators, independent normal random variates were
generated, and they were transformed into lognormal random

1Unlike Cho et al. (2019), structural error terms were assumed to be independent

of each other for simplicity.
2We interchangeably used the terms latent variables and composites/components

because, in GSCA, a latent variable is defined as a weighted composite or

component of observed variables.

FIGURE 1 | The population structural equation model specified for the

simulation study.

variates by exponentiation, and then these manipulated random
variates were standardized. The desired correlation structure
was obtained by multiplying the data matrix by the Cholesky
factor of the prespecified covariance matrix (Ringle et al.,
2014). For the non-normal indicators, the average skewness
ranged from 1.41 to 2.53, and the average kurtosis ranged
from 6.32 to 18.28. Note that the skewness and kurtosis
of a normal distribution are 0 and 3, respectively. We also
considered four different sample sizes: N = 50, 100, 200,
and 500. Five hundred random samples were drawn under
each of eight conditions (two distributions × four sample
sizes), yielding a total of 4,000 replications. We applied GSCA
to fit the model to each sample and, subsequently, obtained
the percentile, BCa, and Student’s t CIs for the loading and
path coefficient estimates based on 1,000 bootstrap samples
(B = 1,000). Specifically, we modified the gesca R package
(Hwang et al., 2016; R Core Team, 2017) with the new R
functions of the bootstrap methods. The MATLAB codes used
to generate data and the R functions for three CI calculations
are available as Supplementary Materials. See also Cho et al.
(2019) and Dijkstra (2017) for more details on the data
generation procedure of component-based SEM. There was no
case of model non-convergence or inadmissible solution in the
current simulation.

EVALUATION CRITERIA

We evaluated two properties of a CI in the simulation: (a)
coverage and (b) balance (Aguirre-Urreta and Rönkkö, 2018).
The coverage of a CI is the proportion that the parameter value
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FIGURE 2 | The coverage and balance of percentile, bias-corrected and accelerated bootstrap (BCa), and Student’s t 95% confidence intervals (CIs) of 0.7, 0.8, and

0.9 loadings for normal indicators.

is included within the CI across replicated samples. Coverage
values should be close to a predefined confidence level of the
interval. For example, ideally, a 95% CI (a nominal coverage)
should include the parameter of interest 95% of the time over
replications. In other words, in 5% of the replications, the interval
would not capture the “true” parameter value in the population.

The balance of a CI refers to how the “non-coverage” is split.
That is, how many times the population value is greater than the
upper limit of the interval and how many times the population
value is smaller than the lower limit of the interval. In an ideal
situation, a CI should be balanced such that the population value
is greater than the upper limit or smaller than the lower limit at
the same number of times across replications (e.g., 2.5% of times
for a 95% CI), while achieving the desired level of coverage.

RESULTS

This section provides the results of the simulation study,
displaying a series of plots that show the performance of the three
bootstrap CI methods in terms of coverage and balance averaged
over the six latent variables. In these plots, the x-axis indicates
sample size (N = 50, 100, 200, 500) and the y-axis the proportion
of a loading (0.7, 0.8, 0.9) or path coefficient (−0.75,−0.25,−0.2,
−0.15, 0.35, 0.55) being above the upper limit or below the lower

limit of a CI. For a 95% CI, this should not occur more than
5%. Furthermore, the parameter value is expected to be above
(below) the upper (lower) limit of the CI in a balanced way—
i.e., no more than 2.5% in each case. The horizontal dashed line
indicates the theoretical coverage range of a perfectly balanced
95% CI. Thus, the closer the line representing a bootstrap CI
method to the dashed lines, the closer the particular method is
to the ideal coverage and balance that the CI should exhibit.

Loadings for Normally Distributed
Indicators
Figure 2 shows the coverage and balance of the percentile, BCa,
and Student’s t 95% CIs of the loadings ranging from 0.7 to
0.9 under the normal distributions. In the case of 0.9 loading,
each method produced CIs that included this population value
more than 95% of time, implying conservative wider coverage
with a less than nominal level of 5% error rate. The same results
were found in the 0.8 loading condition, except for a small
sample (N = 50). When loading was 0.7, Student’s t CIs excluded
this population value more than 5% of the time if they were
constructed using a small sample (N = 100). For a larger sample
(i.e., >200), overall, each of the percentile, BCa, and Student’s t
CIs was farther away from the desired level of coverage (lower
than the horizontal dashed line at 5%), indicating wider CIs of
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FIGURE 3 | The coverage and balance of percentile, bias-corrected and accelerated bootstrap (BCa), and Student’s t 95% confidence intervals (CIs) of 0.7, 0.8, and

0.9 loadings for non-normally distributed indicators.

θ̂ . This tendency becomes greater as the loading size gets larger.
In general, the percentile method produced better coverage in
CIs (i.e., closer to the horizontal dashed line) than did the other
two methods.

All three bootstrap methods tended to shift their CIs upward,
and such shifting was problematic particularly with smaller
loadings (0.7, 0.8) and smaller sample sizes (N = 50, 100).
Consequently, the CIs were imbalanced such that the lower
limit was greater than the population value more often than
would be desired (2.5%), while the upper limit was smaller
than the population value less frequently than would be desired
(2.5%). For the loading of 0.7, the balance in CIs improved as
sample size increased (i.e., closer to the nominal level of 2.5%).
Under the conditions of 0.9 loading and the sample size >

100, the population value was smaller than the lower limit or
greater than the upper limit fewer times than would be desired
primarily due to the inflated coverage (i.e., >95%) of wide CIs.
Overall, imbalanced and inflated coverage was observed across
all the methods.

Loadings for Non-normally Distributed
Indicators
Figure 3 presents the coverage and balance of percentile, BCa,
and Student’s t 95% CIs of 0.7, 0.8, and 0.9 loadings for non-
normally distributed indicators. The results were similar to
those with normally distributed indicators, suggesting that the
distribution of indicators has little impact on the bootstrap CIs
of a loading. More than 95% of the time, the population value

was included within the CIs regardless of loading size, and this
proportion became greater as sample size increased. In general,
coverage was comparable across the three methods, although the
percentile and Student’s t CIs were closer to the nominal level
than the BCa CIs in the case of smaller loadings (0.7, 0.8). In
general, the percentile method produced better coverage in CIs
than did the other two methods.

The CIs of each method were shifted upward especially when
relatively small loadings (0.7, 0.8) were estimated with a small
sample (N = 50, 100). Under the conditions of 0.7 loading and
larger sample sizes (N = 200, 500), the lower limit of the CIs
was close to the theoretical coverage range—if compared, much
closer to the desired level (2.5%) in the percentile and Student’s
t methods. For 0.9 loading, the CIs were wide (i.e., inflated
coverage approaching 100%) so that the population value was
smaller than the lower limit or greater than the upper limit many
fewer times than would be desired (2.5%). Overall, the balance in
CIs was not considerably different between the three methods.

Path Coefficients With Normally
Distributed Indicators
The simulation results for path coefficients were more similar
across different loading values (0.7, 0.8, 0.9), suggesting that
loading size has minimal influence on the bootstrap CIs.
Thus, the results were aggregated over the three conditions
of population loading, and the aggregated results are reported
here. A full scope of the simulation results will be available
upon request.
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FIGURE 4 | The coverage of percentile, bias-corrected and accelerated bootstrap (BCa), and Student’s t 95% confidence intervals (CIs) of path coefficients in the

normal indicator condition.

FIGURE 5 | The lower limits of percentile, bias-corrected and accelerated bootstrap (BCa), and Student’s t 95% confidence intervals (CIs) of path coefficients in the

normal indicator condition.
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FIGURE 6 | The upper limits of percentile, bias-corrected and accelerated bootstrap (BCa), and Student’s t 95% confidence intervals (CIs) of path coefficients in the

normal indicator condition.

FIGURE 7 | The coverage of percentile, BCa, and Student’s t 95% CIs of path coefficients in the non-normally distributed indicator condition.
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FIGURE 8 | The lower limits of percentile, bias-corrected and accelerated bootstrap (BCa), and Student’s t 95% confidence intervals (CIs) of path coefficients in the

non-normally distributed indicator condition.

Figure 4 presents the coverage of percentile, BCa, and
Student’s t 95% CIs of path coefficients in varying size (−0.75,
−0.25, −0.20, −0.15, 0.35, 0.55). First, the percentile method
produced clearly better coverage in CIs (i.e., closer to the
horizontal dashed line) than did the other two methods,
regardless of the size of path coefficients but except for the
largest path coefficient (−0.75). Second, the BCa and Student’s
t methods produced wider CIs than the desired level in coverage,
and this tendency wasmore apparent as the absolute value of path
coefficient increased. Third, the CIs became wider (i.e., inflated
coverage) as sample size increased. In general, the percentile CIs
were closer to the theoretical coverage range as compared to the
other two methods.

Figures 5, 6 show that the CIs of small to moderate path
coefficients (−0.25, −0.20, −0.15, 0.35) method were reasonably
well-balanced—i.e., the lower and upper limits were close to
the desired level (2.5%). In contrast, for relatively large path
coefficients (−0.75, 0.55), the population value was smaller than
the lower or greater than the upper limit many fewer times than
would be desired. Overall, the BCa method was less prone to
imbalance than the percentile and Student’s t methods.

Path Coefficients With Non-normally
Distributed Indicators
Figure 7 presents the coverage of percentile, BCa, and Student’s
t 95% CIs of path coefficients when the indicators were

non-normally distributed. The results were somewhat different
from what we found with normally distributed indicators.
Specifically, the CIs of each method were still close to the
theoretical coverage range (95%) when the population value
of path coefficients was relatively small to moderate (−0.25,
−0.20, −0.15), whereas the CIs that included the population
value of large path coefficients (−0.75, 0.35, 0.55) had much
wider CIs (i.e., much more than 95% of time). Such inflation in
coverage worsened as sample size increased. For instance, when
path coefficient was −0.75 and sample size was >100, all three
methods produced CIs that included the population value almost
always over replications. Nevertheless, overall, the percentile CIs
were less sensitive to the population value and sample size,
showing closer to the nominal level of 95%, compared to the
other two methods.

Figures 8, 9 show that the CIs of small to moderate
path coefficients (−0.25, −0.20, −0.15) were shifted slightly
downward—i.e., the lower limit was lower than the desired
level (2.5%), and the upper limit was higher than the
desired level (2.5%). The balance somewhat improved as
sample size increased (i.e., closer to the nominal level of
2.5%). In contrast, for relatively large path coefficients
(−0.75, 0.55), the population value was smaller than
the lower limit or greater than the upper limit many
fewer times than would be desired, probably due to the
inflated coverage (i.e., wide CI) observed earlier. Similar
to the findings in the normal indicator condition, the BCa
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FIGURE 9 | The upper limits of percentile, bias-corrected and accelerated bootstrap (BCa), and Student’s t 95% confidence intervals (CIs) of path coefficients in the

non-normally distributed indicator condition.

method was less prone to imbalance than the percentile and
Student’s t methods.

DISCUSSION

The present study successfully implemented percentile, BCa,
and Student’s t CI methods into GSCA, further exploring the
capability of statistical inference with GSCA, and investigated
the performance of the different bootstrap methods in terms of
coverage and balance of their CIs. A number of important
findings emerged from our simulation work. First, the
distribution of indicators had little impact on the bootstrap
CIs of a loading. Second, all three methods produced wider CIs
that included the population loading value more frequently than
would be desired. Such inflation in coverage was greater when
the CIs were constructed with a larger sample. Third, the CIs of a
loading were shifted upward, causing imbalance of CIs. Fourth,
the size of indicator loadings did little to affect the bootstrap
CIs of a path coefficient, but the distribution of indicators had
substantial impact, yielding fairly different performances of
the CIs. When the indicators were normally distributed, the
percentile CIs produced closer to the theoretical coverage range
as compared to BCa and Student’s t CIs, while the CIs of the
BCa method were better balanced than the other two methods.
When the indicators were non-normal rather than normal,
the CIs of each method included the population value of large

path coefficients more often than would be desired (i.e., inflated
coverage), while the CIs of small path coefficients showed ideal
levels of coverage and balance. Lastly, the coverage of percentile
CIs was less sensitive to the population value and sample size
than BCa CIs and Student’s t CIs, while the BCa method was less
prone to imbalance than the other two methods.

The current study findings have important implications for
researchers in substantive areas of statistical inferences using
bootstrap CIs in GSCA. The choice over different CI methods
should be carefully considered, especially when the sample size
is small (e.g., 50 or 100). Our stimulation results revealed an
outperformance of the percentile method over both BCa and
Student’s t with respect to the desired coverage of the CIs. The
BCa method tended to produce slightly better-balanced CIs than
the other two methods, but overall, it was undermined due to its
narrower CIs than the desired level in coverage. For empirical
research, the computational efficiency of the three methods
would also be considered. The percentile method is more efficient
in computation speed compared to the BCa method because
the latter has additional calculation steps for the parameters of
acceleration and bias correction. An efficient algorithm is desired
especially in situations where solutions have to be obtained
repeatedly, like the current simulation study. Thus, we would
recommend the adoption of percentile method as a standard
procedure for GSCA due to its better CI coverage at the nominal
level and its computational efficiency.
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Future studies would expand the current simulation scope to
other GSCA estimation methods and various advanced GSCA
models for a comparison among different CI methods. One
direction for future studies is to compare the different bootstrap
CI methods in a regularized extension of GSCA (rGSCA;
Hwang, 2009), which combines a ridge type of regularization
into GSCA in a unified framework, thereby handling potential
multicollinearity problems more effectively. In a simulation
study, rGSCA was found to provide parameter estimates that
are as good as or better than those from original GSCA in
various conditions of normally distributed data. Furthermore, we
may also consider a simulation study for comparisons of the CI
methods in GSCA with uniqueness terms for accommodating
measurement error (GSCAM; Hwang et al., 2017), which has
been proposed to extend the original GSCA to account for
errors in indicators explicitly. This extension contemplates both
common and unique parts of indicators and estimates a weighted
composite of indicators with their unique parts removed. Unlike
the original GSCA, GSCAM has a bias-correction method,
dealing with measurement errors in indicators. Therefore, it
would be warranted to consider a Monte Carlo simulation on the
relative performance of the different CI methods with GSCAM as
well as rGSCA.

Another direction for future studies is to compare the different
CI methods in a broad range of conditions and models for more
rigorous investigations. In particular, it would be necessary to
examine the relative performance of each CI method with variant
GSCA models such as fuzzy clusterwise GSCA for handling
cluster-level respondent heterogeneity, multilevel GSCA, GSCA

with latent interactions, and dynamic and functional GSCA for
longitudinal data and time series data (Hwang and Takane,
2014). The current study focused on 95% confidence level and
sample sizes≤ 500 because they are most frequently encountered
in practice. Future research on the use of different confidence
levels and larger samples (e.g., 1,000–3,000) is also warranted to
provide more practical implications for applied research. These
rigorous investigations in the advanced modeling framework
would provide applied researchers with information on which CI
method would be better across different experimental conditions
and models. This would ascertain the relative benefits of each
CI method.
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