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Abstract 

Background: Rapid reductions in emissions from fossil fuel burning are needed to curb global climate change. 
Biofuel production from crop residues can contribute to reducing the energy crisis and environmental deterioration. 
Wheat is a renewable source for biofuels owing to the low cost and high availability of its residues. Thus, identifying 
candidate genes controlling these traits is pivotal for efficient biofuel production. Here, six multi-locus genome-
wide association (ML-GWAS) models were applied using 185 tetraploid wheat accessions to detect quantitative trait 
nucleotides (QTNs) for fifteen traits associated with biomass composition.

Results: Among the 470 QTNs, only 72 identified by at least two models were considered as reliable. Among these 
latter, 16 also showed a significant effect on the corresponding trait (p.value < 0.05). Candidate genes survey carried 
out within 4 Mb flanking the QTNs, revealed putative biological functions associated with lipid transfer and metabo-
lism, cell wall modifications, cell cycle, and photosynthesis. Four genes encoded as Cellulose Synthase (CeSa), Anaphase 
promoting complex (APC/C), Glucoronoxylan 4-O Methyltransferase (GXM) and HYPONASTIC LEAVES1 (HYL1) might be 
responsible for an increase in cellulose, and natural and acid detergent fiber (NDF and ADF) content in tetraploid 
wheat. In addition, the SNP marker RFL_Contig3228_2154 associated with the variation in stem solidness (Q.Scsb-3B) 
was validated through two molecular methods (High resolution melting; HRM and RNase  H2-dependent PCR; rhAMP).

Conclusions: The study provides new insights into the genetic basis of biomass composition traits on tetraploid 
wheat. The application of six ML-GWAS models on a panel of diverse wheat genotypes represents an efficient 
approach to dissect complex traits with low heritability such as wheat straw composition. The discovery of genes/
genomic regions associated with biomass production and straw quality parameters is expected to accelerate the 
development of high-yielding wheat varieties useful for biofuel production.

Keywords: Acid detergent fiber, Acid detergent lignin, Biofuel, ML-GWAS, Neutral detergent fiber, QTNs

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Wheat yield has more than doubled over the last cen-
tury because of genetic improvement mainly due to the 
effect produced by the breeding activity on plant height 
and floret fertility [1, 2]. Strong selective pressure 
was exerted on the harvest index (expressed as ratio 
between the grain weight and total plant biomass), for 
which values of 40–50% were recorded [2]. On the con-
trary, the total biomass of wheat genotypes, including 
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tetraploid wheat, remained almost unchanged, indicat-
ing that the increase in yield was associated exclusively 
with a different relocation of photosynthates [3].

More recently, crop residues (i.e., wheat straw) are 
playing an increasingly important role as a source of 
renewable energy since modern technological pro-
cesses aim at the use of inexpensive raw materials 
(second-generation biofuels) and are more suitable to 
produce bioethanol and biogas [4, 5]. Unfortunately, 
the complex structure of these lignocellulosic materials 
makes the polymers they contain (cellulose, hemicellu-
lose, and lignin) very resistant to fungal enzymatic and 
chemical degradation with a low conversion efficiency, 
significantly reducing their use to produce biofuels [6]. 
Therefore, it might be appropriate to alter the chemi-
cal properties of wheat straw preserving the levels of 
defense against pathogens which also depends largely 
on the cell wall components [7, 8].

To ensure the supply of this type of biomass to the bio-
energy industry, an integrated systems biology approach 
is needed to define the plant ideotype capable of opti-
mizing the production of biofuels without compromis-
ing the food production of the crop. It needs to adopt a 
multidisciplinary approach combining plant physiology, 
biochemistry, molecular genetics, and genomics tech-
nologies to improve the total biomass production and 
optimize the composition of crop residues to the needs 
of the bioenergy industries [9]. Until now, the preferred 
strategy for modifying cell wall components in many spe-
cies of bioenergetic interest was through the isolation of 
mutants [10] defective in the synthesis of some enzymes 
involved in the lignin biosynthetic pathway (brown- mid-
rib). The use of these mutants, however, is hampered by 
low biomass production and low yields [11, 12].

Although numerous genomic tools are widely avail-
able for different cereal species, the complexity of the 
lignin and cellulose synthesis system makes the biotech-
nological approaches for altering the synthesis of these 
sugars very difficult in both bread and durum wheat. To 
overcome this issue, the exploration and exploitation 
of the genetic variability within wheat species appeared 
much more suitable to map the genetic determinants 
of the traits of interest. Genome-wide association study 
(GWAS) has been a routine and powerful approach for 
high-resolution genetic mapping of complex traits in 
plants [13]. Economically important traits include agro-
nomic and yield associated traits (reviewed by [14] as 
well as biotic [15–17] and abiotic stress tolerance [18–21] 
have been mapped using GWAS in wheat. Convention-
ally, GWAS was performed using a single-locus mixed 
linear model (SL-MLM) [22]. In the last few years, multi-
locus mixed linear models (ML-GWAS) have been devel-
oped, as they have higher power to detect significant 

marker-trait associations for complex traits than conven-
tional SL-MLM methods [23, 24], 2018, [25–28].

ML-GWAS involve a multi-dimensional genome scan 
in which the effects of all markers are simultaneously esti-
mated and does not require a multiple test correction, a 
statistic test that can be too conservative, especially when 
analyzing complex traits regulated by many genes with 
small effects. For these reasons, here we selected six ML-
GWAS models that involve two-steps. During the first 
step, a single-locus GWAS method is applied to scan the 
entire genome, and putative QTNs are detected accord-
ing to a less stringent critical value, such as P < 0.005 or 
P < 1/m, where m is the number of markers. During the 
second step, all selected putative QTNs are examined by 
a multi-locus GWAS model to detect true QTNs. Since 
markers effects are simultaneously tested in ML-GWAS 
models, they can represent appropriate genetic models 
for molecular dissection of complex traits such as those 
involved in biomass compositions. On this basis, the pre-
sent study aimed to: i) evaluate the wheat straw composi-
tion and morphological traits through ML-GWAS using 
a collection of tetraploid wheat species; ii) identify novel 
genomic regions associated with these traits and sug-
gest candidate genes, and iii) validate SNPs markers for 
marker-assisted selection.

Results
Phenotypic variation and correlations analysis
The data set of three-year field trials was examined with 
an ANOVA to reveal: (i) genotype effect, (ii) year effect, 
(iii) interaction between genotype and year, and (iv) 
residuals (Fig.  1). Using BLUP values, the percentage of 
variation attributed to the genotype ranged between 
11.2% and 90.1% for Biomass and PH, respectively. The 
year effect was generally low, except for Biomass and GW, 
for which it accounted for 72.1% and 67.8%, respectively. 
The genotype × year interaction was higher for ADF and 
SCSb, where it was higher than 60%. By contrast, it was 
lower for the remaining traits, reaching minimal values 
of 10.1% for Biomass. The same dataset was also used to 
calculate hereditability  (H2). The  H2 values ranged from 
a minimum of 0.05 for Biomass and FTN to a maxi-
mum of 0.93 for PH (Fig. 1).  H2 values higher than 0.60 
were observed for traits such as SCSm, HI, PH, and SPL, 
whereas values lower than 0.30 were identified for TTN, 
FTN, Biomass, ADF, NDF, CEL, HEM and GW. Best lin-
ear unbiased predictors (BLUPs) were then calculated for 
all traits and used for PCA, Pearson correlation analysis, 
and ML-GWAS. BLUPs distribution is reported in Sup-
plementary Fig. 1 and in Supplementary Table 1. Differ-
ences based on Triticum subspecies have been observed 
within BLUPs distribution (Supplementary Fig.  2). For 
example, durum wheat accessions showed the lowest 
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and highest BLUPs values for PH and HI, respectively. 
Significant differences were also observed for ADL and 
SPL (Supplementary Fig.  2) for durum wheat and other 
tetraploid subspecies. The PCA graph confirmed the var-
iability of accessions according to the subspecies, high-
lighting a differentiation of the durum accessions from 
the rest (Fig. 2). The first five principal components (PCs) 
explained up to 73% of the total variance. Among them, 
the first two (PC1 and PC2) accounted the 37.4% of the 

total variation, with 21.5% and 15.9% for PC1 and PC2, 
respectively. Biomass and related traits such as FTN, 
TTN, SPL, PH, and Biomass were mainly influenced by 
PC1 (Fig. 2), whereas PC2 was mostly attributed to SCSa, 
SCSb, SCSm, NDF, ADF, and CEL. PC1 also discrimi-
nated durum wheat genotypes from other accessions of 
tetraploid wheat. Pearson correlation was employed to 
deeper understand the pairwise relationships among the 
traits under investigation (Fig.  3). Sixty-two significant 

Fig. 1 Variation component analysis with phenotypic traits measured in 185 wheat genotypes. The plot shows the percentage of variation 
explained by each component. The components of phenotypic variation are: i) Genotype, ii) Year, iii) interaction (Genotype x Year) and iv) residuals 
as percentage of the observed variation. The value on top of bars represents the broad-sense hereditability for each trait

Fig. 2 Whole phenotypic variability of the 185 wheat genotypes. Loading plot of the first (PC1) and second (PC2) principal components showing 
the variation for 15 traits. Based on Triticum ssp., genotypes are represented by different colored symbols indicated in the legend. Trait contributions 
are show with arrows. The direction and distance from the center of the biplot indicate how each trait contributes to the first two components. Trait 
acronyms are in Supplementary Table 3
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correlation trait-pairs (P ≤ 0.05) were identified among all 
the traits. Out of all, 34 were positively correlated, while 
other 28 were correlated negatively. A highly positive 
correlation was found between FTN and TTN and, CEL 
and ADF (r = 0.96 and 0.83), whereas PH and HI together 
with SPL and HI showed the highest negative correla-
tion (r =  − 0.67 and − 0.44). In addition, SCSa, SCSm and 
SCSb were all positively correlated between each other 
(r > 0.40), whereas they were negatively correlated with 
TTN, ADL, and PH (Fig. 3). ADL, Biomass, SPL, and PH 
were also negatively correlated with CEL and HI.

SNP markers statistics, population structure and linkage 
disequilibrium
A total of 6,090 variants were removed from the raw 
dataset due to missing genotype data, whereas other 
49,875 variants removed due to minor allele (MAF) 
threshold(s), yielding a total of 20,755 filtered variants. 
The 20,755 SNPs included 9,199 and 11,557 on the sub-
genomes A and B, respectively. The number of markers 
on each chromosome ranged between a minimum of 954 
SNPs for chromosome 4A and a maximum of 2,075 on 
chromosome 2B, as shown in Fig. 4. On sub-genome A, 
the maximum number of SNPs were on Chr. 7A (1,687), 
followed by 2A (1,431) and 4A (954). By contrast, the 

highest number of SNPs on the sub-genome B was 
detected for Chr. 2B (2,075), followed by 1B (1,984) and 
4B (1,031). The SNPs distribution on durum wheat chro-
mosomes is provided in Fig. 4.

The filtered panel of 20,755 SNP markers was then used 
to investigate the population structure of 185 tetraploid 
wheat genotypes on the basis of a PCA method. The anal-
ysis indicated the existence of three distinct major clus-
ters (Supplementary Fig. 3). The first dimension (PCA1) 
separated all durum wheat samples (ssp. durum) from 
the others, with the exception of few individuals belong-
ing to ssp. turanicum which were included in the cluster 
together with durum genotypes. Durum wheat cultivars 
were also distributed along the PCA2 axis, separating the 
ancient/old varieties such as Aziziah, Timilia, Grifoni and 
Capeiti (quadrant IV) from the more recent ones (quad-
rant I), which included elite varieties mainly derived from 
national and international breeding programs. In addi-
tion, PCA2 further distinguished accessions belonging 
to ssp. turgidum, turanicum and polonicum from those 
belonging to ssp. carthlicum, dicoccum and dicoccoides, 
with some exceptions. Linkage disequilibrium (LD) 
decay distance at which  r2 fell to 0.20 was ∼ 1.8  Mb, 
1.6 Mb and 1.7 Mb in whole, A and B genome, respectively 
(Supplementary Fig. 4).

Fig. 3 Pearson rank correlation coefficients between pairs of phenotypes. Correlation coefficients are indicated in each cell. Colored correlations 
are those with P value < 0.05 after Bonferroni correction. Color intensity is directly proportional to the coefficients. On the below side of the 
correlogram, the legend color shows the correlation coefficients and the corresponding colors. Trait acronyms are reported in Supplementary 
Table 3
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Genome‑wide association analysis
ML association mapping analysis was conducted using 
only the correction for kinship as it resulted the most 
appropriate method for the panel under study. A total 
of 470 significant QTNs were found associated with 
15 traits (LOD ≥ 3). Out of all, 49, 64, 23, 166, 90, 68 
QTNs were detected using mrMLM, pLARmEB, FAST-
mrEMMA, pKWmEB, FASTmrMLM and ISIS EM-
BLASSO, respectively (Supplementary Fig. 5). QQ plots 
related to each trait are reported in Supplementary Fig. 6. 
Only 72 QTNs for 15 traits (two for ADL and GW, three 
for ADF, HEM, FTN and TTN, four for CEL, Biomass, 
NDF and HI, five for SCSb, six for SCSa, eight for SCSm, 
ten for SPL, and eleven for PH), detected by at least two 
methods, were declared as reliable QTNs (Table  1) and 
used in downstream analysis. Among these latter, Bob-
White_c44947_277, associated with SPL, was detected by 
all methods, whereas RFL_Contig3228_2154 and wsnp_
Ex_c24135_33382521, associated with SCSb and ADL, 
respectively, were detected by five methods (Table 1).

QTNs for biomass and chemical composition
Twenty QTNs were identified for Biomass and five 
related traits (ADF, ADL, NDF, CEL, and HEM) by at 
least two different models and then considered as reli-
able (Table  1). They were distributed on ten chromo-
somes: 1B, 2A, 2B, 3A, 4A, 4B, 5A, 6B, 7A, 7B. Three 
reliable QTNs were identified for ADF. Among these, 
Q.Adf-5A was annotated as major QTN  (R2 ≥ 10 at least 
in one method and LOD values ranging between 3.19–
4.27), whereas the other two (Q.Adf-1B and Q.Adf-3B) 
as minor. Two QTNs on chromosome 2B, (one major 
Q.Adl-2B.2 and one minor, Q.Adl-2B.1) were instead 
identified for ADL. Four reliable QTNs were identified 
for CEL; Q.Cel-2A was considered major as it explained 

the highest phenotypic variance (6.71–14.74%), whereas 
the remaining three were declared as minor since their 
 R2 values were < 10%. Four QTNs were also identified for 
Biomass and NDF. Two QTNs for Biomass (Q.Biomass-
2B.1 and Q.Biomass-4B) and one for NDF (Q.Ndf-4B.1) 
were annotated as major, whereas the others were as 
minor.

QTNs for morphological traits
Fifty-two reliable QTNs were significantly associated 
with nine traits morphological traits, and they were 
distributed on all chromosomes except for chr. 1B 
(Table  1). The highest number of QTNs were identi-
fied for PH (11) whereas the lowest number was found 
for GW (2). Among the QTNs identified for PH, only 
Q.Ph-1A was considered major (R = 19.78%), whereas 
among the QTNs identified for SPL, two (Q.Spl-1A.1 
and Q.Spl-3B) were considered major. In particular, 
Q.Spl-1A.1 explained phenotypic variation ranging 
between 5.72% and 11.96% and it showed the highest 
LOD values (7.13–12.54). Eight reliable QTNs were 
associated with SCSm, of which four were major (Q.
Scsm-3B, Q.Scsm-4A, Q.Scsm-6B.3 and Q.Scsm-6B.4). 
Among these latter, Q.Scsm-4A explained the highest 
phenotypic variance (12.14%) with LOD values rang-
ing between 4.11–9.09. Six and five reliable QTNs 
were associated with SCSa and SCSb, respectively. 
In particular, two QTNs for SCSa (Q.Scsa-1A.2 and 
Q.Scsa-3A) and two for SCSb (Q.Scsb-2B and Q.Scsb-
3B) were major. Four QTNs were instead identified for 
HI. Out of all, Q.Hi-4A was declared as major, since it 
explained up to 20.94% of the phenotypic variation. 
Three QTNs for TTN and FTN were also identified, 
but they explained a phenotypic variation of < 10%. 

Fig. 4 SNP density plot showing the number of SNPs within 1 Mb window size along sub genome A (a) and B (b). The horizontal axis shows the 
chromosome length (Mb); the different color depicts SNP density
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Table 1 Sixty-one QTNs identified using two or more than two multi-locus GWAS models. logarithm of the odds (LOD) and 
phenotypic variance explained  (R2%) for each QTN are also reported. Trait acronym are reported in Supplementary Table 3

S. No QTN Trait Marker Allele Physical position (bp) LOD R2 (%) Method

1 Q.Adf-1B ADF GENE-0173_168 A/G 1B: 293,176,664 3.62–3.62 3.57–3.57 1,5

2 Q.Adf-3B ADF Kukri_c22235_1547 G/T 3B: 786,404,075 3.52–6.85 3.72–8.77 2,3,5,6

3 Q.Adf-5A ADF Kukri_rep_c101981_260 G/T 5A: 319,304,864 3.19–4.27 1.47–10.05 2,4,6

4 Q.Adl-2B.1 ADL BobWhite_c30140_119 A/G 2B: 745,946,175 4.10–5.35 2.77–8.48 1,2

5 Q.Adl-2B.2 ADL wsnp_Ex_c24135_33382521 A/G 2B: 702,731,805 3.04–10.79 3.90–17.42 1,2,3,4,5

6 Q.Cel-2A CEL Ku_c8927_2075 C/T 2A: 685,865,037 8.87–5.51 6.71–14.74 1,5

7 Q.Cel-3A.1 CEL BobWhite_c38444_238 G/T 3A: 676,958,917 3.06–3.16 0.56–1.70 5,6

8 Q.Cel-3A.2 CEL BS00048633_51 A/G 3A: 722,371,044 3.04–4.76 3.32–6.65 1,2,3

9 Q.Cel-4A CEL Excalibur_c24511_1196 A/G 4A: 607,877,731 3.30–8.16 2.90–7.73 1,4,6,5

10 Q.Ttn-2A TTN BS00068050_51 C/T 2A: 7,171,528 3.04–4.36 0.29–4.81 1,2,4

11 Q.Ttn-2B TTN Tdurum_contig74936_456 A/G 2B: 79,054,183 3.29–6.82 0.00–7.87 4,6

12 Q.Ttn-7A TTN Kukri_c18148_913 C/T 7A: 715,952,715 3.30–4-84 2.32–8.80 1,3

13 Q.Hi-4A HI Tdurum_contig42638_383 A/C 4A: 727,573,605 3.18–9.11 1.22–20.94 1,2,6

14 Q.Hi-7A.1 HI BS00044593_51 A/G 7A: 123,464,462 5.41–7.82 0.12–6.04 5,6

15 Q.Hi-7A.2 HI RFL_Contig2834_890 C/T 7A: 714,390,256 3.33–5.73 1.60–5.05 2,5,6

16 Q.HI-7B HI RAC875_c48671_172 A/G 7B: 719,682,848 3.17–3.87 1.10–1.59 5,6

17 Q.Biomass-2B.1 BIOMASS Excalibur_c34937_710 G/T 2B: 6,711,112 3.42–6.85 8.49–14.79 1,5,6

18 Q.Biomass-2B.2 BIOMASS RAC875_c31214_58 C/T 2B: 770,956,440 4.30–5.48 5.99–7.77 1,5,6

19 Q.Biomass-4B BIOMASS RAC875_c25045_637 C/T 4B: 548,976,483 3.21–3.98 6.32–10.91 1,2,5,6

20 Q.Biomass-5A BIOMASS wsnp_Ex_c1138_2185522 A/G 5A: 533,045,040 3.13–5.67 0.00–8.00 1,6

21 Q.Gw-4A GW Ra_c1897_2401 C/T 4A: 702,329,094 3.73–6.89 4.82–11.00 1,2,3,6

22 Q.Gw-7B GW BS00068071_51 A/G 7B: 173,518,366 3.28–3.56 0.00–8.47 2,6

23 Q.Ndf-2A NDF Tdurum_contig31185_456 C/T 2A: 741,540,226 3.78–4.30 3.81–5.58 2,3,6

24 Q.Ndf-4B.1 NDF BS00024110_51 G/T 4B: 89,594,936 3.34–4.15 0.00–10.34 2,5,6

25 Q.Ndf-4B.2 NDF BS00030571_51 A/G 4B: 606,290,375 3.69–7.23 3.67–8.11 2,5,6

26 Q.Ndf-7A NDF BobWhite_c25527_980 C/T 7A: 709,196,631 3.38–4.46 0.00–1.01 2,5

27 Q.Scsa-1A.1 SCSa BS00110627_51 G/T 1A: 527,767,957 4.09–6.14 6.51–7.76 3,5

28 Q.Scsa-1A.2 SCSa Tdurum_contig51833_439 A/G 1A: 537,137,625 3.62–7.12 10.68–13.16 1,4,6

29 Q.Scsa-2A SCSa GENE-1381_110 G/T 2A: 685,560,391 3.25–4.02 1.52–4.81 1,4,6

30 Q.Scsa-3A SCSa RAC875_c3084_415 C/T 3A: 728,749,058 4.53–6.16 12.00–15.55 1,6

31 Q.Scsa-3B SCSa BS00059887_51 A/G 3B: 748,418,401 3.24–5.67 0.00–9.96 1,2

32 Q.Scsa-6A SCSa BS00068218_51 C/T 6A: 599,877,040 3.58–5.09 2.31–6.24 1,2,4

33 Q.Scsm-1A SCSm wsnp_Ex_c4186_7560575 C/T 1A: 584,664,979 3.48–3.96 2.70–3.54 2,5

34 Q.Scsm-2B SCSm BS00025649_51 A/C 2B: 704,739,952 3.33–4.84 5.58–6.59 1,2

35 Q.Scsm-3B SCSm RAC875_c63132_298 C/T 3B: 6,886,640 4.11–4.51 7.62–11.95 4,6

36 Q.Scsm-4A SCSm RAC875_c18732_193 G/T 4A: 380,699,504 4.11–9.09 5.74–12.14 1,2,5,6

37 Q.Scsm-6B.1 SCSm BS00011192_51 A/G 6B: 681,643,033 3.34–3.64 5.12–7.39 1,6

38 Q.Scsm-6B.2 SCSm RAC875_c49329_81 C/T 6B: 684,859,721 3.36–4.67 5.48–7.75 4,5

39 Q.Scsm-6B.3 SCSm wsnp_BF293311B_Ta_2_3 A/C 6B: 439,365,045 4.43–4.73 7.23–10.44 1,2

40 Q.Scsm-6B.4 SCSm Excalibur_c64119_578 C/T 6B: 12,368,785 5.22–5.83 7.97–10.88 1,2,4,5

41 Q.Scsb-2B SCSb Excalibur_c10068_1276 A/G 2B: 743,736,881 4.92–9-32 8.55–19.14 1,2,3

42 Q.Scsb-3B SCSb RFL_Contig3228_2154 C/T 3B: 21,113,077 3.81–8.78 8.96–13.11 1,2,3,4,6

43 Q.Scsb-4A SCSb Tdurum_contig15260_650 A/G 4A: 721,237,375 3.05–3.11 5.21–6.06 1,2

44 Q.Scsb-6A.1 SCSb wsnp_Ku_c26784_36748247 C/T 6A: 50,651,609 3.07–4,07 1.90–2.20 4,6

45 Q.Scsb-6A.2 SCSb BS00036878_51 A/G 6A: 452,642,718 3.43–4.95 0.00–1.65 2,4,6

46 Q.Hem-4B HEM BS00003765_51 C/T 4B: 601,823,368 3.78–5.03 2.13–4.76 3,5

47 Q.Hem-5A HEM Ra_c19494_275 C/T 5A: 625,718,974 4.38–7.19 4.53–3.34 5,6

48 Q.Hem-6B HEM RAC875_c47035_70 A/G 6B: 442,960,966 3.14–5.69 0.00–7.19 4,5,6
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Finally, two QTNs were identified for GW, of which 
one was major (Q.Gw-4A).

Allelic effect of major QTNs on biomass traits
The major QTNs  (R2 ≥ 10) were also tested using t-test 
(P ≤ 0.01) (Fig. 5). We divided the population into two 
groups according to allelic profile to test whether the 
mean BLUP values of the two groups were signifi-
cantly different. In total, 16 QTNs had a significant 
effect on nine traits (Fig.  5). Among these, the high-
est number of QTNs (three) were significant for SCSm  
(Q.Scsm-4A, Q.Scsm-6B.3, Q.Scsm-6B.4). Two QTNs were  
significant for SCSa (Q.Scsa-1A.2, Q.Scsa-3A), SCSb  
(Q.Scsb-2B, Q.Scsb-3B), SPL (Q.Spl-1A.1, Q.Spl-3B) and 
Biomass (Q.Biomass-2B.1, Q.Biomass-4B). One QTN showed 
significant effect on ADF (Q.Adf-5A), CEL (Q.Cel-2A), HI  
(Q.Hi-4A), NDF (Q.Ndf-4B.1), and PH (Q.Ph-1A).

Identification of putative candidate genes associated 
with major QTNs
Genomic regions (± 1.8  Mb) surrounding the six-
teen major QTNs with allelic effects were investigated 
(Table  2). Several genes modulating lipid, carbohy-
drate, and starch-sucrose metabolisms, as well as genes 

involved in photosynthetic processes and secondary 
metabolites production, were annotated within QTNs. 
For example, three synthases, Cellulose synthase (CESA), 
Sucrose Synthase 6 (SuSy) and Glucan synthase-like 4 
(GSL4), along with two transferases Beta-fructofuranosi-
dase (CIN4) and Sterol 3-beta-glucosyltransferase, all 
involved in sucrose and starch metabolism, were found 
associated with SCSa, SPL and SCSm, respectively.

Similarly, three peroxidases (PRX1, PRX22, and 
PRX36), known to be involved in the phenylpropanoid-
lignin pathway were found within QTNs associated with 
ADF, Biomass, and SCSa. In addition to these latter, 
4-coumarate-CoA ligase (4CL) and Hexosyltransferase, 
both belonging to the same pathway, were also found. 
Genes involved in hemicellulose biosynthesis were also 
identified among QTNs. For example, a Glucuronoxylan 
4-O-methyltransferase involved in the modification of 
one of the principal components present in the secondary 
cell walls of plants (hemicellulose 4-O-methyl glucuron-
oxylan) was associated with NDF and SCSa. Interest-
ingly, HYPONASTIC LEAVES 1 (HYL1), a gene encoding 
a nuclear double-stranded RNA-binding protein with 
a role in miRNA biogenesis was found associated with 
ADF. Transcription factors belonging to Ap2-like ethyl-
ene-responsive (AP2/ERF), Ethylene-responsive (ERF), 

Table 1 (continued)

S. No QTN Trait Marker Allele Physical position (bp) LOD R2 (%) Method

49 Q.Spl-1A.1 SPL D_GBUVHFX01API9H_416 A/G 1A: 560,604,148 7.13–12.54 5.72–11.96 1,2

50 Q.Spl-1A.2 SPL BobWhite_c44947_277 C/T 1A: 580,573,915 3.08–7.44 2.43–6.39 1,2,3,4,5,6

51 Q.Spl-3B SPL Tdurum_contig12087_190 A/C 3B: 736,504,198 5.85–7.87 10.33–12.68 1,3

52 Q.Spl-4A.1 SPL RAC875_c34515_343 A/G 4A: 617,606,418 3.84–5.41 1.87–4.76 1,4

53 Q.Spl-4A.2 SPL Tdurum_contig47858_908 A/G 4A: 618,975,358 5.04–8.08 2.36–3.60 4,6,5

54 Q.Spl-4B.1 SPL Ex_c14614_433 A/G 4B: 114,625,178 4.51–8.48 4.86–7.91 3,6

55 Q.Spl-4B.2 SPL Excalibur_c12937_544 A/G 4B: 654,334,669 4.97–9.87 4.73–9.25 1,6

56 Q.Spl-4B.3 SPL Excalibur_rep_c70127_360 A/G 4B: 560,440,302 3.22–11.65 0.00–9.03 1,2,4

57 Q.Spl-6A SPL GENE-3665_61 A/G 6A: 36,191,483 3.41–4.04 1.86–1.86 2,6

58 Q.Spl-7A SPL wsnp_Ku_c792_1635653 C/T 7A: 9,266,099 4.54–4.73 3.04–3.55 5,6

59 Q.Ftn-2B FTN Excalibur_c27769_1089 C/T 2B: 135,830,179 3.04–5.82 0.37–1.11 2,6

60 Q.Ftn-5A FTN BS00000365_51 A/G 5A: 501,011,928 5.72–11.41 3,12–5.10 2,6

61 Q.Ftn-6A FTN Kukri_c45702_439 A/G 6A: 602,501,261 4.37–6.03 0.96–2.12 2,6

62 Q.Ph-1A PH Excalibur_c6255_1119 T/C 1A: 152,822,081 12.02–16.10 12.45–19.78 1,5

63 Q.Ph-2A.1 PH BS00089497_51 G/A 2A: 688,361,342 5.30–6.54 2.09–2.55 1,2,3,4

64 Q.Ph-2A.2 PH CAP12_rep_c6956_169 T/C 2A: 691,749,827 4.32–7.61 1.20–2.04 2,3

65 Q.Ph-2A.3 PH BS00107804_51 C/T 2A: 701,377,125 4.48–5.36 1.69–2.89 4,6

66 Q.Ph-3A PH wsnp_Ex_c20250_29303152 G/T 3A: 687,446,416 3.95–14.09 2.30.7.37 3,6

67 Q.Ph-4B.1 PH BS00023766_51 T/C 4B: 30,278,520 4.26–7.99 2.10–4.18 3,6

68 Q.Ph-4B.2 PH Tdurum_contig63670_287 G/A 4B: 35,030,729 4.29–17.11 3.79–9.61 1,2,4,5

69 Q.Ph-5B.1 PH RAC875_c39204_91 C/T 5B: 23,191,553 5.17–12.82 2.76–6.47 1,4,5

70 Q.Ph-5B.2 PH BS00068200_51 T/C 5B: 510,428,487 3.89–6.75 1.67–2.84 2,3

71 Q.Ph-7A PH RAC875_c28585_156 C/T 7A: 16,934,067 4.21–4.72 1.51–1.87 2,3

72 Q.Ph-7B PH BobWhite_rep_c49050_1890 A/G 7B: 622,291,386 3.99–9.81 0.93–2.73 2,4,6
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WRKY, and MYB were also annotated. Among them, a 
scarecrow transcription factor like OsGRAS31, a WRKY 
transcription factor similar to OsWRKY72, a Zinc finger-
homeodomain protein 1 similar to OsZHD4, and a MYB 
similar to OsMYB30 were associated with HI, Biomass, 
NDF, and SCSm, respectively.

Marker validation through molecular methods
Based on the allelic effects of the 16 reliable QTNs, one 
marker (Q.Scsb-3B, RFL_Contig3228_2154) associated with 
the understudied trait SCSb, was selected and validated on 

34 accession included in the panel under study, using two 
different molecular methods (HRM and rhAMP). The 
marker RFL_Contig3228_2154 was able to distinguish gen-
otypes with a strong contrasting phenotype based on their 
allele (Fig.  6, Supplementary Table  2), since the homozy-
gous “AA” and “aa” profiles were associated with low and 
high values of SCSb, respectively. Both HRM and rhAmp 
analysis showed that most accessions had the allelic profile 
“AA”, whereas six showed homozygous “aa” genotype.

Fig. 5 Boxplot for 15 reliable QTNs with significant effects (P < 0.01) on corresponding traits. For each QTNs, the germplasm lines were divided into 
two groups according to superior and inferior allele type. The X-axis represents the two alleles for each QTNs, while the Y-axis corresponds to BLUP 
values
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Table 2 Candidate genes around the reliable QTNs and their functional annotation. The durum (Svevo) gene ID along with direct 
orthologs in rice is also reported

QTN Trait Marker Gene ID Gene Description Rice Ortholog Rice gene name

Q.Adf-5A ADF Kukri_rep_c101981_260 TRITD5Av1G111780 Non-specific lipid-transfer protein 
(LTP)

Os12g0115500 OsLTPL14/OsLTP1.20

TRITD5Av1G111860 Anthocyanidin 3-O-glucosyl-
transferase 2 G (UFGT)

NA NA

TRITD5Av1G112460 Lipid transfer protein (LTP) Os12g0112401 NA

TRITD5Av1G112990 Double-stranded RNA-binding 
protein 3 (HYL1)

NA NA

TRITD5Av1G112500 Peroxidase (PRX) Os12g0112000 OsPRX1

Q.Cel-2A CEL Ku_c8927_2075 TRITD2Av1G252600 Anthocyanin 3’-O-beta-glucosyl-
transferase (3’GT)

NA NA

TRITD2Av1G253060 Anaphase promoting complex 
(APC/C)

Os04g0599800 OsCDC20

TRITD2Av1G253600 Anthocyanin 5-aromatic acyl-
transferase (3AT1)

NA NA

Q.Hi-4A HI Tdurum_contig42638_383 TRITD4Av1G259790 Scarecrow transcription factor 
family protein

Os06g0105350 OsGRAS31

TRITD4Av1G259630 Acetyltransferase component 
of pyruvate dehydrogenase 
complex

Os06g0105400 NA

TRITD4Av1G259520 Mitochondrial pyruvate carrier Os07g0449100 NA

Q.Biomass-2B.1 BIOMASS Excalibur_c34937_710 TRITD2Bv1G002680 Terpene synthase (TPS) NA NA

TRITD2Bv1G002820 Pyruvate dehydrogenase E1 
component subunit alpha

Os04g0119400 NA

TRITD2Bv1G002950 Gibberellin-regulated protein 1 
(GASA)

NA NA

TRITD2Bv1G003120 WRKY transcription factor Os11g0490900 OsWRKY72

TRITD2Bv1G003210 Fatty acyl-CoA reductase 1 G 
(FAR)

NA NA

TRITD2Bv1G003590 Sterol 3-beta-glucosyltransferase 
(UGT80B1)

Os04g0131900 NA

TRITD2Bv1G004160 Fructokinase-2 (FRK) Os03g0602600 OsHSA1

TRITD2Bv1G003650 Cell differentiation protein RCD1 Os02g0301700 NA

Q.Biomass-4B BIOMASS RAC875_c25045_637 TRITD4Bv1G160470 4-coumarate–CoA ligase family 
protein (4CL)

Os03g0152400 NA

TRITD4Bv1G160730 Flavin-containing monooxyge-
nase

NA NA

TRITD4Bv1G161530 Ripening related protein family Os10g0490666 NA

TRITD4Bv1G160440 Peroxidase (PRX) Os03g0152300 OsPRX36

Q.Ndf-4B.1 NDF BS00024110_51 TRITD4Bv1G031160 Glucuronoxylan 4-O-methyltrans-
ferase

Os11g0242600 NA

TRITD4Bv1G031370 Chlorophyll a-b binding protein, 
chloroplastic

Os11g0242800 OsLHCB5

TRITD4Bv1G030990 ethylene-responsive transcription 
factor

Os11g0242300 OsERF19

TRITD4Bv1G031510 Zinc finger-homeodomain 
protein 1

Os11g0243300 OsZHD4

Q.Scsa-1A.2 SCSa Tdurum_contig51833_439 TRITD1Av1G205480 Late embryogenesis abundant 
protein

Os05g0542500 OsLEA3/OsLEA19

TRITD1Av1G205500 StAR-related lipid transfer protein Os02g0468400 NA

TRITD1Av1G205630 Glucuronoxylan 4-O-methyltrans-
ferase

NA NA

TRITD1Av1G205550 Pectin lyase-like superfamily 
protein

Os05g0542800 OsPGL9

TRITD1Av1G205720 MYB transcription factor NA NA
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Table 2 (continued)

QTN Trait Marker Gene ID Gene Description Rice Ortholog Rice gene name

TRITD1Av1G206070 Transcription factor GTE1 Os06g0138000 NA

TRITD1Av1G206530 Chlorophyll a-b binding protein, 
chloroplastic

NA NA

Q.Scsa-3A SCSa RAC875_c3084_415 TRITD3Av1G277350 Abscisic stress ripening Os01g0959100 OsASR5/OsASR1

TRITD3Av1G277360 Peroxidase Os01g0963000 OsPRX22

TRITD3Av1G277710 Transcription factor MYB Os01g0142500 NA

TRITD3Av1G278300 Cellulose synthase G NA NA

TRITD3Av1G278410 GDSL esterase/lipase Os04g0650200 OsGELP59

TRITD3Av1G278770 Photosystem II D2 protein NA NA

TRITD3Av1G279110 Beta-fructofuranosidase, insolu-
ble protein

Os01g0966700 OsCIN4

TRITD3Av1G279470 Invertase/pectin methylesterase 
inhibitor family protein

NA NA

Q.Scsm-4A SCSm RAC875_c18732_193 TRITD4Av1G122990 3-oxoacyl-[acyl-carrier-protein] 
synthase

NA NA

TRITD4Av1G123370 ADP-L-glycero-D-manno-hep-
tose-6-epimerase G

NA NA

TRITD4Av1G123360 WD40 repeat-like protein Os11g0660300 OsRBP10

Q.Scsm-6B.3 SCSm wsnp_BF293311B_Ta_2_3 TRITD6Bv1G134450 Hexosyltransferase Os02g0624400 OsPGSIP-B1

TRITD6Bv1G134410 glucan synthase-like 4 G NA NA

TRITD6Bv1G134360 MYB Os02g0624300 OsMYB30

TRITD6Bv1G134250 LIGHT-DEPENDENT SHORT 
HYPOCOTYLS-like protein

Os02g0623400 OsG1L3

TRITD6Bv1G134270 Glycolipid transfer protein 
domain-containing protein

Os02g0622400 NA

Q.Scsm-6B.4 SCSm Excalibur_c64119_578 TRITD6Bv1G003860 Chalcone synthase Os10g0168500 OsPKS19

TRITD6Bv1G004310 SKP1-like protein Os02g0101600 NA

TRITD6Bv1G004640 Aspartate aminotransferase Os02g0236000 NA

TRITD6Bv1G003910 B3 domain-containing protein 
Os03g0164300

NA NA

Q.Scsb-2B SCSb Excalibur_c10068_1276 TRITD2Bv1G246800 Lipid transfer protein (LTP) NA NA

TRITD2Bv1G247690 Flowering Locus T-like protein, 
putative (FTL)

Os12g0232300 OsFTL7

TRITD2Bv1G248090 Sulfotransferase Os09g0256100 NA

TRITD2Bv1G248160 Cyanidin-3-O-glucoside 2-O-glu-
curonosyltransferase G (UGAT)

NA NA

TRITD2Bv1G248240 basic helix-loop-helix (bHLH) 
DNA-binding superfamily protein

Os04g0631600 OsbHLH068

Q.Scsb-3B SCSb RFL_Contig3228_2154 TRITD3Bv1G009930 Mannose-6-phosphate isomerase 
(PMI1)

Os01g0127900 NA

TRITD3Bv1G009950 MYB transcription factor Os01g0128000 NA

TRITD3Bv1G010560 Alpha-xylosidase G (XLY1) NA NA

TRITD3Bv1G010090 Anthocyanin 5-aromatic 
acyltransferase-like (F511_15381)

Os06g0145400 NA

TRITD3Bv1G009370 Dihydroflavonol-4-reductase Os01g0127500 NA

Q.Spl-1A.1 SPL D_GBUVHFX01API9H_416 TRITD1Av1G216220 Cyclin-D1-binding protein 1 Os05g0554500 NA

TRITD1Av1G216250 Gibberellin-regulated family 
protein

Os10g0115550 NA

TRITD1Av1G217110 Hexosyltransferase Os05g0552200 NA

TRITD1Av1G217210 sucrose synthase 6 (SUSY) NA NA

TRITD1Av1G218140 Lipid phosphate phosphatase-
like protein

Os05g0549900 NA

TRITD1Av1G218210 Homeobox protein, putative Os02g0565600 Oshox7
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Discussion
Wheat straw is an attractive substrate for second-gen-
eration biofuel production because it will complement 
and augment wheat production rather than competition 
with food production. Whilst many wheat varieties were 
developed to optimize yield and grain quality for human 
and animal consumption, little emphasis was given to 
developing the non-food components for biorefining 
purposes. Probably also because standard chemical anal-
ysis of large numbers of different samples was expensive 
and time consuming to be used in breeding programs.

A large variability was detected in the panel selected 
in this study, confirmed what was previously observed 
in the large tetraploid wheat germplasm by Laidò et al. 
[29] and Taranto et al. [30]. The great genetic diversity 

reflected the evolutionary history of tetraploid wheats. 
Indeed, the wild and domesticated accessions were 
separated from the durum wheat cultivars. These latter 
were spread on the PCA axes mainly based on the year 
of release [29]. Indeed, the ancient/old varieties clus-
tered closed to ssp. turgidum, turanicum and poloni-
cum, while the modern cultivars were spread separately 
from the other samples. This large genetic variability 
of elite cultivars may be explained by the fact that they 
derived from national and international breeding pro-
grams developed during the last thirty years [13].

On the contrary, the variation in the chemical com-
position of the biomass and related traits did not always 
reflect the large genetic diversity, confirming the pre-
vious observations conducted by Joshi et  al. [31] and 

Table 2 (continued)

QTN Trait Marker Gene ID Gene Description Rice Ortholog Rice gene name

Q.Spl-3B SPL Tdurum_contig12087_190 TRITD3Bv1G241180 Transaldolase (TAL) Os01g0926300 NA

TRITD3Bv1G241450 basic helix-loop-helix (bHLH) 
DNA-binding superfamily protein

Os11g0634700 OsbHLH132

TRITD3Bv1G241970 Auxin response factor Os01g0927600 OsARF2/OsARF4

TRITD3Bv1G242050 Transcription factor Inducer of 
CBF expression 1

Os01g0928000 OsbHLH001

TRITD3Bv1G242450 Transcription factor Sox-9 G Os01g0928700 OsLCB2a2

Fig. 6 Validation of RFL_Contig3228_2154 on thirty-four genotypes using two approaches. a) Melting temperatures (Tm) from HRM analysis 
and b) allelic discriminations plot from rhAmp assay. Each dot represents a genotype, while the allele state (homozygous for the reference allele, 
homozygous for the alternate allele) are labeled with different colors. Variant 1 mean homozygous allele 1 / allele 1, whereas variant 2 refer to 
homozygous allele 2 / allele 2
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Blümmel et  al. [32] on wheat straw in South Asia. 
Indeed, a moderate variation was observed compar-
ing the phenotypic distribution among different wheat 
subspecies. Nevertheless, robust QTNs and genotypes 
carrying superior straw traits were identified, probably 
due to the sensitivity of the ML-GWAS approach. ML-
GWAS models, the FASTmrMLM method was rela-
tively faster compared to other models, as also reported 
by Chaurasia et al. [25]. The ISIS EMBLASSO detected 
the highest number of significant associations, whereas 
the lowest number was found with mrMLM.

Plant height plays a crucial role in biomass accumu-
lation and grain yield and all six-multi-locus models 
identified QTNs associated with this well-studied trait 
on chromosomes 1A, 2A, 3A, 4B, 5B, 7A, and 7B, con-
sistent with QTLs reported in previous studies [33–36]. 
Two of them were localized ~ 9  kb far from the main 
Rht-B1 gene controlling PH trait on chromosome 4B 
[37], in the same genomic region where a QTL for the 
same trait was identified by Vitale et al. [38].

Unlike other cereal species such as maize, rice, and 
barley, in which numerous studies were conducted with 
the aim of mapping QTLs related to the straw compo-
sition [39–41], in wheat the studies were scarce, often 
referred to a limited number of genotypes. Malik et al. 
[42], searching for significant SNP markers associated 
to quality parameters of wheat straw, identified marker-
trait associations (MTA) on chromosomes 1A, 1B, 4A, 
4B, and 6A for glucose, xylose and arabinose, all traits 
crucial for increasing sugar release for bioethanol 
production.

(Supplementary Table  4). We found a marker on chro-
mosome 4A (Excalibur_c24511_1196) associated with CEL 
(Q.Cel-4A), located 22 Mb far from the MTA for Arabinose 
(GENE-1756_115) identified by Malik et al. [42].

(Supplementary Table  4). By contrast, although we 
found QTNs for ADF, NDF, and Biomass on the same 
chromosomes detected by Malik et al. [42], our markers 
were located at least 100 Mb far, making it difficult to val-
idate with our findings. Comparing the results with the 
QTLs known in the literature with the regions identified 
in our study, reliable QTNs on chromosomes 2A, 2B, 4B, 
4A, and 5A (Q.Biomass-2B.2, Q.Biomass-4B, Q.Hi-4A, 
Q.Adf-5A, Q.Cel-2A, and Q.Ndf-4B.1) were coincident 
with previously reported QTLs for biomass accumulation 
[43], HI [44], grain yield [36, 45] and heading date [45].

(Supplementary Table 4). Additional QTNs, associated 
with biomass composition on chromosomes 3B (Q.Adf-
3B), 2B (Q.Adl-2B.2), 4A (Q.Cel-4A), 4B (Q.Ndf-4B.2), 
and 5A (Q.Hem-5A), were coincident with QTLs previ-
ously identified for grain yield [45], phenolic acid content 
[46], biomass [36, 47], shoot dry weight [48] and head-
ing date [47, 49], respectively. Recently, Joshi et  al. [31] 

carried out a GWAS on 287 spring wheat lines for map-
ping straw fodder quality trait and identified associations 
for ADF, ADL, and NDF on chromosomes 1A, 2B, 3A, 
5A and 5B. In our work, we found a QTN on chromo-
some 2B (Q.Adl-2B.1) which is located 21  Mb far from 
the MTA (Excalibur_c49875_479 on chromosome 2B) 
described by the authors for the same trait (ADL) (Sup-
plementary Table  4). By contrast, no chromosomal 
region overlapping with our results have been found for 
the remaining traits. The fact that in these regions were 
mapped loci associated with several biomass-related 
traits makes them an interesting source of allelic variation 
to modulate their phenotypic expression. Three associa-
tions identified in this study for the SPL on chromosomes 
1A (Q.Spl-1A.1, Q.Spl-1A.2) and 3B (Q.Spl-3B) agreed 
with the QTLs previously identified by Graziani et al. [50] 
and Maccaferri et  al. [48] for the number of spikes per 
square meter and total root number, respectively.

Among the agronomic traits analyzed, stem solidness 
was also considered. Usually, the morphological features 
of solid stemmed wheat suggested that it could be highly 
resistant to lodging [51]. In addition, it was known that 
solid stemmed wheat varieties have increased resistance 
to damage from sawfly larvae, as the presence of solid pith 
impedes larval growth and migration [52]. In fact, wheat 
stem sawfly (WSS) resistant varieties with pith-filled solid 
stems have been selected in North America and in cen-
tral Europe to help control WSS since the 1950s. There 
were several studies conducted to identify the genetic 
basis of stem solidness whereas more limited were the 
studies exploring the differences in the biochemical com-
positions between hollow- and solid-stemmed varie-
ties. Recently, Nilsen et  al. [53] demonstrated that copy 
number variation of TdDof, a gene encoding a putative 
DNA binding with one finger protein, affected the stem 
solidness trait in wheat at the SSt1 locus on chromosome 
3BL. More recent genetic studies have identified a second 
allele at the Qss.msub-3BL locus contributing to stem 
solidness in durum wheat. This allele was first identi-
fied in the cultivar Conan and was designated Qss.msub-
3BL.c [1, 54]. The Qss.msub-3BL.c conferred a solid-stem 
phenotype at the early stage of stem elongation, dif-
ferently from the phenotype conferred by the Rescue-
derived Qss.msub-3BL.b allele and, was lost later in stem 
elongation and maturation. Given that in this study, the 
scoring for stem solidness was carried out at harvest 
time, it could be the reason why no associations with 
the SSt1 locus on chromosome 3B, were found. In addi-
tion, minor QTLs were also identified on chromosomes 
2A, 2D, 4A, and 5A that were found to synergistically 
enhance expression of SSt1 to increase stem-solidness 
[55]. These previous results supported the SNPs associa-
tions found in the present study for stem solidness (SCS) 
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at three levels of the culm (basal, medium and apical) on 
chromosomes 1A, 2B, 3A, 3B, 4A, and 6B. Unfortunately, 
the three regions mapped on 3B (Q.Scsb-3B, Q.Scsa-3B 
and Q.Scsm-3B) did not coincide with the region of the 
SSt1 locus [55] whereas, they coincided with QTLs previ-
ously mapped for disease resistance traits as yellow rust 
resistance [56] and fusarium head blight resistance [57]. 
Similarly, the other QTNs identified for the SCS traits 
on the other chromosomes overlapped with QTLs pre-
viously mapped for resistance diseases such as Q.Scsm-
4A, Q.Scsb-2B and Q.Scsm-6B.3 for leaf, yellow and stem 
rust [58], Liu et  al. 2017b; [59] suggesting their poten-
tial involvement in other genetic resistance mechanisms 
in addition to the well-known resistance to WSS. Most 
durum wheat accessions do not possess the solid-stem 
Qss.msub-3BL.b allele for stem solidness and have been 
traditionally classified as hollow-stemmed. However, hol-
low-stem durum wheat typically has more resistance to 
WSS than hollow-stem hexaploid wheat [60]. Therefore, 
despite several studies aiming to map the loci responsible 
for the solid stem phenotype, the underlying molecular 
mechanisms contributing to this key trait remain elusive. 
The validated SNP marker (RFL_Contig3228_2154) asso-
ciated to SCSb in the present work was previously related 
to different trait such as grain weight and gluten com-
ponent (HMW-GS, and LMW-GS) [13, 61]. Now, this 
marker can be used for MAS to track differences in SCSb 
in tetraploid wheat accessions.

Candidate genes surveying revealed genes involved 
in lipid metabolism, cell wall modifications and cell cycle
In our work, we found different classes of candidate genes 
in QTNs/genomic regions. For example, genes involved 
in the synthesis of principle components present in the 
secondary walls of eudicotyledons (i.e., cellulose, lignin, 
and 4-O-methyl glucuronoxylan) were discovered within 
QTNs related to the chemical composition of the bio-
mass. These polymers are the most abundant constitu-
ent material of the plant cell walls, thus constituting the 
major components of plant biomass. They interact with 
themselves and with each other via covalent and non-
covalent bonds to form a macromolecular network that 
determines the biological and physical properties of the 
secondary wall. Here, we detected a Cellulose synthase 
(CESA), a Glucuronoxylan 4-O-methyltransferase, and 
three different peroxidases associated with SCSa, ADF 
and NDF, respectively. In Arabidopsis, CESA1, CESA3 
and CESA6 (or CESA6-like) are required for primary 
wall cellulose synthesis. Chu et al. [62] observed that the 
knockout of AtCESA2 caused severe defects in cell wall 
formation that led to abnormal plant growth and devel-
opment. By contrast, the transgenic lines overexpress-
ing CESA2 showed enhanced growth performance with 

increased biomass production. Similarly, PmCESA2 in 
poplar led to an altered cell wall polysaccharide compo-
sition, which resulted in the thickening of the secondary 
cell wall and xylem width [63]. Consequently, the cellu-
lose and lignin content were increased. Consistent with 
these studies, CESA could be used as a potential candi-
date gene to enhance cellulose synthesis and biomass 
accumulation in wheat. Coincident with the role of CESA, 
genes encoding secondary cell wall xylan and its modifi-
cations (i.e., GXMT) are also important for biomass pro-
duction [64, 65]. Since genetic approaches have provided 
limited insight into the mechanisms of 4-O-methyl glu-
curonoxylan synthesis, our candidate gene annotated as 
Glucuronoxylan 4-O-methyltransferase may represent 
a new target to selectively manipulate polysaccharide 
O-methylation, providing new opportunities to modu-
late biopolymer interactions in the wheat cell wall. It is 
noteworthy that the presence of lignin in cell walls is also 
important since it imparts recalcitrance in the decon-
struction of the wall materials for pulping and biofuel 
production [66, 67]. To reduce cell wall recalcitrance, 
a great deal of interest has been invested in engineer 
lignin and its composition (Van Acker et  al. 2014, [20, 
21, 68]. In model plants, down-regulation or silencing of 
genes (PRX2, PRX3, PRX22, PRX60, PRX71, and PRX72) 
encoding peroxidases resulted in reduced lignin accumu-
lation and altered lignin composition [69, 70]. Consistent 
with these studies, in our work, we found three different 
peroxidases (PRX1, PRX22, and PRX36) that might be 
important for lignin production and/or its degradation.

Despite the well-known genes reported above, other 
candidate genes with a role in cell architecture, plant 
growth regulators, photosynthetic pathways, and micro-
RNA biogenies were also found. For example, an Ana-
phase promoting complex (APC/C) was significantly 
associated with CEL trait (Q.Cel-2A). It has been shown 
that when the Arabidopsis APC3a/CDC27a gene is over-
expressed in tobacco, it accelerated plant growth, lead-
ing to plants with increased biomass [71]. Similar results 
were also obtained when tobacco plants overexpressing 
the APC10 gene from Arabidopsis increased biomass and 
reduced life cycle length [72]. Another interesting can-
didate is HYPONASTIC LEAVES 1 (HYL1). This gene 
encodes a nuclear double-stranded RNA-binding protein 
which is involved in microRNA (miRNA) biogenesis, and 
in the regulation of miR156 [73, 74]. The overexpres-
sion of miR156 in Arabidopsis caused increased total leaf 
numbers, and biomass [75]. Similarly, alfalfa plants over-
expressing miR156 had reduced internode length and 
stem thickness and elevated biomass production [76]. In 
red clover, overexpression of miR156 increased the num-
ber of shoots, delayed flowering, and accelerated biomass 
accumulation [77].
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In addition, we also found a Transaldolase (TAL) 
within the region flanking the QTN Q.Spl-3B. Chen et al. 
[78] in  Pichia stipites identified a TAL gene as a rate-
limiting enzyme for xylose-to-ethanol bioconversion. 
Indeed, despite the increase in the understanding of the 
molecular mechanisms involved in biomass production 
and composition, it is also important to consider the 
conversion of biomass products to biofuel. Using over-
expressed lines Chen et  al. [78] reported an increase in 
ethanol production by 36% and 100%, suggesting that 
improving the Transaldolase activity in P. stipitis can 
significantly increase the rate and yield of xylose conver-
sion to ethanol. Thus, the identified superior alleles with 
significant effect in the present study (i.e., those for ADF, 
NDF, CEL, and SCSa) may have critical role for improv-
ing biomass composition in wheat varieties with positive 
effects on bioethanol production.

Conclusions
Our study will provide new insights to the genetic basis 
of biomass composition traits in tetraploid wheat. The 
application of six ML-GWAS models on a panel of 
diverse wheat genotypes provided an efficient approach 
to dissect complex traits with low heritability such as 
wheat straw composition. A total of 72 reliable QTNs 
were detected by two or more than two models. Among 
the major QTNs identified in this study, 16 QTNs showed 
a significant effect on the corresponding phenotypes. 
Further, putative candidate genes were identified from 
the associated genomic region. In addition, a marker 
associated with SCSb has been validated through molec-
ular screening (HRM and rhAmp), providing a reliable 
marker for MAS applications. The discovery of genes/
genomic regions associated with biomass production 
and straw quality parameters is expected to accelerate 
the development of high-producing wheat varieties use-
ful for biofuel production. The information generated in 
this study would be also useful as a basis for further func-
tional investigation especially in the genomic region close 
the validated marker and define a new wheat ideotype.

Methods
Pant materials and field experiments
The tetraploid wheat (Triticum turgidum L., 2n = 4x = 28; 
AABB genome) collection used in this study was com-
prised of 185 accessions available in the germplasm bank 
at CREA Research Centre for Cereal and Industrial Crops 
in Foggia. The panel, including wild, domesticated and 
cultivated accessions of seven subspecies (dicoccoides, 
dicoccum, carthlicum, polonicum, turanicum, turgidum, 
and durum), was chosen to represent a wide phenotypic 
variability for the main morphological traits that were 
evaluated in this study.

The wheat collection was grown in southern Italy at the 
experimental farm of CREA Research Centre for Cereal 
and Industrial Crops at Foggia (41°27′36″ N, 15°30′05″ 
E) for three growing-seasons (2009, 2010, 2012) on 
a clay-loam soil (Typic Chromoxerert), with the fol-
lowing main chemical characteristics: organic mat-
ter (Walkley–Black method) 2.5 and 2.6%; available 
phosphorus (Olsen method) 62.0 and 68.0  mg   kg−1; 
exchangeable potassium (ammonium acetate method) 
422 and 450  mg   kg−1; total nitrogen (Dumas method) 
1.3 and 1.1%. The genotypes were sown on recom-
mended dates and arranged in randomized complete 
blocks with 2 replications. Plots comprised eight rows 
of 7.5  m in length with a distance between rows of 
0.17  m. The sowing density was always 350 seeds  m2. 
The field experiments were supplied with 45 kg/ha N 
and 115 kg/ha  P2O5 as pre-sowing and 85 kg/ha N as 
top dressing each year. Weeds, pests, and fungal diseases 
were chemically controlled.

Morphological traits
Plant height (PH) (in centimeters) was measured during 
the milk-waxy maturation when the maximum height level 
was achieved, from ground to the tip of the ear (exclud-
ing awns) on five main culms per plot. To evaluate stem 
solidness, more than 5 stems were randomly selected at 
post-anthesis and were cross-sectionally cut at the center 
of each internode in the basal (SCSb), median (SCSm), and 
apical (SCSa) part of each stem. The level of stem solid-
ity was rated as 1–5 (1 for hollow and 5 for solid) using 
the UPOV scoring system [79]. At physiological matu-
rity, above-ground dry matter was determined by cutting 
plants at the soil surface from a 1  m2 area (6 rows × 0.95 m). 
The plants collected were oven-dried at 70  °C for 48  h 
and weighed for total dry matter. Then, the spikes were 
cut, measured in length (SPL, cm), and threshed, and 
the grain was weighed (GW). Straw dry weight (Bio-
mass) was calculated as the difference between above-
ground biomass and grain weight. Harvest index (HI) was  
calculated as was calculated as the ratio of grain weight 
to total biomass. Trait acronyms are reported in  
Supplementary Table 3.

Cell‑wall chemical analysis
Cell-wall carbohydrates were quantified by determina-
tion of acid detergent fiber (ADF), acid detergent lignin 
(ADL), and neutral detergent fiber (NDF) according to 
the methods of Van Soest et  al. [80] using an ANKOM 
220 Fibre Analyzer (ANKOM Technology Corporation, 
NY, USA). Hemicellulose was calculated as NDF – ADF 
and cellulose as ADF – ADL [81]. Trait acronyms are 
reported Supplementary Table 3.
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DNA material and Plant genotyping
Genetic variation data, generated using the Illumina   
wheat 90  K iSelect Assay developed by TraitGenetics 
[82], were extracted from a bigger population deposited at 
Mendeley Data website (https:// data. mende ley. com) with 
the following DOI number: 10.17632/rt2gmzbvmz.1. The 
whole dataset can be downloaded using the link (https:// 
data. mende ley. com/ datas ets/ rt2gm zbvmz/1). The raw 
dataset related to the 185 genotypes under study was pro-
cessed with plink [83] using a call rate value lower than 
95% and a minimum allele frequency (MAF) lower than 
5%. After filtering, a total number of 20,755 SNPs was used 
for the downstream analysis. The resulting VCF file related 
to only 185 individuals under study is available at the Fig-
share data repository (https:// figsh are. com) under the fol-
lowing DOI number: 10.6084/m9.figshare.18586076. Data 
can be downloaded using the following link:  https://doi.
org/10.6084/m9.figshare.18586076.v1.

Principal component analysis (PCA) was calculated 
usng the resulting SNPs & Variation suite (SVS) v.8.4.0 
(Golden Helix inc) and drawn in R [84].

Multi‑locus genome‑wide association analysis
Association analysis was performed using multi-locus 
random-SNP-effect MLM, (mrMLM) [24], fast mrMLM 
(FASTmrMLM) [85], iterative modified-sure independence 
screening expectation–maximization-Bayesian least abso-
lute shrinkage and selection operator (ISIS EM-BLASSO) 
[23], integration of Kruskal–Wallis test with empirical 
Bayes (pKWmEB) [86], fast multi-locus random-SNP-effect 
efficient mixed model analysis (FASTmrEMMA) [87], and 
polygenic-background-control-based least angle regres-
sion plus empirical Bayes (pLARmEB) [27]. All ML-GWA  
models were tested by using mrMLM v4.0 [28], down-
loaded from http:// cran.r- proje ct. org/ web/ packa ges/ 
mrMLM/ index. html. Kinship matrix was calculated 
by the specific option implemented in the mrMLM 
v4.0 package [28] and used in all methods as covariate. 
Default values were used for all parameters. In particu-
lar, the REML option for the Likelihood Function was 
used for FASTmrEMMA model, whereas the bootstrap-
ping was chosen for pLARmEB model. The association 
analysis was conducted using two approaches: i) Kin-
ship matrix, ii) K + PCA as Q matrix. As proposed by 
Zhang et  al. [88] for multi-locus GWA analysis, we 
used a LOD = 3.0 (or P = 0.0002) as a cut-off to balance 
the high power and low false positive rate for QTN 
detection. In addition, SNP markers detected by two 
or more different models were designated as reliable 
QTNs, as suggested by Chaurasia et al. [25]. QTNs with 
r2 values > 10% were declared as major, as also showed by 
Chaurasia et al. [25].

Principal component (PCA), analysis of variance (ANOVA), 
Broad‑sense heritability  (H2) and Pearson correlation
A two-way analysis of variance (ANOVA) was imple-
mented to investigate the genotype and year effects, their 
interaction (genotype x year) and residuals. Broad-sense 
heritability  (H2) was estimated as follows:

where σg is the genotypic variance, σgy the variance 
explained by the interaction between genotypes and year, 
σe the variance of residuals, τ the number of the repli-
cates and y the number of the year. Best linear unbiased 
prediction (BLUP) of phenotypic traits collected over 
years were calculated using the following mixed linear 
model:

where y_ij are the observed traits, μ is the overall 
mean, g_i is the effect of the ith line assumed as random 
effect, t_j is the effect of the jth trial (year) modelled as 
random effect, [gt]_ij are the genotype-trial interaction, 
and e corresponds to the residual effect considering as 
random and assuming to have a normal distribution 
r ~ N(0,[Iσ]_r^2). The model was implemented using the 
function lmer in the R package lme4 [89]. The normal 
distribution of BLUP data was verified using the Shapiro 
test. In addition, principal component analysis (PCA) 
was performed with BLUP values. ANOVA, BLUPs, 
PCA, and correlation analyses (Pearson’s correlation 
with significance level α = 0.05) were carried out using 
FactoMinerR [90], Lme4 R [89], factoextra [91], and 
corrplot [92] packages.

Candidate genes
Putative candidate genes were searched in flanking 
regions of the significant QTNs. The linkage disequi-
librium (LD) decay value was calculated using the LD 
Ajacent Pairs Analysis function (SVS) and then used to 
define the confidence interval.

Then, gene annotation was retrieved based on the 
Svevo durum wheat high-confidence gene models 
(https:// www. inter omics. eu/ durum- wheat- genome). 
Putative candidates were then used as baits for a BLASTn 
search against the NCBI database to assign gene names 
based on direct orthologs of Oryza sativa.

SNP marker assay validation
Firstly, two different molecular methods (High-Resolu-
tion Melting analysis (HRM) and rhAmp allelic discrimi-
nation assay) have been used to validate the SNP marker 
associated with basal stem solidness using a panel of 34 

(1)H2
= σg/ σg + σgy/y + σ e/τy

yij = µ+ gi + tj + [gt] ij+ e

https://data.mendeley.com
https://data.mendeley.com/datasets/rt2gmzbvmz/1
https://data.mendeley.com/datasets/rt2gmzbvmz/1
https://figshare.com
http://cran.r-project.org/web/packages/mrMLM/index.html
http://cran.r-project.org/web/packages/mrMLM/index.html
https://www.interomics.eu/durum-wheat-genome
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accessions with a contrasting behavior for SCSb and for 
allelic profiles. As far as HRM is concerning, primer3 
software version 4.0.0 (Whitehead Institute for Biomedi-
cal Research, Cambridge, MA;  http:// prime r3. ut. ee) 
was adopted to design primers. The HRM analyses were 
performed in 384 well plates on the QuantStudio 12  K 
Flex (Life Technologies, USA), following the procedure 
described by [93], whereas the rhAmp allelic discrimi-
nation assay was carried out following the procedure 
described by Broccanello et  al. [94] and Ravi et  al. [93]. 
Sequences of rhAmp assays are available upon request.   
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