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Abstract Renewed efforts to eliminate malaria have highlighted the potential to interrupt

human-to-mosquito transmission — a process mediated by gametocyte kinetics in human hosts.

Here we study the in vivo dynamics of Plasmodium falciparum gametocytes by establishing a

framework which incorporates improved measurements of parasitemia, a novel gametocyte

dynamics model and model fitting using Bayesian hierarchical inference. We found that the model

provides an excellent fit to the clinical data from 17 volunteers infected with P. falciparum (3D7

strain) and reliably predicts observed gametocytemia. We estimated the sexual commitment rate

and gametocyte sequestration time to be 0.54% (95% credible interval: 0.30–1.00%) per asexual

replication cycle and 8.39 (6.54–10.59) days respectively. We used the data-calibrated model to

investigate human-to-mosquito transmissibility, providing a method to link within-human host

infection kinetics to epidemiological-scale infection and transmission patterns.

DOI: https://doi.org/10.7554/eLife.49058.001

Introduction
Malaria is a mosquito-borne parasitic disease caused by protozoan parasites of the Plasmodium

genus. It is estimated to have caused approximately 219 million new cases and 435,000 deaths in

2017, primarily due to Plasmodium falciparum (The World Health Organization, 2018). New tools

will be required to achieve the ambitious goal of malaria elimination. Among the tools proposed are

novel interventions to block transmission from human hosts to vector mosquitoes (The malERA

Refresh Consultative Panel on Tools for Malaria Elimination, 2017). P. falciparum malaria is trans-

mitted from humans to the mosquito when terminally differentiated male and female sexual-stages

of the parasite, called gametocytes, are taken up by female Anopheles mosquito during a blood

meal (Bousema and Drakeley, 2011; Josling and Llinás, 2015). The level of gametocytes in the

blood, often referred to as gametocytemia, is highly associated with the probability of human-to-

mosquito transmission (Bradley et al., 2018; Churcher et al., 2013). Gametocyte levels below a
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certain threshold (i.e., <1000 per mL blood) minimize the probability that a mosquito will take up

both a male and female gametocyte during a blood-meal, which is necessary to propagate infection

(Collins et al., 2018). An accurate understanding of the kinetics of gametocyte development in the

human host is essential to predict the probability of transmission. A mathematical model that accu-

rately captures the processes that give rise to observed gametocyte kinetics would be an important

predictive tool to facilitate the design and evaluation of effective intervention strategies.

There is significant uncertainty surrounding fundamental aspects of P. falciparum gametocyte

dynamics in humans. Parameters such as how many gametocytes are produced during each asexual

replication cycle, the period of time in which early gametocytes disappear from the circulation

before mature gametocytes appear (referred to as sequestration), and the period in which gameto-

cytes circulate are poorly quantified. These gaps in understanding are due to a range of technical

and logistic limitations. The first is the relatively poor sensitivity of the standard diagnostic test,

namely microscopic examination of blood-films. Previous in vivo estimates of gametocyte kinetic

parameters have been primarily based on historical data from neurosyphilis patients who were

treated with so-called malariotherapy (Diebner et al., 2000; Eichner et al., 2001). In these studies,

the limit of quantification was approximately 104 parasites/mL blood, at least two orders of magni-

tude higher than that of current quantitative PCR (qPCR) assays (Rockett et al., 2011). This high

limit of quantification prevents an accurate estimation of onset of emergence of both asexual para-

sites and mature gametocytes in peripheral blood. The second limitation is that the available esti-

mates of gametocyte dynamics parameters based on in vitro cultures (Filarsky et al., 2018;

Gebru et al., 2017) may not be applicable to natural infection with P. falciparum gametocytes due

to in vitro conditions that may not mimic the human host (Bousema and Drakeley, 2011).

Recent advances in experimental medicine using volunteer infection studies (VIS), otherwise

known as controlled human malaria infection (CHMI) studies (Coffeng et al., 2017), allow prospec-

tive study design and data collection with the explicit aim of collecting in vivo data (McCarthy et al.,

2011), in particular an improved quantification of P. falciparum gametocyte kinetics by qPCR applied

in a novel VIS (Collins et al., 2018). Furthermore, the models and fitting methods used in the neuro-

syphilis patient studies have been superseded for parameter estimation by increasingly sophisticated

within-host models (Khoury et al., 2018) and improvements in computational algorithms for Bayes-

ian statistical inference (Piray et al., 2019). Therefore, there is an emerging opportunity to improve

our quantitative understanding of the dynamics of P. falciparum gametocytes in human hosts by

combining the novel VIS data and advanced modeling approaches.

In this study, we developed a novel mathematical model of gametocyte dynamics, fitted the

model to the VIS data and estimated the gametocyte dynamics parameters using a Bayesian hierar-

chical inference method. We demonstrate that the data-calibrated model can reliably predict the

time-course of gametocytemia and thus should form an essential part of modeling studies of malaria

transmission.

Results

Model fitting and validation
The outcome variable used in model fitting was the total parasitemia (total circulating asexual para-

sites and gametocytes per mL blood measured using qPCR) collected from a previously published

VIS (Collins et al., 2018), with other measurements from the same study, such as the asexual parasi-

temia (circulating asexual parasites per mL blood) and gametocytemia (circulating female and male

gametocytes per mL blood), used to validate model predictions.

The results of fitting the mathematical model to total parasitemia data for all 17 volunteers are

given in Figure 1 where 12 of 17 volunteers experienced recrudescence. The median of posterior

predictions and 95% prediction interval (PI) were computed from 5000 model simulations based on

5000 samples from the posterior parameter distribution (see Materials and methods). The results

show that the predicted total parasitemia (median and 95% PI) is able to accurately capture the

trends of the data through the (visual) posterior predictive check. Furthermore, the narrow 95% PI

indicates a low level of uncertainty in predicted total parasitemia.

Having calibrated the model against total parasitemia, the 5000 posterior parameter sets were

used to calculate the median of posterior predictions and 95% PI of the asexual parasitemia and
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Figure 1. Results of model fitting for all 17 volunteers. Data are presented by circles. The median of posterior predictions (solid line) and 95%

prediction interval (PI, shaded area) are generated by 5000 model simulations based on 5000 samples from the posterior parameter distribution as

described in the Materials and methods. The histograms showing the posterior distributions of population mean and standard deviation

hyperparameters are given in Figure 1—figure supplements 1 and 2. The posterior distribution of each model parameter (see the Materials and

methods) for individual volunteers are given in Figure 1—figure supplements 3–14 Posterior distributions for some biological parameters are given in

Figure 1—figure supplement 15, which are generated based on the posterior samples of population mean parameters (see the Materials and

methods) and will be used to support the results in Table 1 shown later. The source data and computer code with instructions of implementation to

generate Figure 1 and Figure 1—figure supplements 1–15 are fully publicly available at https://doi.org/10.26188/5cde4c26c8201.

DOI: https://doi.org/10.7554/eLife.49058.002

The following figure supplements are available for figure 1:

Figure supplement 1. Marginal posterior distributions for the 12 population mean parameters (hyperparameters).

DOI: https://doi.org/10.7554/eLife.49058.003

Figure supplement 2. Marginal posterior distributions for the 12 population SD parameters (hyperparameters).

DOI: https://doi.org/10.7554/eLife.49058.004

Figure supplement 3. The marginal posterior distributions of the individual parameter of Pinit (inoculation size) for all 17 volunteers.

DOI: https://doi.org/10.7554/eLife.49058.005

Figure supplement 4. The marginal posterior distributions of the individual parameter of m (mean of the initial parasite age distribution) for all 17

volunteers.

DOI: https://doi.org/10.7554/eLife.49058.006

Figure 1 continued on next page
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Figure 1 continued

Figure supplement 5. The marginal posterior distributions of the individual parameter of s (Standard deviation of the initial parasite age distribution)

for all 17 volunteers.

DOI: https://doi.org/10.7554/eLife.49058.007

Figure supplement 6. The marginal posterior distributions of the individual parameter of rP (parasite replication rate) for all 17 volunteers.

DOI: https://doi.org/10.7554/eLife.49058.008

Figure supplement 7. The marginal posterior distributions of the individual parameter of kmax (maximum rate of parasite killing by PQP) for all 17

volunteers.

DOI: https://doi.org/10.7554/eLife.49058.009

Figure supplement 8. The marginal posterior distributions of the individual parameter of EC50 (half-maximum effective PQP concentration) for all 17

volunteers.

DOI: https://doi.org/10.7554/eLife.49058.010

Figure supplement 9. The marginal posterior distributions of the individual parameter of g (Hill coefficient for PQP) for all 17 volunteers.

DOI: https://doi.org/10.7554/eLife.49058.011

Figure supplement 10. The marginal posterior distributions of the individual parameter of f (sexual commitment rate; not converted to percentage) for

all 17 volunteers.

DOI: https://doi.org/10.7554/eLife.49058.012

Figure supplement 11. The marginal posterior distributions of the individual parameter of dP (death rate of asexual and sexual parasites) for all 17

volunteers.

DOI: https://doi.org/10.7554/eLife.49058.013

Figure supplement 12. The marginal posterior distributions of the individual parameter of m (maturation rate of gametocytes) for all 17 volunteers.

DOI: https://doi.org/10.7554/eLife.49058.014

Figure supplement 13. The marginal posterior distributions of the individual parameter of dG (death rate of sequestered gametocytes) for all 17

volunteers.

DOI: https://doi.org/10.7554/eLife.49058.015

Figure supplement 14. The marginal posterior distributions of the individual parameter of dGm (death rate of circulating gametocytes) for all 17

volunteers.

DOI: https://doi.org/10.7554/eLife.49058.016

Figure supplement 15. Marginal posterior distributions of some key biological parameters.

DOI: https://doi.org/10.7554/eLife.49058.017

Table 1. Estimates of some key biological parameters and comparison with the literature.

The estimates of the biological parameters (middle column) are shown as the median and 95% credible interval (CI) of the marginal

posterior parameter distribution (Figure 1—figure supplement 15). Estimates from the literature (third column) are shown in the for-

mat of either ‘mean estimate (95% confidence interval)’ or ‘mean estimate [minimum – maximum estimate]’ or simply ‘a low estimate –

a high estimate’. Note some quoted estimates are from either in vivo or in vitro studies of P. falciparum. The source data and com-

puter code with instructions of implementation to generate our model estimates (middle column) in Table 1 are fully publicly available

at https://doi.org/10.26188/5cde4c26c8201.

Biological parameters (unit) Median estimate (95% CI) Estimates in the literature

Sexual commitment
rate (%/asexual replication cycle)

0.54 (0.30–1.00) 11 (6.2–15.8)
(Filarsky et al., 2018) (in vitro)
0.64 [0.027–13.5]
(Eichner et al., 2001) (in vivo)

Gametocyte sequestration
time (days)

8.39 (6.54–10.59) 7.4 [4 – 12]
(Eichner et al., 2001) (in vivo)

Circulating gametocyte
lifespan (days)

63.5 (12.7–1513.9) 16–32 (Gebru et al., 2017)
(in vitro)
6.4 [1.3–22.2]
(Eichner et al., 2001) (in vivo)

Parasite multiplication
factor (per asexual replication cycle)

21.8 (17.6–26.9) 10–33 (Wockner et al., 2017) (in vivo)
16.4 (15.1–17.8)a (in vivo)

a JS McCarthy, personal communication, May 2019.

DOI: https://doi.org/10.7554/eLife.49058.018
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gametocytemia versus time profiles. Model predictions of the asexual parasitemia and gametocyte-

mia for all 17 volunteers are shown in Figure 2 and Figure 3 respectively (curves: median prediction;

shaded areas: 95% PI) and are compared to the asexual parasitemia and gametocytemia data

(circles). We emphasize that this was not a fitting exercise, rather an independent validation of the

calibrated model.

For the majority of asexual parasitemia data the model predictions (median and 95% PI) can faith-

fully capture the trends of the data (Figure 2), in particular the accurate predictions for both the

recrudescent case where a portion of asexual parasitemia data diverge from the total parasitemia

measurement (e.g., Volunteer 103, 104, 105, 201, 203, 304 and 307) and the non-recrudescent case

where the posterior-median prediction curve (solid red curve) lies below the limit of detection (one

asexual parasite/mL) (e.g., Volunteer 202, 301 and 302). However, there are some discrepant obser-

vations. The model under-predicts (Volunteer 204) or over-predicts (Volunteer 303, 305 and 306) a

Figure 2. Comparison of model predictions and clinical data for the asexual parasitemia for all 17 volunteers. Data are presented by circles. The

median of posterior predictions (solid curve) and 95% PI (shaded area) are generated by 5000 model simulations based on 5000 samples from the

posterior parameter distribution as described in the Materials and methods. The data points with one parasite/mL (i.e., those points which lie on the

dotted line) indicate measurements for which no parasites were detected. No data are available for Volunteer 101 and 106 to validate the model

predictions. The source data and computer code with instructions of implementation to generate Figure 2 are fully publicly available at https://doi.org/

10.26188/5cde4c26c8201.

DOI: https://doi.org/10.7554/eLife.49058.019
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portion of the asexual parasitemia data. Furthermore, for some volunteers such as 202, 301 and 302,

the 95% PI (red shaded area) extends into the detectable region again after the asexual parasitemia

reaches below the detection limit, indicating that there was a small chance that the patients may

have suffered a recrudescence during the observation period (of course, they did not) or after the

observation period (although this predication cannot be evaluated because artemisinin combination

therapy was given immediately after the period).

Figure 3 shows the data and model predictions for the gametocytemia. Despite some discrepant

observations for asexual parasitemia in Figure 2, we found that the model predictions of gametocy-

temia were able to capture the trends and levels of the gametocytemia data for all 17 volunteers.

Estimation of gametocyte dynamics parameters
The model calibration process provided the joint posterior density for the model parameters, which

were used to estimate some key biological parameters governing the dynamics of P. falciparum

Figure 3. Comparison of model predictions and clinical data for the gametocytemia for all 17 volunteers. Data are presented by circles. The median of

posterior predictions (solid curve) and 95% PI (shaded area) are generated by 5000 model simulations based on 5000 samples from the posterior

parameter distribution as described in the Materials and methods. The data points with one parasite/mL (i.e. those points which lie on the dotted line)

indicate measurements for which no parasites were detected. The source data and computer code with instructions of implementation to generate

Figure 3 are fully publicly available at https://doi.org/10.26188/5cde4c26c8201.

DOI: https://doi.org/10.7554/eLife.49058.020
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gametocytes (detailed in the Materials and methods). As shown in Table 1, the sexual commitment

rate — the percentage of asexual parasites entering sexual development during each asexual repli-

cation cycle — is estimated to be 0.54%/asexual replication cycle (95% credible interval (CI): 0.30–

1.00%). This in vivo estimate of 0.54%/asexual replication cycle is much lower than 11%/asexual repli-

cation cycle that was estimated from in vitro data (Filarsky et al., 2018). The proportion of commit-

ted asexual parasites that survive to become mature gametocytes, calculated by discounting the

sexual commitment rate by the probability of survival from the immature (stages I–IV) to mature

(stage V) gametocyte life-stage, is 0.52%/asexual replication cycle (95% CI: 0.28–0.95%). The game-

tocyte sequestration time is the average time that immature gametocytes (stages I–IV) cannot be

observed in the peripheral circulation. They re-emerge in the peripheral circulation as mature game-

tocytes (stage V). It was estimated to be 8.39 days (95% CI: 6.54–10.59 days). The estimate for the

circulating gametocyte lifespan is 63.5 days, with a broad 95% CI (12.7–1513.9 days) resulting from

the long-tailed posterior distribution (Figure 1—figure supplement 15) and is much longer than the

previous in vitro estimate of 16–32 days (Gebru et al., 2017) (note that our lower bound of the 95%

CI is lower than the in vitro estimated range). The wide estimate for the circulating gametocyte life-

span, and in particular the high upper bound of the 95% CI, is due to the limited observation time in

the VIS which does not enable the lifespan to be accurately determined (explored in more detail in

the Discussion).

As shown in Table 1, there are similarities in parameter estimates for P. falciparum between our

analysis and the analysis of historical neurosyphilis patient data (Eichner et al., 2001). We found that

they exhibited similar in vivo sexual commitment rate (median 0.54%/asexual replication cycle vs.

mean 0.64%/asexual replication cycle with overlapping plausible ranges) and gametocyte sequestra-

tion time (median 8.39 days vs. mean 7.4 days with overlapping plausible ranges).

Finally, we provided an estimate for the parasite multiplication factor which is the average num-

ber of infected red blood cells produced by a single infected red blood cells after one replication

cycle. The parasite multiplication factor is an important parameter that quantifies the net growth of

asexual parasites and thus influences the rate of gametocyte generation. Our posterior-median esti-

mate is 21.8 parasites per asexual replication cycle (95% CI: 17.6–26.9), consistent with previous esti-

mates which lie in the range 10–33 (Wockner et al., 2017), and a bit larger than an updated

estimate calculated from a pooled analysis of parasite counts from 177 volunteers infected with the

same P. falciparum strain using a statistical model (16.4 parasites per asexual replication cycle) (JS

McCarthy, personal communication, May 2019).

Predicting the impact of gametocyte kinetics on human-to-mosquito
transmissibility
Having validated our mathematical model of asexual parasitemia and gametocyte dynamics, we

were able to predict how the gametocyte dynamics parameters influence the transmissibility of P.

falciparum malaria from humans to mosquitoes in various epidemiological scenarios. In particular, we

focused on the early phase of infection where the innate immune response is minimal and treatment

has not been administered (in order to avoid complications that our mathematical model was not

designed to capture). Two scenarios were considered:

. Predicting the potential infectiousness of newly hospitalized clinical malaria cases for various
values of sexual commitment rate and gametocyte sequestration time. In the model, gameto-
cytemia was assumed to be a surrogate of the potential infectiousness. We further assumed
that patients would seek hospital admission when their total parasitemia reached approxi-
mately 108 parasites/mL. This choice was based on the microscopic measurements of the total
parasitemia (i.e., asexual and sexual parasites) from a study of Cambodia and Thailand hospi-
talized malaria patients (Saralamba et al., 2011). As illustrated in Figure 4A, we simulated the
model (for different sexual commitment rates and gametocyte sequestration times) and looked
at the critical gametocytemia level (indicated by Gc) corresponding to the time when the total
parasitemia (wave-like black curves) first reached 108 parasites/mL (their associations are indi-
cated by the dotted lines and arrows).

. Predicting the non-infectious period of malaria patients for various values of sexual commit-
ment rate and gametocyte sequestration time. In the model, the non-infectious period was
defined to be time from the inoculation of infected red blood cells to the time when the game-
tocytemia reached 103 parasites/mL, which is a threshold below which human-to-mosquito
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transmission was not observed (Collins et al., 2018). Note that this non-infectious period does
not include the latent period due to the liver stage which should be considered if the starting
time were to be taken from time of mosquito bite. As illustrated in Figure 4B, we simulated
the model (for different sexual commitment rates and gametocyte sequestration times) and
identified the critical time (indicated by tc) when the gametocytemia (blue curve) first reached
103 parasites/mL (their associations are indicated by the dotted lines and arrows).

A higher sexual commitment rate or a lower gametocyte sequestration time leads to a higher

gametocytemia (Gc) at the time of hospitalization (Figure 4C). The red curve in Figure 4C indicates

the level curve of 103 gametocytes/mL (i.e., the threshold for infectiousness as mentioned above)

dividing the heatmap into two regions. To the left, Gc is below 103 gametocytes/mL, suggesting
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Figure 4. Simulation of two scenarios predicting the dependence of human-to-mosquito transmissibility on the sexual commitment rate and

gametocyte sequestration time. (A) illustration of the first scenario: predicting the critical gametocytemia level (indicated by Gc) at the time when the

total parasitemia reaches 108 parasites/mL. (B) illustration of the second scenario: predicting the non-infectious period (indicated by tc), which is defined

to be time from inoculation of infected red blood cells to the time when the gametocytemia reaches 103 parasites/mL (a threshold below which human-

to-mosquito transmission was not observed [Collins et al., 2018]). (C and D) Heatmaps showing the dependence of the critical gametocytemia Gc and

the non-infectious period tc on the sexual commitment rate and gametocyte sequestration time. The black dots represent the value obtained by

simulating the gametocyte dynamics model using the median estimates of the posterior samples of the population mean parameters as described in

the Materials and methods. The red curve in C is the level curve for Gc = 103 parasites/mL. The red curve in D is the level curve for tc = 13.42 days

which is the non-infectious period obtained by model simulation using the posterior estimates of the population mean parameters. The source data

and computer code with instruction of implementation to generate Figure 4 are fully publicly available at https://doi.org/10.26188/5cde4c26c8201.

DOI: https://doi.org/10.7554/eLife.49058.021
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clinical presentation precedes infectiousness, while to the right Gc is above 103 gametocytes/mL and

the converse applies. The Gc value obtained by model simulation using the median estimates of the

population mean parameters (indicated by the black dot) is below 103 gametocytes/mL, suggesting

that newly hospitalized malaria patients are less likely to be infectious, and thus efforts to identify

and treat infections in a timely manner may have a substantial impact in terms of reduced transmis-

sion potential. Note that patients from clinical observations of uncomplicated malaria in endemic

settings may have higher gametocyte counts at the time of presentation than what our model pre-

dicts. For example one study from the TRACII clinical trial reported a range of 16–5120 gameto-

cytes/mL, which is much higher than our prediction of below one gametocytes/mL (or 103

gametocytes/mL) (van der Pluijm et al., 2019). One plausible explanation for the difference is that

our model predicted a very fast rise in total parasitemia to 108 parasites/mL while the rise in parasi-

temia among patients in endemic settings may be slower due to the effect of immunity on the para-

site multiplication. Immunity was not considered in our model due to the design of our VIS where

only malaria naı̈ve volunteers were recruited.

Figure 4D reinforces the result in Figure 4C using the non-infectious period (tc). As the sexual

commitment rate increases or the gametocyte sequestration time decreases, tc decreases. However,

for large values of the sexual commitment rate (e.g., >20%), we observed an increase in tc as the

sexual commitment rate increases (see the top-right corner of ). This is because an increased sexual

commitment rate leads to both a decrease in the rate of asexual parasite growth (due to a direct

loss of asexual parasites as they convert to gametocytes) and an increase in the number of sexually

committed parasites. For a very high sexual commitment rate, the impact of the former more than

counterbalances that of the latter.

Discussion
We have developed a novel mathematical model of gametocyte dynamics that combines an existing

multi-state asexual cycle model with a new model for the development of gametocytes. Model

parameters were estimated by fitting the model to data from 17 malaria-naı̈ve volunteers inoculated

with P. falciparum-infected red blood cells (3D7 strain). Compared to previous studies, our work is

distinguished by three novel contributions: (1) the use of a prospectively planned clinical trial to col-

lect more accurate quantitative data of parasite levels measured by qPCR; (2) the development of a

novel dynamics mathematical model which allows for robust and biologically-informed extrapolation

and hypothesis testing/scenario analysis; and (3) the use of a Bayesian hierarchical inference method

for model calibration and parameter estimation.

For gametocyte kinetic parameters, we found that our in vivo estimate of the P. falciparum sexual

commitment rate was similar to that found in the neurosyphilis patient data (Eichner et al., 2001)

but was much smaller than previous in vitro estimates (Table 1). Importantly, our estimate follows

directly from the structure of our mathematical model, and accounts for the fact that some early

committed gametocytes may not complete development and thus not emerge in peripheral circula-

tion as mature gametocytes. Novel VIS data using biomarkers specific to early sexual parasites (e.g.

AP2-G [Bancells et al., 2019] and PfGEXP5 [Tibúrcio et al., 2015]) would enable a direct (statistical)

estimate of the sexual commitment rate, providing an independent validation of our gametocyte

dynamics model. Our in vivo estimate for the circulating gametocyte lifespan is imprecise (i.e., has a

very wide credible interval) due to the lack of available data for gametocyte clearance (treatment

was initiated before gametocyte were naturally cleared in the VIS study). P. falciparum data with

gametocytemia measurements over a longer period of time to capture the natural decay of circulat-

ing gametocytes, would greatly improve these estimates.

We also predicted the effects of altered gametocyte kinetic parameters on the transmissibility

from humans to mosquitoes, focusing on two scenarios: the infectiousness of newly hospitalized clin-

ical malaria cases (i.e., the gametocytemia when total parasitemia first reaches a level typically seen

upon hospitalization — 108 parasites/mL in the model); and the non-infectious period of malaria

patients (i.e., the time from the inoculation of infected red blood cells to the time when the gameto-

cytemia reaches a minimal transmission threshold of 103 parasites/mL in the model). We explored

how the sexual commitment rate and gametocyte sequestration time influenced the gametocyte

level and the non-infectious period. We would like to emphasize that human-to-mosquito transmissi-

bility is determined by both the level of gametocytemia and the relationship between
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gametocytemia and the probability of transmission per bite. A reliable prediction of the former is

essential but not a sole determinant of transmissibility. Therefore, it is also important to improve our

quantitative understanding of the probability of transmission per bite, which may be complicated by

and also influenced by the densities and ratios of female and male gametocytes (Bradley et al.,

2018; Churcher et al., 2013; Da et al., 2015).

Our study has some limitations. The gametocyte dynamics model, that has been shown to have

sufficient complexity to reproduce the clinical observations, is still a rather coarse simplification of

the actual biological processes. For example, the model does not assume an adaptive sexual com-

mitment rate (Schneider et al., 2018), nor does it consider the mechanisms of sexual commitment

(Bancells et al., 2019). Furthermore, the model assumes a constant gametocyte death rate but does

not consider other non-constant formulations as have been previously proposed (Diebner et al.,

2000). Another limitation is that we assumed a fixed duration for the asexual replication cycle of 42

hr, while previous work by our group suggests that the replication cycle may be altered by up to a

few hours in response to antimalarial drugs (e.g., artemisinin [Cao et al., 2017; Dogovski et al.,

2015]), though there is no evidence that piperaquine (which was administered in this VIS) has a simi-

lar effect.

In conclusion, we have developed a novel mathematical model of gametocyte dynamics, and

demonstrated that it reliably predicts time series data of gametocytemia. The model provides a

powerful predictive tool for informing the design of future volunteer infection studies which aim to

test transmission-blocking interventions. Furthermore, the within human host transmission model can

be incorporated into epidemiological-scale models to refine predictions of the impacts of various

antimalarial treatments and transmission interventions.

Materials and methods

Study population and measurements
The data used in this modeling study are from a previously published VIS (Collins et al., 2018) where

17 malaria-naı̈ve volunteers were inoculated with approximately 2800 P. falciparum-infected red

blood cells (3D7 strain). The study was approved by the QIMR Berghofer Human Research Ethics

Committee and registered with ClinicalTrials.gov (NCT02431637 and NCT02431650). The volunteers

were treated with 480 mg piperaquine phosphate (PQP) on day 7 or 8 post-inoculation to attenuate

asexual parasite growth and a second dose of 960 mg PQP was given to any volunteer for treatment

of recrudescent asexual parasitemia. All volunteers received a course of artemether/lumefantrine

and, if required, a single dose of primaquine (45 mg) to clear all parasites. Parasitemia in the volun-

teers was monitored approximately daily following inoculation, but with notable variability in the fre-

quency of data collection at later times as described by Collins et al. (2018).

Molecular analysis of parasite levels was carried out throughout the study. The total parasitemia

was measured by 18S qPCR (total circulating asexual parasites and gametocytes per mL blood),

asexual parasitemia was measured by SBP1 qRT-PCR (circulating asexual parasites per mL blood),

and gametocytemia was measured by Pfs25 and PfMGET qRT-PCR (circulating female and male

gametocytes per mL blood). Plasma concentrations of PQP were also determined at multiple time

points after inoculation. Further details about the VIS are given in Collins et al. (2018). It is impor-

tant to note that the data used in model fitting is the total parasitemia (from the first measurement

to the time before any treatment other than PQP) and the other data, that is asexual parasitemia

and gametocytemia (also up to the time of treatment other than PQP) are used to validate the

model.

Gametocyte dynamics model
The mathematical model extends the published models of asexual parasite replication

cycle (Saralamba et al., 2011; Zaloumis et al., 2012) by incorporating the development of gameto-

cytes. The model is comprised of three parts describing three populations of parasites: asexual para-

sites (P), sexually committed parasites (PG) and gametocytes (G). A schematic diagram of the

development of those populations based on current knowledge (Bancells et al., 2019;

Filarsky et al., 2018) is shown in Figure 5.
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Asexual parasites develop and replicate in the red blood cells (RBCs) until cell rupture at the end

of each replication cycle and the released free parasites (merozoites) can initiate new cycles of repli-

cation if they successfully invade susceptible RBCs. At the time of inoculation (i.e., t ¼ 0 hours in the

model), we define the inoculum size to be Pinit and assume the age distribution of inoculated para-

sites is Gaussian with mean m and standard deviation s. As time increments by one hour, the asexual

parasites of age a at time t (denoted as P a; tð Þ) follow the iterative equation:

Pða; tÞ ¼
Pða� 1; t� 1Þe�kd�dP ; a¼ 2; 3; :::;aL

rPP aL; t� 1ð Þe�kd�dP ; a¼ 1

(

(1)

!"#$% &'

()#&'

!#*+ , $% &' !#*+% &'

!#$% &' !#*-% &'

!"#*+ . $% &'

!#*+ . $% &'

!"#*-% &'

!"#*+ , $% &' (/#&' (0#&' (1#&' (2#&'

Figure 5. Schematic diagram showing the model compartments and transitions. The model is comprised of three parts describing three populations

of parasites: asexual parasites (P a; tð Þ), sexually committed parasites (PG a; tð Þ) and gametocytes (G tð Þ). P and PG are functions of asexual parasite age a

and time t. Square compartments in the inner loop represent the asexual parasite population which follows a cycle of maturation and replication every

aL hours. Sexual commitment occurs from age as and a fraction of asexual parasites become sexually committed (the bigger square compartments in

the outer loop) and eventually enter the development of stage I–V gametocytes (G1–G5). The compartments with a dashed boundary are sequestered

to tissues and thus not measurable in a blood smear. The notation for each compartment is consistent with those in the model equations and is

explained in the main text.

DOI: https://doi.org/10.7554/eLife.49058.022
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where kd represents the average rate of asexual parasite killing by PQP and dP is the rate of asexual

parasite death due to processes other than PQP. kd is approximated by the average of kd t� 1ð Þ and

kd tð Þ and kd tð Þ ¼ kmaxC tð Þg= C tð ÞgþEC
g
50

� �

where kmax is the maximum killing rate, EC50 is the PQP con-

centration at which half maximum killing is achieved, and g is the Hill coefficient determining the cur-

vature of the dose-response curve. C tð Þ is the PQP concentration which is simulated by a

pharmacokinetic model introduced below. aL is the length of each asexual replication cycle and rP is

the parasite replication rate indicating the average number of newly infected RBCs attributable to

the rupture of a single infected RBC. Note that we distinguish the parasite replication rate rP from

the so-called parasite multiplication factor, the latter of which is a ’net replication rate’ quantified by

the (per cycle) increase in parasite numbers due to replication (rP) and the decrease in parasite num-

bers due to death or sexual commitment. Sexual commitment is assumed to occur at the first age of

the trophozoite stage (denoted to be as) and a fraction (f ) of asexual parasites leave the asexual rep-

lication cycle and start sexual development in the next hour, which is modeled by

P asþ 1; tð Þ ¼ ð1� f ÞPðas; t� 1Þe�kd�dP (2)

PG asþ 1; tð Þ ¼ fPðas; t� 1Þe�kd�dP : (3)

The first equation describes the proportion of parasites remaining in the asexual replication cycle

while the second equation describes the proportion of parasites becoming sexually committed para-

sites (PG). According to Figure 5, the sexually committed parasites continue the rest of the replica-

tion cycle and a part of the next replication cycle (note that they appear indistinguishable from

asexual parasites by microscopy) before becoming stage I gametocytes. The process is modeled by

Pða; tÞ ¼
P a� 1; t� 1ð Þe�dP ; a¼ 2; 3; :::;aL except a¼ as and a¼ asþ 1

rPP aL; t� 1ð Þe�dP ; a¼ 1

(

(4)

Note that we assumed in our model that PQP does not kill gametocytes. Our assumption was

based on evidence from both in vitro and in vivo experiments that suggests that PQP has little activ-

ity against sexually committed parasites and gametocytes (Collins et al., 2018; Pasay et al., 2016;

Bolscher et al., 2015), although we note there is some evidence that PQP might have activity

against early-stage I/II gametocytes (Adjalley et al., 2011). The changes of the sequestered stage I–

IV gametocytes (G1–G4) are governed by difference equations

G1 tð Þ ¼G1 t� 1ð Þe� mþdGð Þþ
PG as� 1; t� 1ð Þe�dP 1� e� mþdGð Þ

� �

mþ dG
; (5)

G2 tð Þ ¼G2 t� 1ð Þe� mþdGð Þþ
mG1 t� 1ð Þ 1� e� mþdGð Þ

� �

mþ dG
; (6)

G3 tð Þ ¼G3 t� 1ð Þe� mþdGð Þþ
mG2 t� 1ð Þ 1� e� mþdGð Þ

� �

mþ dG
; (7)

G4 tð Þ ¼G4 t� 1ð Þe� mþdGð Þþ
mG3 t� 1ð Þ 1� e� mþdGð Þ

� �

mþ dG
; (8)

where m is the rate of gametocyte maturation and dG is the death rate of sequestered gametocytes.

Stage V gametocytes are circulating in bloodstream (and therefore can be measured from the

peripheral blood film) modeled by

G5 tð Þ ¼G5 t� 1ð Þe�dGm þ
mG4 t� 1ð Þ 1� e�dGm

� �

dGm
; (9)

where dGm is the death rate of mature circulating gametocytes.
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The total parasitemia in the model is given by
Pa¼as�1

a¼1
P a; tð Þ þ PG a; tð Þ½ � þ G5 tð Þ, which was fitted

to the VIS data. After model fitting, we simulated the asexual parasitemia
Pa¼as�1

a¼1
P a; tð Þ and game-

tocytemia G5 tð Þ and compared them with associated data for model validation. Table 2 presents all

the model parameters and their units and descriptions.

Pharmacokinetic model of piperaquine (PQP)
In the within-host model, the killing rate kd tð Þ is determined by PQP concentration C tð Þ which was

simulated from a pharmacokinetic (PK) model introduced in this section. The PK model, provided by

Thanaporn Wattanakul and Joel Tarning (Mahidol-Oxford Tropical Medicine Research Unit, Bang-

kok), is a three-compartment disposition model with two transit compartments for absorption (see

the schematic diagram in Figure 6).

Based on Figure 6, the model is formulated to be a system of ordinary differential equations:

dD

dt
¼�kTD; (10)

dT1

dt
¼ kTD� kTT1; (11)

dT2

dt
¼ kTT1 � kTT2; (12)

dC

dt
¼
kTT2 þ q1P1 þ q2P2 � q1C� q2C� qcC

Vc

; (13)

Table 2. Details of the gametocyte dynamics model parameters.

The table includes the unit, description and prior distribution for each model parameter. For the uniform prior distributions (U), the

lower bounds are non-negative based on the definitions of the model parameters and the upper bounds for the prior distributions

were chosen to be sufficiently wide in order to accommodate all biologically plausible values from the literature (Zaloumis et al.,

2012). We assumed parasites younger than 25h are circulating and thus fix as to be 25h. For 3D7 strain, the asexual replication cycle is

approximately 39–45h (based on in vitro estimates [Duffy and Avery, 2017] and personal communication [JS McCarthy, personal

communication, May 2019]) and we fix aL to be 42h.

Parameter Unit Description Prior distribution

Pinit parasites/mL inoculation size U(0, 10)

� h mean of the initial parasite age distribution U(0, 35)

s h SD of the initial parasite age distribution U(0, 20)

rP (unitless) parasite replication rate U(0, 100)

kmax h�1 maximum rate of parasite killing by PQP U(0, 1)

EC50 ng/mL half-maximum effective PQP concentration U(1, 100)

g (unitless) Hill coefficient for PQP U(0, 20)

f (unitless) the fraction of parasites entering sexual development per asexual replication cycle U(0, 1)

dP h�1 death rate of asexual and sexual parasites U(0, 0.2)

m h�1 maturation rate of gametocytes U(0, 0.1)

dG h�1 death rate of sequestered gametocytes U(0, 0.1)

dGm h�1 death rate of circulating gametocytes U(0, 0.1)

as h sequestration age of asexual parasites fixed to be 25

aL h length of life cycle of asexual parasites fixed to be 42

SD: standard deviation; h: hour.

DOI: https://doi.org/10.7554/eLife.49058.023
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dP1

dt
¼
q1C� q1P1

V1

; (14)

dP2

dt
¼
q2C� q2P2

V2

; (15)

where kT and q’s are rate constants as shown in Figure 6 and Vc, V1 and V2 are the volume of distri-

bution for the central compartment (in which PQP concentration is C), peripheral compartment 1 (in

which PQP concentration is P1) and peripheral compartment 2 (in which PQP concentration is P2)

respectively.

Under the sequential pharmacokinetic-pharmacodynamic (PK-PD) approach we have taken, a

PQP concentration curve (C(t)) for each volunteer is a required input into the gametocyte dynamics

model. The VIS, with its limited sampling of PQP for each volunteer, was not designed to provide

this PQP concentration curve directly, so we used a PK model, informed by data from a previous VIS

with rich sampling. We drew on an analysis of that previous VIS by Thanaporn Wattanakul and Joel

D T1 T2
kT kT kT qc

P1

q1 q1

C

q2 q2

P2

Figure 6. The pharmacokinetic model of piperaquine (PQP). The model is a three-compartment disposition model with two transit compartments for

absorption. State D represents the dose of PQP. T1 and T2 represent the two transit compartments. C is the central compartment and PQP

concentration in this compartment was measured (which are shown in Figure 6—figure supplement 1). P1 and P2 represent two peripheral

compartments. kT, q1, q2 and qc are the rates of flow into or out of compartments.

DOI: https://doi.org/10.7554/eLife.49058.024

The following figure supplement is available for figure 6:

Figure supplement 1. PK data and optimized PK curves (the ‘fits’) of piperaquine (PQP) concentration for all volunteers.

DOI: https://doi.org/10.7554/eLife.49058.025
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Tarning (unpublished data and estimates). Their analysis provides population-level PQP PK model

parameter estimates.

We used MATLAB’s (version 2016b; The MathWorks, Natick, MA) built-in least-squares optimizer

lsqcurvefit (with the default setting) to optimize the PK curve for each volunteer in the VIS study. We

applied the optimizer to each volunteer’s (limited) PQP data, using the parameter estimates pro-

vided by Thanaporn Wattanakul and Joel Tarning as initial values. We applied some further model

parameter constraints as specified in Appendix 1. This approach provided us with a data-informed

PK curve for each volunteer in the VIS, sufficient for our primary purpose of studying the asexual and

sexual parasite dynamics. Of note, Volunteers 202, 301, 302 or 307 had fewer PK data points than

PK model parameters, preventing application of this optimization procedure. For these volunteers,

their predicted PQP PK curve was derived using the population-level mean PK parameter from Wat-

tanakul and Tarning’s analysis. The MATLAB code (with detailed comments) is publicly available at

https://doi.org/10.26188/5cde4c26c8201 The details of the initial conditions, starting point and con-

straints for the PK curve optimization procedure are provided in Appendix 1. The optimized PK

curves and associated parameter values for all volunteers are provided in Figure 6—figure supple-

ment 1 and Appendix 1.

Fitting the model to parasitemia data
We took a Bayesian hierarchical modeling approach (Gelman et al., 2013) to fit the gametocyte

dynamics model to the data from all 17 volunteers. In detail, each volunteer has 12 model parame-

ters (i.e., those in Table 2 except as and aL; also called the individual parameters) and lower and

upper bounds of the parameters are given in Table 2. If denoting the individual parameters to be

�ind and lower and upper bounds to be bL and bU respectively, the following transformations are

used to convert the bounded individual parameters to unbounded ones (denoted by ’ind) in order to

in order to improve computational efficiency (Lesaffre et al., 2007; Stan Development Team,

2017):

’ind ¼ ln
�ind � bL

bU � �ind

� �

; (16)

o’ind beys a multivariate normal distribution N(’pop, 
pop) where

’pop ¼ ln
�pop � bL

bU � �pop

� �

(17)

and �pop is a vector containing 12 population mean parameters (hyperparameters) corresponding to

the 12 gametocyte dynamics model parameters. 
pop is the covariance matrix. For more efficient

sampling process, ’ind ~N(’pop, 
pop) was reparameterised to a non-centerd form ’ind ¼ ’popþ!popLh,

where !pop is the diagonal standard deviation (SD) matrix whose diagonal elements are the 12 popu-

lation SD parameters (hyperparameters); L is the lower Cholesky factor of the correlation matrix; h

obeys standard multivariate normal distribution. Note that 
pop ¼ !popLL
T!pop where LLT is the corre-

lation matrix. The prior distributions for the 12 population mean parameters �pop are given by uni-

form distributions with bounds given in Table 2. The prior distribution for the 12 population SD

parameters is standard half-normal and the prior distribution for the lower Cholesky factor of the

correlation matrix L is given by Cholesky LKJ correlation distribution with shape parameter of 2

(Lewandowski et al., 2009; Stan Development Team, 2017). The distribution of the observed par-

asitemia measurements is assumed to be a log normal distribution with mean given by the model-

simulated values and SD parameter with prior distribution of a half-Cauchy distribution with a loca-

tion parameter of zero and a scale parameter of 5. The distribution for the observed parasitemia

measurements was used to calculate the likelihood function and the M3 method (Ahn et al., 2008)

was used to penalise the likelihood for data points below the limit of detection for the total parasite-

mia (10 parasites/mL; Collins et al., 2018).

Model fitting was implemented in R (version 3.2.3) (R Development Core Team, 2017) and Stan

(RStan 2.17.3) (Stan Development Team, 2017) using the Hamiltonian Monte Carlo (HMC) opti-

mized by the No-U-Turn Sampler (NUTS) to draw samples from the joint posterior distribution of the

parameters including the individual parameters (12 parameters for each volunteer) and population

mean parameters (12 hyperparameters). Five chains with different starting points (set by different
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random seeds) were implemented and 1000 posterior samples retained from each chain after a

burn-in of 1000 iterations (in total 5000 samples were drawn from the joint posterior distribution).

The marginal posterior and prior distributions of the population mean and SD parameters are shown

in Figure 1—figure supplements 1 and 2. The marginal posterior distributions of the individual

parameters for all 17 volunteers are shown in Figure 1—figure supplements 3–14 (using violin

plots). For each volunteer, the 5000 sets of individual parameters are used to simulate the gameto-

cyte dynamics model and generate 5000 simulated model outputs (e.g., 5000 time series of total

parasitemia, asexual parasitemia or gametocytemia). The posterior prediction and 95% prediction

interval (PI) are given by the median and quantiles of 2.5% and 97.5% of the 5000 model outputs at

each time respectively (see Figures 1–3 for example).

The estimates of some key biological parameters (Table 1) were calculated using the 5000 poste-

rior draws of the 12 population mean parameters, that is median and 2.5%- and 97.5%-quantile

(95% credible interval). The sexual commitment rate was calculated by fpop � 100% (fpop is the popula-

tion mean parameter for f ) and the proportion of committed asexual parasites that survive to

become mature gametocytes was calculated by fpop mpop= mpop þ dGpop
� �� �4

where the factor of four

arises due to the four sequestered gametocyte stages (I to IV). Circulating gametocyte lifespan was

calculated by 1=dGmpop=24 (the factor of 24 converts hours into days). Gametocyte sequestration

time was calculated by 4=mpop=24 where 4 indicates four sequestered state (stage I to IV) and 24 con-

verts hours into days. Parasite multiplication factor is calculated by rPpopexp �dPpopaLð Þ 1� fpop
� �

where the term exp �dPpopaLð Þ 1� fpop
� �

gives the fraction of surviving asexual parasites after death

and sexual conversion per replication cycle.

The gametocyte dynamics model with parameters given by the median estimates of the popula-

tion mean parameters was used to simulate the two scenarios predicting the dependence of human-

to-mosquito transmissibility on the sexual commitment rate and gametocyte sequestration time

(Figure 4).

Final analysis and visualization were performed in MATLAB. All computer codes (R, Stan, MAT-

LAB), data and fitting results (CSV and MAT files) and an instruction document (note that reading

the document first will make the code much easy to follow) are publicly available at https://doi.org/

10.26188/5cde4c26c8201.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.49058.027

The PK model (see the Materials and methods) describes absorption of administrated drug

mass in compartment D and the subsequent kinetics of drug concentration in the central

compartment C. The initial conditions for the model simulation were that all the compartments

(i.e., D, T1, T2, C, P1 and P2) were zero because PQP was not given until day 7 or 8. When the

first dose of 480 mg PQP was given, we set D = 480 and all other compartments to zero.

When a second dose of 960 mg was required for some volunteers to treat recrudescence, we

again set D to be 960 plus any remaining level of D from the first dose for those volunteers.

The PK data and the PK curves generated using our optimization approach are shown in

Figure 6—figure supplement 1. The starting values for optimization are kT ¼ 1=2:79,

qc ¼ 51:4, Vc ¼ 804, q1 ¼ 2020, V1 ¼ 3010, q2 ¼ 149 and V2 ¼ 13300, which are the population-

level mean estimates provided by Thanaporn Wattanakul and Joel Tarning (Mahidol-Oxford

Tropical Medicine Research Unit, Bangkok). We also assume the parameters are constrained in

the optimization procedure by lower bounds of kT ¼ 1=3:25, qc ¼ 40:6, Vc ¼ 469, q1 ¼ 746,

V1 ¼ 2344, q2 ¼ 117 and V2 ¼ 10350 and upper bounds of kT ¼ 1=2:32, qc ¼ 160, Vc ¼ 1342,

q1 ¼ 5034, V1 ¼ 3986, q2 ¼ 190 and V2 ¼ 17546. Note that kT is expressed by the reciprocal of

the mean transition time. The lower and upper bounds are the limits of the 95% confidence

intervals of the parameter estimate distributions provided by Thanaporn Wattanakul and Joel

Tarning except that the upper bound for the clearance rate qc was increased from 62.6 to 160

such that the PK curves could better capture the fast PQP concentration decay observed for

some volunteers. The constraints are necessary due to the limited available PK data which

prevents identification of the PK parameters. For Volunteer 202, 301, 302, 307 whose numbers

of PK data points are less than the number of parameters in the PK model (such that

optimization fails), their ’best-fit’ parameter values are the starting values given above with

some adjustments on qc (e.g., 71.4 for 202, 61.4 for 301 and 81.4 for 302) which are required

to allow the simulated curves to visually capture the data (as shown in Figure 6—figure

supplement 1 where the predicted PQP concentrations are very close to the observed

concentrations).

The PK parameter values obtained from our optimization approach to produce the reasonable

PK curves for all 17 volunteers are provided in the Appendix 1—table 1 below.

Appendix 1—table 1. Parameter values used to generate the optimized PK curves for all 17

volunteers. The units of the model parameters are given in the parentheses. The optimized PK

curves are shown in Figure 6—figure supplement 1.

PK parameter (unit) kT(h
-1) qc(L/h) Vc(L) q1(L/h) V1(L) q2(L/h) v2(L)

Volunteer 101 1/2.43 53.7 831 2240 3958 118 17177

Volunteer 102 1/2.32 123.4 582 849 3985 163 10355

Volunteer 103 1/3.07 61.3 756 2686 3910 127 14346

Volunteer 104 1/2.32 134.7 488 746 3986 190 15007

Volunteer 105 1/3.25 160 1342 5034 3986 190 17546

Volunteer 106 1/2.40 60.7 667 2992 3043 123 16374

Volunteer 201 1/2.32 160 469 746 3986 190 15557

Volunteer 202 1/2.79 71.4 804 2020 3010 149 13300

Volunteer 203 1/2.32 141.9 1243 803 3973 190 11825

Appendix 1—table 1 continued on next page
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Appendix 1—table 1 continued

PK parameter (unit) kT(h
-1) qc(L/h) Vc(L) q1(L/h) V1(L) q2(L/h) v2(L)

Volunteer 204 1/2.32 63.3 895 2169 3327 165 16205

Volunteer 301 1/2.79 61.4 804 2020 3010 149 13300

Volunteer 302 1/2.79 81.4 804 2020 3010 149 13300

Volunteer 303 1/2.45 159.4 1332 779 3970 190 17355

Volunteer 304 1/2.48 158.9 1339 762 3981 190 17290

Volunteer 305 1/2.53 120.9 1152 1905 2979 123 13896

Volunteer 306 1/2.32 158.8 870 761 3983 190 17488

Volunteer 307 1/2.79 51.4 804 2020 3010 149 13300

DOI: https://doi.org/10.7554/eLife.49058.028
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