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Summary

Therapies to extend healthspan are poised to move from

laboratory animal models to human clinical trials. Translation

from mouse to human will entail challenges, among them the

multifactorial heterogeneity of human aging. To inform clinical

trials about this heterogeneity, we report how humans’ pace of

biological aging relates to personal-history characteristics.

Because geroprotective therapies must be delivered by midlife

to prevent age-related disease onset, we studied young-adult

members of the Dunedin Study 1972–73 birth cohort (n = 954).

Cohort members’ Pace of Aging was measured as coordinated

decline in the integrity of multiple organ systems, by quantifying

rate of decline across repeated measurements of 18 biomarkers

assayed when cohort members were ages 26, 32, and 38 years.

The childhood personal-history characteristics studied were

known predictors of age-related disease and mortality, and were

measured prospectively during childhood. Personal-history char-

acteristics of familial longevity, childhood social class, adverse

childhood experiences, and childhood health, intelligence, and

self-control all predicted differences in cohort members’ adult-

hood Pace of Aging. Accumulation of more personal-history risks

predicted faster Pace of Aging. Because trials of anti-aging

therapies will need to ascertain personal histories retrospectively,

we replicated results using cohort members’ retrospective per-

sonal-history reports made in adulthood. Because many trials

recruit participants from clinical settings, we replicated results in

the cohort subset who had recent health system contact accord-

ing to electronic medical records. Quick, inexpensive measures of

trial participants’ early personal histories can enable clinical trials

to study who volunteers for trials, who adheres to treatment, and

who responds to anti-aging therapies.

Key words: biological aging; geroscience; geroprotector;

healthspan; early-life; personal history characteristics.

Introduction

The prevalence of many chronic diseases increases steeply with

advancing chronological age (Belsky et al., 2015a). Thus, aging itself

can be considered a leading disease risk factor (Kaeberlein, 2013; L�opez-

Ot�ın et al., 2013). This observation implies that interventions to slow

biological aging could delay all age-related diseases simultaneously

(Kirkland, 2013), reducing late-life multimorbidity (Barnett et al., 2012)

and extending years lived free of disease and disability, called

‘healthspan’ (Burch et al., 2014). The aging global population makes

development of healthspan-extending interventions a public health

priority (Harper, 2014). Researchers pioneering geroprotective therapies

in animals appear poised to deliver these therapies to human trials (de

Cabo et al., 2014; Longo et al., 2015). But human translation of

therapies to slow the biological process of aging will face challenges

(Moffitt et al., 2016; Moskalev et al., 2016).

One likely challenge to translation from mouse to man is that free-

living humans are heterogeneous as compared to laboratory-basedmodel

organisms. In contrast to genetically identical animals living under uniform

laboratory conditions, humans’ pace of biological aging may be sped or

slowed by personal-history characteristics that accumulate from early life

(Kirkwood&Austad, 2000; Gavrilov &Gavrilova, 2004; Gladyshev, 2016).

As examples, familial longevity (Perls & Terry, 2003; Atzmon et al., 2004),

childhood social disadvantage and adverse experiences (Felitti et al.,

1998; Hayward & Gorman, 2004), and childhood traits including poor

health and low intelligence (Case et al., 2005; Calvin et al., 2011) are able

to forecast later-life disease and mortality.

Studying personal-history characteristics that may influence the pace

of biological aging is important, at least in part, because personal

characteristics have the capacity to impact translation from preclinical

healthspan models to humans (Guarente, 2014; Pitt & Kaeberlein,

2015). First, personal-history characteristics related to the pace of aging

are known to influence the propensity to volunteer for trials, as well as

the likelihood of completing protocols and adhering to treatment

regimens. Second, personal histories may influence response to treat-

ment. To demonstrate the benefit of potential geroprotective treatments

for improving public health, at least some trials will need to recruit

individuals with personal histories of adverse exposure to effectively

represent populations most needing healthspan-extending therapies

(Fig. 1). Likewise, advantaged personal histories could identify individ-

uals who are already aging slowly, and are unlikely to benefit from

treatment. Third, randomized clinical trials are obliged to register in

advance participant characteristics to be analyzed as potential moder-

ators of treatment outcome. Trials will need to collect data on such

characteristics. Information about personal-history characteristics that
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influence the pace of human aging could thus improve trial design and

registration.

We tested the hypothesis that worse scores on personal-history

characteristics would predict a faster pace of biological aging among

954 members of the 1972–73 Dunedin (New Zealand) birth cohort, who

have now reached approximately the midpoint of the contemporary

human lifespan. We studied a midlife cohort because this is the age

group for whom age-delaying therapies can still delay the onset of

chronic disease. For example, this midlife strategy was adopted by the

first human trial of caloric restriction as an intervention designed to

extend healthspan (Ravussin et al., 2015).

We measured the pace of biological aging from changes in 18

biomarkers of cohort members’ cardiovascular, metabolic, endocrine,

pulmonary, hepatic, renal, immune, and periodontal systems. These 18

biomarkers were measured repeatedly across 12 years, at three time

points when the cohort members were aged 26, 32, and 38 years. We

use these data to measure decline that occurs simultaneously across

multiple biomarkers. By studying repeated measures of biomarkers over

time, we can distinguish age-related changes from baseline differences

that reflect prior health status. By studying changes in multiple

biomarkers together, we can distinguish age-related loss of system

integrity from spikes in particular biomarkers caused by acute illness. Our

measure, called the ‘Pace of Aging’, operationalizes the coordinated

progressive loss of integrity across bodily systems that geroscience theory

specifies as the aging process (Belsky et al., 2015a). Measured Pace of

Aging is not a cause of biological aging; it is a measurement of

differences among individuals in their rate of biological aging during our

12-year observation window. The Pace of Aging quantifies Study

members’ rate of biological aging in year-equivalent units of

physiological decline occurring per chronological year. The average

Study member experienced 1 year of physiological decline per each

chronological year, a Pace of Aging of 1. The fastest-aging Study

members experienced more than twice this rate of change, while the

slowest-aging Study members experienced almost no change at all.

Here we report relationships of personal-history characteristics with

Pace of Aging. The six characteristics were familial longevity, childhood

social class, adverse childhood experiences, and childhood health,

intelligence, and self-control. We selected these characteristics because

each has an established link to morbidity and mortality (Friedman et al.,

1993; Felitti et al., 1998; Atzmon et al., 2004; Hayward & Gorman,

2004; Case et al., 2005; Calvin et al., 2011). We focused on familial and

childhood measures because of evidence that early-life exposures

increase risk for diseases that reduce healthspan (Power et al., 2013).

Early-life measures also have the advantage of being temporally

antecedent to the biomarkers that we used to quantify Study members’

pace of biological aging; this eliminated the possibility of reverse

causation. Finally, we selected early-life characteristics that clinical trials

are able to ascertain from trial participants; for example, we did not test

low birthweight because it is difficult to ascertain by retrospective report.

We initially measured the six personal-history characteristics using

prospective data collected during childhood waves of the study.

However, knowing that few trials will have access to prospective

childhood measurements, we also conducted a parallel analysis using

measurements taken retrospectively, when Study members were adults.

Results

Personal histories predict adults’ Pace of Aging

To test whether Study members’ personal-history characteristics were

related to their Pace of Aging, we examined six characteristics.

Grandparental longevity was measured as the oldest age to which any

biological grandparent had survived. Childhood social class was defined

from the occupations of Study members’ parents when Study members

were children. Adverse childhood experiences (ACEs) were defined

according to the US Centers for Disease Control and Prevention criteria

(Felitti et al., 1998). Childhood health was measured as a combination of

examinations, nurse ratings, and clinical interviews with parents (Belsky

et al., 2015b). Childhood IQ was measured using the Wechsler

Intelligence Scales for Children (Wechsler, 2003). Childhood self-control

was measured as a combination of staff observations, and parent,

teacher, and children’s own reports (Moffitt et al., 2011).

Study members with shorter-lived grandparents, who grew up in

lower social class homes, who experienced more ACEs, who had poorer

childhood health, who scored lower on IQ tests, and who had poorer

self-control all showed evidence of accelerated biological aging during

their 20s and 30s (Pearson’s r range r = 0.10–0.23, Fig. 2).

Childhood risk characteristics tend to cluster within individuals, and

their accumulation is known to influence later outcomes (Evans et al.,

2013). Therefore, we tested whether accumulations of personal-history

risks differentiated rapidly aging Study members from their slower-aging

peers. To calculate a cumulative risk score, personal-history measures

were standardized to a T-distribution (mean = 50, SD = 10) and

summed. (A Study member with average levels of all six risk character-

istics would have a cumulative risk score of 50 9 6 = 300.) Study

members with higher cumulative personal-history risk experienced faster

Pace of Aging as compared to peers with a lower cumulative risk

(r = 0.27, P < 0.001). Fig. 3 shows how cumulative risk differed

between slower- and faster-aging Study members. For graphing
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Fig. 1 Subgroups of normally distributed human pace of aging relevant to design

of trials for healthspan-extension therapies. Pace of aging is the rate of

coordinated decline in the integrity of bodily systems occurring with advancing

chronological age. We showed that variation in the pace of aging could be

quantified already in individuals still too young to have age-related disease by

tracking changes in biomarkers of organ system functioning over time (Belsky

et al., 2015a). We earlier reported that individuals whose physiology changed

more slowly with the passage of chronological time (light blue segment of

distribution) experienced better physical and cognitive functional outcomes in

aging, and also showed fewer subjective signs of aging. The opposite was true of

those whose physiology changed more rapidly (red segment of distribution). Both

slower-aging and faster-aging population segments are needed in research to

develop healthspan-extension therapies. Slower-aging populations may provide

clues to novel therapeutic targets. Faster-aging populations are those who

therapies must benefit.
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purposes, in Fig. 3, Study members were divided into three groups

based on Pace of Aging: a slow-aging group with Pace of Aging ≤1 SD

below the mean (less than about 0.6 years of physiological change or

less per chronological year; n = 117); an average-aging group with Pace

of Aging within 1 SD of the mean (about 0.6–1.4 years of physiological

change per chronological year; n = 708); and a fast-aging group with

Pace of Aging ≥1 SD above the mean (more than about 1.4 years of

physiological change per chronological year; n = 129). Most slow-aging

Study members had no high-risk characteristics. In contrast, more than

40% of fast-aging Study members were classified as high risk on

multiple family and childhood characteristics.

Can personal histories be measured in adults enrolling in

trials of therapies to slow aging?

Clinical trials of therapies to slow aging are likely to lack prospective

measures taken when enrollees were children; for example, few adults

have records of their childhood IQ. Therefore, analyses were repeated

using contemporaneous assessments of personal-history characteristics

taken after Dunedin Study members became adults. We classified each

Study member as high or low risk on each of the personal-history

characteristics using quick, inexpensive measurements. We used adult-

hood reports of whether any biological grandparent had lived past age

80 years to assess familial longevity; adulthood recollections of Study

members’ parents’ occupations during their childhoods to assess

childhood social class; retrospective interviews to count ACE exposures;

and educational attainment as a proxy for childhood IQ. To assess the

adult equivalent of self-control, we used brief ratings of adult Study

members’ conscientious personality made by nurses during physical

examinations. (Memories of childhood health had not been queried from

Study members as adults.) Contemporaneously assessed history of

cumulative risk was related to Pace of Aging; Study members with more

personal-history risk characteristics had faster Pace of Aging (r = 0.21,

P < 0.001). This association was similar to, but slightly weaker than, the

association between prospectively measured risk and Pace of Aging

(r = 0.27).

Some clinical trials of geroprotective therapies may wish to recruit

volunteers from clinical settings. To assess whether personal histories

would predict pace of aging similarly in such individuals, we tested the

association between personal-history risk and Pace of Aging in Dunedin
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Fig. 2 Family and childhood characteristics are associated with Study members’ Pace of Aging from age 26 to 38 years. Figure cells graph associations between six family

and childhood characteristics (x-axis variables) and Study members’ Pace of Aging measured from changes in 18 biomarkers measured across ages 26, 32, and 38 years

(y-axis). Age of longest-lived grandparent was measured from reports by Study members’ parents. Childhood social class, exposure to adverse childhood experiences,

childhood health, childhood IQ, and childhood self-control were assessed using previously established methodology applied to archival Dunedin Study records including

examinations and testing, reports by parents and teachers, clinician ratings, and direct observations. Figures show ‘binned’ scatterplots in which each plotted point reflects

average x- and y-coordinates for “bins” of approximately 20 Study members. Regression lines and effect size estimates were estimated from the original, unbinned data.

Early Risks Accelerate Midlife Pace of Aging, D. W. Belsky et al.646

ª 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.



Study members who had recent contact with healthcare providers

(Fig. 4). One group comprised Study members with recent prescription

fills. Another group comprised Study members with recent hospital

admissions. Both groups were identified via record linkage with national

health system electronic medical records. Within these subgroups that

may better reflect adults available for recruitment into clinical trials, more

personal-history risk characteristics continued to predict faster Pace of

Aging.

Because educational attainment is only a crude proxy for childhood

intelligence, and because some clinical trial samples will be relatively

homogeneous in their educational attainment, we repeated our analysis

substituting, in place of low education, a 2-min, nonverbal paper-and-

pencil test of processing speed (WAIS digit symbol coding (Wechsler,

2008)). Processing speed predicts mortality (Swan et al., 1995) and is

appealing because of its ease of measurement. Results were unchanged

(Fig. S1, Supporting information).

To evaluate robustness of the results reported here, we conducted

sensitivity analyses using two alternative algorithms to index biological

aging. The Biological Age algorithm was originally developed using the

US Centers for Disease Control and Prevention National Health and

Nutrition Surveys (Levine, 2013). The Age-related Homeostatic Dysreg-

ulation algorithm was originally developed using the Women’s Health

and Aging, Baltimore Longitudinal Study, and InCHIANTI cohorts (Cohen

et al., 2013). Each algorithm combines data on multiple biomarkers, but

from a single cross-section of biomarker data. We applied these

algorithms to biomarker data collected when Study members were

aged 38 years. Study members with faster Pace of Aging were measured

as having older Biological Age (r = 0.38, P < 0.001) (Belsky et al.,

2015a). They also showed greater age-related homeostatic dysregulation

(r = 0.58, P < 0.001). Personal-history characteristics showed similar

patterns of association with these two cross-sectional indexes as they

did with the longitudinal Pace of Aging (Figs S2–S7, Supporting

information).

Discussion

Therapies to extend healthspan are poised to move from laboratory-

based model systems to trials in humans (de Cabo et al., 2014; Longo

et al., 2015). Such human translation faces hurdles, including the

substantial heterogeneity of human aging. To advance understanding

of this heterogeneity, we studied how six personal-history character-

istics with documented relationships to later-life morbidity and

mortality predicted the pace of biological aging. We studied the pace

of aging in young-adult humans (aged 26–38 years) because therapies

will need to be delivered by midlife in order to prevent onset of age-

related disease. Our principle finding is that young adults who show

signs of rapid biological aging are characterized by personal-history

risks. Measuring future trial participants’ personal-history characteris-

tics will be important to designing rigorous tests of age-delaying

therapies.
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Fig. 3 Cumulative prospectively assessed personal-history risks in Study members with slow, average, and fast Pace of Aging. Panel A graphs density plots of cumulative risk

scores for Study members with slow, average, and fast Pace of Aging. The cumulative risk score reflects total burden of risk across six personal-history characteristics

(grandparent longevity, family social class during childhood, adverse childhood experiences, childhood IQ score, childhood self-control, and childhood health). For each

characteristic, values were standardized to a T-distribution (M = 50, SD = 10) with high scores reflecting increased risk (e.g., shorter-lived grandparents, lower

childhood social class). Standardized values were summed to calculate the cumulative risk score. Thus, the expected cumulative risk level was 300. The graph shows that

two-thirds of the slow-aging group had below this expected level of risk. In contrast, less than one-third of the fast-aging group did. Panel B graphs proportions of

Study members with slow, average, and fast Pace of Aging (see Fig. 1) who were classified as high risk on 0, 1, or 2 or more of the six characteristics. High-risk classifications

were for having short-lived grandparents (no grandparent survived past age 80 years), growing up in a low social class family, exposure to four or more adverse

childhood experiences, childhood IQ score ≤1 SD below the population mean (a score of 85 or below), childhood self-control score ≤1 SD below the population mean, and

childhood health score ≤1 SD below the population mean. The graph shows that most slow-aging Study members had no high-risk classifications. In contrast, more than

40% of the fast-aging Study members were classified as high risk on multiple family and childhood characteristics.
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We measured biological aging as the coordinated decline in integrity

of multiple organ systems. We quantified the rate of this decline, the

‘Pace of Aging’ from repeated measurements of a panel of 18

biomarkers assayed when Study members were aged 26, 32, and

38 years (Belsky et al., 2015a). We measured personal histories,

background characteristics hypothesized to influence biological aging,

from archival data collected prospectively beginning during Study

members’ childhoods. Study members’ familial longevity, childhood

social class, childhood adverse experiences, and childhood health,

intelligence, and self-control were all related to their adulthood Pace

of Aging. The relationship between personal-history risks (e.g., adverse

childhood experiences, low IQ) and biological aging was cumulative;

more risks predicted faster Pace of Aging. This pattern of results was

replicated when personal-history risks were ascertained using quick,

inexpensive contemporaneous measures, including adult Study mem-

bers’ retrospective reports. The relationship between cumulative risk and

faster Pace of Aging was similar in the subset of individuals with recent

health system contact, who presumably better represent the population

eligible to enroll in healthspan-extension trials.

A primary implication of these findings is that healthspan-extension

trials can measure personal histories as one method to quantify

heterogeneity in aging among potential participants. Measured personal

histories may be useful to trials in at least four ways. First, enrolling

participants with high personal-history risk helps to ensure a trial includes

participants who represent the population segment most in need of

therapy. This is because individuals with high levels of personal-history

risk appear to be aging more rapidly and therefore will more urgently

require healthspan-extending interventions. Second, personal-history

information can inform evaluation of trial protocols. For example,

personal-history risks could be evaluated as predictors of adherence.

Third, personal-history characteristics, as sources of etiologic hetero-

geneity in aging, represent potential sources of variation in treatment

response. Therefore, these characteristics may be useful to preregister as

treatment effect modifiers. In other branches of medicine, personal-

history characteristics have been found to predict treatment response

(Nanni et al., 2012). Fourth, personal histories can be ascertained

cheaply and quickly. For example, our contemporaneous assessments

(Table S1, Supporting information) required <3 min of the participants’

time.

If healthspan-extension trials do adopt personal-history assessments,

they will need new team members. To date, interdisciplinarity in

geroscience typically means biologists working with physicians. That

collaboration is essential. Our findings argue that behavioral scientists

too have a place in the design and conduct of healthspan-extension
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Fig. 4 Proportions of slow, average, and fast Pace of Aging Study members classified as high risk on 0, 1, or 2 or more family and childhood characteristics based on

contemporaneous assessments conducted in adulthood. Risk factors were having short-lived grandparents (no grandparent survived past age 80 years), retrospective report

by the Study member that their parents held low-status occupations during the Study member’s childhood, retrospective report of exposure to four or more adverse

childhood experiences, not holding any educational credential, and being rated by an examining nurse as having low levels of the personality trait conscientiousness. Panel A

graphs results for the full cohort. The pattern is the same as when risk was classified from assessments during childhood. Most slow-aging Study members were not classified

as high risk on any family or childhood characteristic. In contrast, more than 40% of the fast-aging Study members were classified as high risk on multiple family and

childhood characteristics. Panels B and C repeat the analysis for subsamples of cohort members with recent contacts with the healthcare system and who may reflect the

population most accessible to recruitment into clinical trials. Panel B graphs results for Study members with a recent prescription fill. Panel C graphs results for Study

members with a recent hospital admission (excluding for pregnancy-related services).
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trials. Tackling the challenge of translating healthspan-extension thera-

pies from worms, flies, and mice to free-living humans will require

geroscience teams with behavioral expertise (Staudinger, 2015).

A secondary implication is that individuals with high personal-history

risk may be well represented in populations seeking health care, and

therefore should be available to enroll in trials. In the Dunedin cohort,

individuals with recent prescription fills, and even those with recent

hospital admissions showed similar or even elevated personal-history

risks relative to the cohort overall. An important question for future

research is whether these high-risk individuals will be willing to volunteer

for trials and able to adhere to protocols. Midlife patients seeking care in

medical centers could be surveyed on personal-history characteristics

(and willingness to volunteer) to create a subject pool for healthspan-

extension trials.

Our findings also have implications for etiological theories relating

early-life risk exposures to later-life morbidity and mortality. Life course

epidemiology and the study of developmental origins of health and

disease document the link between early-life adversity and later-life

disease and death (Ben-Shlomo & Kuh, 2002; Gluckman & Hanson,

2004). Stress biology theory predicts this link is mediated by a process of

‘biological embedding’ (Danese & McEwen, 2012). Here, we provide

evidence consistent with a hypothesis that biological embedding occurs

through an acceleration of the aging process during the third and fourth

decades of life. Intervention to slow aging may provide a path to

mitigate damage caused by early adversity.

We acknowledge limitations. First, we studied a single New Zealand

birth cohort that lacked ethnic minority representation. Replications are

needed. Second, follow-up was right censored at the fifth decade of life.

Study members aging slowly during their third and fourth decades of life

might experience acceleration subsequently. Similarly, more rapidly

aging Study members might experience a slower Pace of Aging in later

years. Analysis in cohorts of older individuals is needed. Third, our

analysis concerned only risks accruing through childhood. We selected

personal-history characteristics from early life to establish temporal

precedence of personal histories to Pace of Aging measured during

Study members’ 20s and 30s. However, adolescent and young-adult

lifestyles and health behaviors likely influence aging (Crimmins et al.,

2009) and should also be measured as sources of heterogeneity in

clinical trials. Our analysis also omitted some early-life exposures. Low

birthweight and related perinatal risks predict late-life disease and

mortality (Barker et al., 2002). Should records of perinatal exposures be

available to trials of therapies to slow aging, they may prove useful.

Fourth, our retrospective battery lacked recall of childhood health.

Retrospective childhood health assessments are used in social surveys of

older adults, and predict aging outcomes in these samples (Blackwell

et al. 2001).

Our measurement of accelerated aging is necessarily imperfect.

Methods are still under development to quantify biological aging. The

one we used, Pace of Aging, is distinct from many others in that it is

based on observations of change occurring over time within individuals.

In contrast, most other methods are based on comparisons of chrono-

logically older individuals to younger ones. In acknowledgment of this

difference, we repeated our analysis using two such indexes, the

“Biological Age” (Levine, 2013), and an aging-related homeostatic

dysregulation index (Cohen et al., 2013), and obtained similar results.

Pace of Aging predicts many signs of foreshortened healthspan: Faster

Pace of Aging is related to poorer performance on tests of strength,

balance, and motor coordination, signs of early-onset cognitive decline,

and aged facial appearance already by midlife (Belsky et al., 2015a).

Biological Age and age-related homeostatic dysregulation predict

mortality (Levine & Crimmins, 2014; Li et al., 2015). Replication of

findings with these indexes argues that our results are not sensitive to

the specific method used to quantify biological aging. Nevertheless,

further demonstrations with alternative methods of quantification can

strengthen confidence in these findings.

In sum, this article links together two separate streams of research.

One stream addresses early-life exposures that shorten healthspan

(Gluckman & Hanson, 2004; Epel, 2009; Danese & McEwen, 2012). The

other, geroscience, seeks to develop interventions that modify aging

biology to lengthen healthspan (Burch et al., 2014; Kennedy et al.,

2014; Ravussin et al., 2015). Our analysis joins these streams at the life

course stage when they intersect: middle life. Our results show this

linkage is sound, and suggest that measuring early-life personal histories

of participants can benefit healthspan-extension trials.

Methods

Sample

Participants are members of the Dunedin Study, a longitudinal investi-

gation of health and behavior in a representative birth cohort. Study

members (N = 1037; 91% of eligible births; 52% male) were all

individuals born between April 1972 and March 1973 in Dunedin, New

Zealand (NZ), who were eligible based on residence in the province and

who participated in the first assessment at age 3 (Poulton et al., 2015).

The cohort represents the full range of socioeconomic status on NZ’s

South Island and matches the NZ National Health and Nutrition Survey

on key health indicators (e.g., BMI, smoking, GP visits) (Poulton et al.,

2015). Cohort members are primarily white; fewer than 7% self-identify

as having partial non-Caucasian ancestry, matching the South Island.

Assessments were carried out at birth and ages 3, 5, 7, 9, 11, 13, 15, 18,

21, 26, 32, and, most recently, 38 years, when 95% of the 1007 Study

members still alive took part. At each assessment, each Study member is

brought to the research unit for a full day of interviews and examina-

tions. The Otago Ethics Committee approved each phase of the study

and informed consent was obtained from all Study members.

In addition to studying the full cohort, we used electronic medical

record data to identify two subsamples within the cohort who had

recent contact with the healthcare system. The first subsample comprises

cohort members with recent pharmaceutical prescriptions. This subsam-

ple was identified via record linkage with the Pharmaceutical Manage-

ment Agency (PHARMAC) database. PHARMAC is the New Zealand

Crown agency that selects and purchases medicines that are subsidized

for use in the community (all common medications are on the list). The

database represents a record of requests from pharmacists for payment

of subsidies associated with prescriptions linked to the National Health

Index (NHI) number, a unique identifier assigned to every person who

accesses health-related support in New Zealand. The second subsample

comprises cohort members with recent hospital admissions. This

subsample was identified via record linkage with the New Zealand

Ministry of Health. The database contains information about admission

events to nationwide hospitals and is linked to the NHI number. Both

searches were conducted at the end of the last assessment (age

38 years), and here, we report data about the time period since the

previous assessment at age 32 years.

Measuring the Pace of Aging

As described previously (Belsky et al., 2015a), we measured Pace of

Aging in n = 954 Dunedin Study members with repeated assessments of
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a panel of 18 biomarkers taken at ages 26, 32, and 38 tears. The

biomarkers were as follows: apolipoprotein B100/A1 ratio, blood

pressure (mean arterial pressure), body mass index (BMI) and waist–hip

ratio, C-reactive protein and white blood cell count, cardiorespiratory

fitness (VO2Max), creatinine clearance, forced expiratory volume in one-

second (FEV1) and forced vital capacity ratio (FEV1/FVC), glycated

hemoglobin, high-density lipoprotein (HDL), lipoprotein(a), leukocyte

telomere length (LTL), periodontal disease, total cholesterol, triglyc-

erides, and urea nitrogen. For each biomarker, we calculated the Study

member’s personal rate of change using mixed-effects growth models.

We combined these rates of change into a single index scaled in years of

physiological change occurring per one chronological year. The average

Study member had Pace of Aging equal to 1 year of physiological

change per one chronological year. The fastest-aging Study members

experienced more than twice that rate of physiological change. The

slowest-aging Study members experienced almost no change at all. The

resulting Pace of Aging measure took on a normal distribution with

M = 1, SD = 0.38.

Cross-sectional biological age at age 38 years

As described previously (Belsky et al., 2015a), we calculated each

Dunedin Study member’s Biological Age at age 38 years using the

Klemera–Doubal equation (Klemera & Doubal, 2006) and parameters

estimated from the NHANES-III dataset (Levine, 2013) for ten biomarkers

(seven of which overlapped with Pace of Aging): glycated hemoglobin,

forced expiratory volume in one-second (FEV1), blood pressure (systolic),

total cholesterol, C-reactive protein, creatinine, urea nitrogen, albumin,

alkaline phosphatase, and cytomegalovirus IgG. Biological Age took on a

normal distribution, ranging from 28 to 61 years (M = 38 years,

SD = 3.23).

Cross-sectional age-related homeostatic dysregulation at age 38 years

We measured age-related homeostatic dysregulation by applying the

biomarker Mahalanobis distance method described by Cohen and

colleagues (Cohen et al., 2013; Li et al., 2015) to Study members’

age-38 biomarker values. Biomarker Mahalanobis distance measures

how aberrant an individual’s physiology is relative to a reference norm

(Cohen et al., 2013). Cohen and colleagues used chronologically

young individuals to form this reference norm for their calculations (Li

et al., 2015). They interpreted biomarker Mahalanobis distance from

the reference as an indicator of age-related homeostatic dysregula-

tion, a sign of biological aging. We formed our reference from the

Dunedin Study members’ biomarker values at age 26 years, the

youngest age at which the biomarkers were measured. We then

calculated Mahalanobis distance based on age-38 values of the 18

biomarkers included in Pace of Aging calculation. Thus, a Study

member’s biomarker Mahalanobis distance quantifies decline in

homeostatic regulation relative to the cohort’s age-26 norm. Distances

were log-transformed and standardized to have M = 1, SD = 0 for

analysis.

Measuring personal histories

We assessed six personal-history characteristics hypothesized to relate to

biological aging using archival data prospectively collected beginning

when Study members were children. The six personal-history character-

istics were familial longevity, childhood social class, adverse childhood

experiences (ACEs), and childhood physical health, intelligence, and self-

control. We also measured personal histories from contemporaneous

measures including retrospective reports collected from Study members

when they were adults. Details on personal-history measurements are

reported in the Supplementary Information.
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