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Scaled Subprofile Model of Principal Component Analysis (SSM-PCA) is a multivariate

statistical method and has been widely used in Positron Emission Tomography

(PET). Recently, SSM-PCA has been applied to discriminate patients with Parkinson’s

disease and healthy controls with Amplitude of Low Frequency Fluctuation (ALFF) from

Resting-State Functional Magnetic Resonance Imaging (RS-fMRI). As RS-fMRI scans

are more readily available than PET scans, it is important to investigate the intra- and

inter-scanner reliability of SSM-PCA in RS-fMRI. A RS-fMRI dataset with Eyes Open

(EO) and Eyes Closed (EC) conditions was obtained in 21 healthy subjects (21.8 ± 1.8

years old, 11 females) on 3 visits (V1, V2, and V3), with V1 and V2 (mean interval of 14

days apart) on one scanner and V3 (about 8 months from V2) on a different scanner. To

simulate between-group analysis in conventional SSM-PCA studies, 21 subjects were

randomly divided into two groups, i.e., EC-EO group (EC ALFF map minus EO ALFF

map, n = 11) and EO-EC group (n = 10). A series of covariance patterns and their

expressions were derived for each visit. Only the expression of the first pattern showed

significant differences between the two groups for all the visits (p = 0.012, 0.0044, and

0.00062 for V1, V2, and V3, respectively). This pattern, referred to as EOEC-pattern,

mainly involved the sensorimotor cortex, superior temporal gyrus, frontal pole, and visual

cortex. EOEC-pattern’s expression showed fair intra-scanner reliability (ICC = 0.49) and

good inter-scanner reliability (ICC = 0.65 for V1 vs. V2 and ICC = 0.66 for V2 vs. V3).

While the EOEC-pattern was similar with the pattern of conventional unpaired T-test

map, the two patterns also showed method-specific regions, indicating that SSM-PCA

and conventional T-test are complementary for neuroimaging studies.
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INTRODUCTION

Identification of reproducible and region-specific effects that
characterize normal or diseased brain state is one of the most
important goals of brain functional imaging studies. The Scaled
Subprofile Model of Principal Component Analysis (SSM-PCA)
is one of the earliest multivariate data analytic techniques that are
available to recognize significant group-dependent and region-
specific effects (Moeller et al., 1987; Moeller and Strother,
1991; Alexander and Moeller, 1994; Eidelberg, 2009). The SSM-
PCA is one form of regional covariance analysis, identifying
functional interaction patterns among brain regions that are
spatially distributed throughout the brain (Moeller et al., 1987).
Commonly, the SSM-PCA has been applied to differentiate two
groups of subjects (e.g., patients vs. healthy controls) (Alexander
and Moeller, 1994; Spetsieris and Eidelberg, 2011; Wu et al.,
2013; Tomše et al., 2017). The brain images of the two groups
are decomposed to be a linear combination of a series of spatial
patterns (i.e., images) by SSM-PCA. Each pattern is expressed
in each subject with a Subject Scaling Factor (SSF), which can
be prospectively assessed and compared between groups and
validated with disease severity and neuropsychological test scores
(Alexander and Moeller, 1994; Eidelberg, 2009).

SSM-PCA was first proposed to analyze data from Positron
Emission Tomography (PET) (Moeller et al., 1987), and had
been widely applied to investigate the effects of neurological
and psychiatric illness on brain function, such as Alzheimer’s
disease (Alexander and Moeller, 1994), Parkinson’s disease
(Eidelberg et al., 1995), major depressive disorder (Sackeim et al.,
1993), acquired immune deficiency syndrome dementia complex
(Rottenberg et al., 1987), neoplastic disease (Anderson et al.,
1988), and normal aging (Pagani et al., 2016). SSM-PCA was
then utilized to deal with structural, perfusion, and diffusion
Magnetic Resonance Imaging (MRI)metrics, including white and
gray matter density (Brickman et al., 2007, 2008; Bergfield et al.,
2010), graymatter volume (Guo et al., 2014; Steffener et al., 2016),
cerebral blood flow (CBF) (Asllani et al., 2008; Teune et al., 2014),
and fractional anisotropy (Gazes et al., 2016). More recently,
SSM-PCA was applied to investigate Parkinson’s disease-related
covariance brain pattern with a Resting-State Functional MRI
(RS-fMRI) metric (Wu et al., 2015), namely Amplitude of Low
Frequency Fluctuation (ALFF) (Zang et al., 2007), revealing that
the subject’s expression of this pattern is capable of discriminating
patients from healthy volunteers. RS-fMRI has many metrics
and thousands of papers have been published on various brain
disorders, however to our best knowledge, only one has utilized
SSM-PCA (Wu et al., 2015).

Reliability is the cornerstone of any scientific measurement
(Bennett and Miller, 2010). The intra- and inter-scanner
reliability is an important metric for quantification of fMRI
measurement reliability, given increasing research interest
relying on the ability to combine the data from multiple
scanners into larger, integrative data sets. For SSM-PCA,
we found that only one study measured the test-retest (i.e.,
intra-scanner) reliability with PET images from two groups
of subjects (Ma et al., 2007). That study demonstrated the
very high test-retest reliability of the SSF analysis. No study

has investigated inter-scanner reliability. The current studies
investigated both intra- and inter-scanner reliability with the
following 3 considerations.

First, we simulated a between-group design, i.e., comparison
between two groups. SSM-PCA has been widely used to compare
two groups of subjects, e.g., patient group vs. healthy group.
The reliability of SSM-PCA is different from the reliability of
other metrics. For example, the test-retest reliability of ALFF in
RS-fMRI is usually tested in a single group of healthy subjects
(Zou et al., 2015b), and it is relatively easy to scan a group of
healthy subjects twice. But SSM-PCA should be performed on the
between-group design to gain the reliability of the pattern as well
as its expression for each subject, i.e., SSF. It is rather difficult to
scan both the patient group and healthy group twice, especially
in two different scanners. Moreover, the brain activity in the
patients usually changes more than that in the healthy group
over time, which affects the intra- and inter-scanner reliability.
Therefore, the current study simulated two groups of subjects
with a single group of healthy subjects to investigate both the
intra-scanner (i.e., test-retest) reliability and the inter-scanner
reliability.

Second, we used a RS-fMRI dataset under Eyes Open (EO) and
Eyes Closed (EC) conditions. In RS-fMRI, EO and EC states are
two resting physiological states with distinct differences in a few
brain regions, and more importantly, these differences are highly
reproducible across studies (Yang et al., 2007; Yan et al., 2009;
Liu et al., 2013; Yuan et al., 2014; Zou et al., 2015a). EO and EC
are usually for within-group designs. By randomly dividing one
group into two subgroups and performing subtraction between
conditions, e.g., EC-EO group and EO-EC group, between-group
designs can be imitated with within-group data.

Third, we compared the spatial patterns generated by the
multivariate method of SSM-PCA with that by the univariate
statistical method of voxel-wise T-test. With a proper threshold,
the surviving brain voxels of a T map implies the existence of
significant difference between two groups (or conditions). By
contrast, the surviving brain voxels of a SSM-PCAmapmean that
these voxels contribute more than other voxels to the difference
between groups. We therefore were interested in studying the
similarities and differences between the T map and SSM-PCA
pattern with a certain threshold.

MATERIALS AND METHODS

Subjects
The experiment was approved by the ethics committee at the
Center for Cognition and Brain Disorders, Hangzhou Normal
University (HZNU). Signed informed consent was obtained
from all subjects prior to data acquisition. Twenty-one healthy
subjects (21.8 ± 1.8 years old, 11 females) participated in all
3 visits of MRI scans. All subjects were prescreened with a
telephone questionnaire to exclude history of neurological illness
or psychiatric disorders.

Data Acquisition
RS-fMRI dataset was obtained on 3 visits (V1, V2, and V3), with
V1 andV2 (separated by 14± 1 days) on a scanner andV3 (230±
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8 days fromV2) on a different scanner. For each visit, participants
underwent two RS-fMRI scans, during which they were asked to
relax with either EC or EO. The order of the two acquisitions was
counter-balanced across subjects.

MR images of V1 and V2 were obtained on a GE 3T
scanner (MR-750, GE Medical Systems, Milwaukee, WI) with an
eight-channel head coil at the Center for Cognition and Brain
Disorders of HZNU. To minimize the head movement, subjects
laid supine with their heads snugly fixed by straps and foam
pads. The Blood-Oxygenation-Level-Dependent (BOLD) images
were acquired using a gradient echo Echo-Planar Imaging (EPI)
pulse sequence with the following parameters: Repetition Time
(TR)/Echo Time (TE) = 2,000/30ms, Flip Angle (FA) = 60◦,
43 slices with interleaved acquisition, thickness/gap = 3.4/0mm,
Field Of View (FOV) = 220 × 220 mm2 with an in-plane
resolution of 3.44 × 3.44 mm2. The duration of each resting-
state scan was 8min. A high-resolution 3D volume imaging was
performed with a spoiled gradient-recalled pulse sequence (176
sagittal slices, thickness = 1mm, TR/TE = 8.1/3.1ms, FA = 9◦,
FOV= 250× 250 mm2).

Data of V3 were acquired on a Siemens 3T scanner (Prisma,
Siemens Healthineers, Erlangen, Germany) at the Center for
Brain Imaging Science and Technology of Zhejiang University
(ZJU). The BOLD EPI sequence parameters were the same
as those on the GE scanner except FA = 90◦. The 3D T1-
weighted images were acquired with a Magnetization-Prepared
Rapid-Acquisition Gradient Echo (MPRAGE) sequence (176
sagittal slices, thickness = 1mm, TR/TE = 1,800/2.28ms,
inversion time = 755ms, FA = 8◦, echo spacing = 7.1ms, turbo
factor= 208, FOV= 250× 250 mm2).

Data Preprocessing
Functional MRI data were preprocessed with Resting-
State fMRI Data Analysis Toolkit plus V1.2 (RESTplus
V1.2, http://restfmri.net/forum/index.php). Preprocessing
procedures included removal of the first 10 frames, slice-timing
correction, realignment to the first image for motion correction,
coregistration of individual averaged functional images to T1
images, and spatially normalization into the standard Montreal
Neurological Institute (MNI) brain space using the deformation
field from segmentation of T1 images. All images were then
resampled into 3 × 3 × 3 mm3 voxels, and smoothed using an
isotropic Gaussian filter with a Full Width at Half Maximum
(FWHM) of 6mm. For all the subjects, the maximum translation
and rotation were less than 1.5mm and 1.5◦, respectively. After
removing the linear drift, ALFF was calculated based on the
same procedures reported previously (Zang et al., 2007) with
RESTplus. Briefly, the time courses of RS-fMRI signal were first
converted to frequency domain with the Fast Fourier Transform
(FFT). Then, the averaged amplitude across a frequency band
of 0.01–0.08Hz yielded ALFF. For each subject, the ALFF map
was divided by the global mean ALFF value within a whole brain
mask in RESTplus.

SSM-PCA Analysis
Inmost previous applications of SSM-PCA, image data from both
patients and healthy controls were put together for analysis, and

then a disease-related spatial covariance pattern was identified
if significant difference in a pattern’s expression was found
between the patients and healthy controls by two-sample T-
test (Alexander and Moeller, 1994; Spetsieris and Eidelberg,
2011; Tomše et al., 2017). The current study was a within-
group design, i.e., comparison between two conditions within
the same group of subjects, which is also useful for longitudinal
follow-up or intervention studies in clinical research. To imitate
the analytic procedure in most existing SSM-PCA studies, 21
subjects in this study were randomly divided into two groups
with matched age and gender, i.e., EC-EO group (n = 11) and
EO-EC group (n = 10). In detail, for the EO-EC group, we
subtracted ALFF map of EC from ALFF map of EO for each
subject to generate the difference map, and vice versa for the
EC-EO group.

Based on a modified PCA, SSM-PCA decomposes the metric
(ALFF in the current study) maps from all the subjects (EC-
EO group and EO-EC group here) into a linear combination
of orthogonal components. Each component is a whole-brain
image, usually named as a “pattern.” Each voxel’s value of any
component is a weight representing the contribution of that
voxel to the corresponding pattern. Voxels with a relatively large
weight in the pattern was called “network” in Spetsieris and
colleagues’ paper on metabolic PET (Spetsieris et al., 2015). The
pattern was also termed as Group Invariant Subprofile (GIS)
(Moeller and Strother, 1991; Alexander and Moeller, 1994). The
projection of each individual’s ALFF map onto a pattern is
regarded as the pattern’s expression in the subject, which is also
called Subject Scaling Factor (SSF). The SSFs are then used in
further group-level statistical analysis, e.g., T-test between two
groups or correlation with behavioral variables.

The mathematical basis for SSM-PCA has been previously
described in detail (Moeller and Strother, 1991; Alexander
and Moeller, 1994; Spetsieris and Eidelberg, 2011). Briefly, the
difference ALFF maps were arranged first into an M × N
dimensional data matrix, where each column represents all
the voxels from each subject. M is the number of voxels
and N is the number of subjects. Secondly, we centered
each column to zero, and then acquired the Group Mean
Profile (GMP) as the mean value of each row. Thirdly, the
data matrix of each row was centered to zero with GMP
to obtain the Subject Residual Profile (SRP). As in regular
PCA, the reduced Singular Value Decomposition (SVD) was
utilized to factorize SRP (Jolliffe, 2002; Spetsieris and Eidelberg,
2011):

UΣV
T = SVD (SRP) , (1)

whereU is aM ×N matrix composed of the left unit-normalized
orthogonal singular vectors as columns, Σ is a N × N diagonal
matrix composed of singular values σk, where k is the component
number, and V is a N × N matrix composed of the right unit-
normalized orthogonal singular vectors as columns. Then, the
GISs (namely patterns) and SSFs (namely patterns’ expressions
in each subject) can be computed as follows:

GISik = U ik, (2)

SSFjk =
∑M

i = 1
(SRPij × GISik) (3)
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in which i is the voxel number and j is the subject number.
Variance Accounting For (VAF) represents the ratio of variance
corresponding to every GIS to the total variance, calculated by:

VAFk = σ 2
k /

∑N

k=1
σ 2
k . (4)

Two-sample T-test was then performed on SSFs to assess their
difference between the EC-EO group and EO-EC group. GIS,
whose SSF with p < 0.05, was considered to be the EC and EO
difference-related spatial covariance pattern (hereafter named as
EOEC-pattern). The GISs and SSFs were derived based on the
SSMPCA toolbox (http://www.feinsteinneuroscience.org).

Intra-scanner and Inter-scanner Reliability
Analysis
The intra-scanner and inter-scanner reliability of SSF from SSM-
PCA was measured with Intra-Class Correlation (ICC). ICC for
each pair of metrics from two visits was calculated as below
(Shrout and Fleiss, 1979):

ICC = (BMS−WMS)/(BMS+WMS), (5)

where BMS and WMS are the mean squares values of between-
target and within-target SSFs. To illustrate the similarity between
EOEC-patterns and their SSFs between each pair of MRI scans,
Pearson correlation coefficient (r) was also calculated (Zang et al.,
2017). The effect of group division on the ICC of SSF was
investigated by repeating the SSM-PCA with random division of
subjects for 1,000 times with bootstrapping.

EOEC-Pattern Generalization Across Visits
To investigate the generalization of EOEC-pattern across serial
MRI datasets, we used Topographic Profile Rating (TPR)
algorithm (Eidelberg et al., 1995; Ma et al., 2007). TPR quantifies
the expression of a given pattern in an individual subject by
the inner product of the pattern and the individual subject’s
SRP. The individual subject’s SRP is acquired by using the GMP
image associated with the derivation of the original pattern. For
example, an EOEC-pattern was obtained from V1 data and then
projected onto V2 and V3 data to compute SSFs. Two-sample T-
test was performed to compare between the EC-EO group and
EO-EC group for V2 and V3, respectively. ICC of V2 against V3
was also calculated as an additional way for measuring reliability,
as was done by Ma and colleagues (Ma et al., 2007). Similarly,
the EOEC-pattern from V2 or V3 was projected onto the data
in the other two visits, and intra- or inter-scanner reliability
was measured, in addition to the other indicators of reliability
described in section Intra-Scanner and Inter-Scanner Reliability
Analysis above.

Comparison Between EOEC-Pattern and
Univariate Statistical T Map
In order to compare the EOEC-patterns from SSM-PCA and
the T maps from univariate statistics, Dice Similarity Coefficient
(DSC) was utilized. Univariate two-sample T-test was performed
between EC-EO group and EO-EC group. A corrected p < 0.05
was used with AlphaSim in software RESTplus V1.2. This

corrected p value corresponded to a combined threshold of
single voxel p < 0.05 and cluster sizes larger than a certain
number of voxels, which was determined on an estimated
smoothing kernel size (Full Width at Half Maximum (FWHM)
listed in Table 1) according to their T maps. It should be
noted that there is currently no widely accepted method to
determine the threshold for SSM-PCA pattern maps. To render
it more comparable with the T map, we used the same cluster
size threshold (Table 1) for the z-transformed EOEC-pattern
map, sorted the absolute z value, and then determined the
|z| threshold (Table 1), by which the total number of voxels
of EOEC-patterns were kept almost the same as that of T
maps (Table 1). DSC was computed as below (Rombouts et al.,
1997):

DSC = 2|A∩B|/(|A| + |B|), (6)

where|A|, |B|, and |A∩ B| are the total voxel numbers
of the EOEC-pattern, T map, and their overlap,
respectively.

RESULTS

EOEC-Pattern Identification
As shown in Figure 1 and Supplementary Table 1, the VAF
of GIS1 for V1, V2, and V3 was remarkably larger than that
of GIS2. Only the SSF of GIS1 showed significant difference
(p < 0.05) between the EC-EO group and EO-EC group
for each visit. Thus, GIS1 was named as the EOEC-pattern
map for V1–3. As the VAF for GIS21 was zero, GIS21
and its SSF were ignored in T-test and reliability analysis.
Figures 2A–C displayed the topography of z-transformed EOEC-
patterns with a threshold of |z| > 1 and their SSFs in V1–
3. Combining the SSF distribution and EOEC-pattern, positive
z represented higher ALFF in EC than EO, mainly including
the visual cortex, temporal cortex, and sensorimotor cortex.
Inversely, negative z represented lower ALFF in EC than EO,
mainly involving frontal pole and posterior parietal cortex.
For each of these patterns, SSF values were significantly
elevated in the EC-EO group compared to the EO-EC group
(Figures 2D–F).

TABLE 1 | Parameters used in calculating DSC for comparison between

EOEC-pattern and univariate statistical T map.

V1 V2 V3

FWHM (mm) for T map [12.1 12.9 11.3] [11.9 12.6 11.2] [13.0 13.7 13.6]

Cluster size threshold

(voxel)

915 952 1137

Voxel number in T map 7669 10246 14913

|z| threshold for

EOEC-pattern

1.40 1.27 1.01

Voxel number in

EOEC-pattern

7668 10246 14911

DSC, Dice Similarity Coefficient; FWHM, Full Width at Half Maximum.
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FIGURE 1 | The percentage of VAF (%VAF) for each GIS in V1, V2, and V3. (VAF, Variance Accounting For; GIS, Group Invariant Subprofile).

FIGURE 2 | The z-transformed EOEC-patterns (with |z| > 1) (A–C) and their SSFs (D–F) of datasets V1–3. Positive and negative z values represented higher and

lower ALFF in EC than EO, respectively. The z coordinates of each slice were from −25 to 70mm with slice spacing of 5mm (SSF, Subject Scaling Factor).
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Intra- and Inter-scanner Reliability of
EOEC-Pattern and its Expression
Reliability by ICC
As shown in Figure 3, the PCC between both intra- and
inter-scanner EOEC-patterns was high (above 0.8, p < 0.001)
(Figures 3A–C). The intra-scanner reliability of EOEC-patterns’
expressions, i.e., SSFs, was fair (0.4∼0.59) (Cicchetti, 1994).
Interestingly, the inter-scanner reliability of SSF was good
(0.6∼0.74) (Figures 3D–F; Cicchetti, 1994). The PCC between
each pair of visits was very similar with ICC. Supplementary
Table 2 listed the intra- and inter-scanner ICCs of all the SSFs
corresponding to GIS1-20. Except for ICC of SSF1, all ICCs
of SSF2-20 were smaller than 0.4. The mean value, standard
deviation, and 95% confidence interval of ICC of EOEC-patterns’
expressions from bootstrapping were listed in Table 2. The table
demonstrated that the ICC variation is very small compared with
the mean value.

EOEC-Pattern Generalization Across Visits
We calculated the expression (i.e., SSF) of each EOEC-pattern
(V1, V2, and V3) on the other two datasets. As shown in
Table 3, the ICCs between expressions of a given EOEC-pattern
in the other two datasets was approximate to those between
each pair of SSFs obtained from the EOEC-patterns of their
own visits (Figures 3D–F). Two-sample T-test showed excellent
cross-validation results (Table 3).

Comparison Between EOEC-Pattern and
Univariate Statistical T Map
Figures 4A–C showed the univariate statistical T maps between
the EC-EO group and EO-EC group with a combined p threshold
and cluster size threshold described in Table 1. As shown in
Figures 4G–I, the DSCs for V1, V2, and V3 were 0.27, 0.31,
and 0.37, respectively, suggesting that the EOEC-pattern was
quite different from the T maps. By visual inspection on
Figures 4G–I, T-test detected larger, but not exclusively, areas
in the primary sensorimotor area and superior temporal gyrus,
whereas EOEC-pattern detected exclusively large area in the
occipital lobe.

DISCUSSION

EOEC-Pattern Identification
The first pattern, namely EOEC-pattern, accounted substantially
more variance than that of the second GIS (GIS2) in each
visit (Figure 1 and Supplementary Table 1). The EOEC-pattern
included the primary sensorimotor cortex, visual cortex, and
frontal cortex (Figures 2A–C). Similar brain areas were also
reported in previous EO and EC studies by using paired T-
tests (Yang et al., 2007; Yan et al., 2009; Liu et al., 2013;
Yuan et al., 2014; Zou et al., 2015a). The SSF showed
significant differences between the EC-EO group and EO-
EC group (Figures 2D–F). Many previous PET studies have
consistently found that the first pattern was the disease-related
pattern (Ma et al., 2007; Pagani et al., 2016; Tomše et al.,
2017). After centralization, the voxel-wise similarity between
groups was reduced, while the difference between groups was

highlighted (Moeller and Strother, 1991). The current study
randomly assigned one group of subjects into EC-EO and EO-
EC subgroups, and applied SSM-PCA in the same way as in
previous studies. Thus, it is not surprising why the first pattern
accounted for the largest portion of total variance, and hence,
is the “between-group” difference-related pattern, i.e., EOEC-
pattern.

Intra- and Inter-scanner Reliability of
SSM-PCA
We firstly found high similarity among the EOEC-patterns of
the 3 visits. We then calculated the reliability of SSF (i.e.,
the expression) corresponding to EOEC-patterns. Both the
intra- and inter-scanner reliability of SSF was fair to good
(ICC = 0.49–0.66) (Figure 3). Furthermore, we calculated the
SSF of an EOEC-pattern of one visit onto the other two visits.
For example, the EOEC-pattern of V1 was expressed onto V2
and V3, respectively. We found that each EOEC-pattern of
one visit could be successfully applied to other two visits to
differentiate the EC-EO group and EO-EC group (p < 0.01)
(Table 3). The ICC value was similar as before (Table 3 vs.
Figure 3).

To the best of our knowledge, only one previous study
investigated the test-retest reliability of SSM-PCA in two groups
of subjects (Ma et al., 2007). Ma and colleagues obtained a
Parkinson’s disease (PD)-related pattern (PDRP) from a dataset
of PD patients and healthy controls. Then this PDRP was
expressed onto other datasets to measure the ICC of PDRP’
expression (i.e., SSF). They found excellent test-retest reliability
over different intervals including 1 h apart (ICC = 0.94 for
healthy subjects, and ICC = 0.96 for unmediated PD patients), 1
day apart (ICC = 0.99 for unmedicated early state patients), and
2 months apart (ICC = 0.96 for medicated moderate stage PD
patients). These results suggest that the test-retest reliability of
FDGPETwas higher than that with RS-fMRI ALFF in the present
study. This discrepancy might be attributed to differences in the
experimental design, imaging modality, as well as computing
algorithm of imaging metrics. Simultaneous resting-state PET-
fMRI studies have shown that only a small part of brain regions
demonstrated significant voxel-level correlation between glucose
metabolism and RS-fMRI metrics including ALFF (Aiello et al.,
2015; Bernier et al., 2017). Generally speaking, PET and fMRI
measure different physiological features. However, the different
computation for the two techniques may also account for their
discrepancies. The metric for PET glucose metabolism is usually
the averaged or integrated value over a period of time, while
ALFF of RS-fMRI is the amplitude of fluctuation over time (Zang
et al., 2007). A non-invasive perfusion-weighted MRI technique,
arterial spin labeling (ASL) is widely used to measure CBF.
Some ASL sequences allow calculating both mean CBF over a
period of time and CBF-ALFF. A study used ASL and BOLD RS-
fMRI to compare between EO and EC states (Zou et al., 2015b).
ASL-ALFF and BOLD-ALFF detected similar regions, but CBF-
ALFF and CBF-mean detected very different regions. Zou and
colleagues also found that CBF-mean showed better test-retest
reliability than BOLD-ALFF (Zou et al., 2015a).
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FIGURE 3 | Pearson correlation of EOEC-patterns (A–C) and reliability of their expressions (D–F), i.e., SSF1, of each pair of visits. The Pearson correlation coefficients

for EOEC-patterns of V1 vs. V2 (intra-scanner), V1 vs. V3 (inter-scanner), and V2 vs. V3 (inter-scanner) were 0.86, 0.83, and 0.81, respectively, and the ICCs for

EOEC-pattern expressions of V1 vs. V2, V1 vs. V3, and V2 vs. V3 were 0.49, 0.65, and 0.66, respectively (SSF1, Subject Scaling Factor of GIS1, namely

EOEC-pattern here; ICC, Intra-Class Correlation; r, Pearson Correlation Coefficient).

TABLE 2 | ICC results of EOEC-pattern’s expression from the random group

selection for 1,000 times with bootstrapping.

V1 vs. V2 V1 vs. V3 V2 vs. V3

EOEC-pattern’s

expression

Mean± std 0.48± 0.04 0.61± 0.03 0.66± 0.03

95% confidence

interval

[0.43 0.55] [0.57 0.66] [0.62 0.67]

ICC, Intra-Class Correlation.

TABLE 3 | EOEC-pattern generalization results across visits.

Expression of

EOEC-pattern of

V1

Expression of

EOEC-pattern of

V2

Expression of

EOEC-pattern of

V3

V2 V3 V1 V3 V1 V2

p-value 0.0082 0.00099 0.0072 0.00038 0.0084 0.0054

T-value 2.95 3.89 3.01 4.31 2.94 3.14

Cohen d 1.09 1.30 1.11 1.37 1.09 1.14

ICC 0.64 0.71 0.46

ICC, Intra-Class Correlation. For example, the p value of 0.0084 meant the T-test result

for the expression of V3’s EOEC-pattern in V1 comparing the EC-EO and EO-EC groups.

ICC of 0.46 is the ICC between the expressions of V3’s EOEC-pattern in V1 and V2 across

all subjects.

Comparison Between EOEC-Pattern and
Univariate Statistical T Map
Both SSM-PCA and univariate T-test are statistical methods,
however, they are quite different in their mathematical

foundations. As a multivariate statistical approach, SSM-PCA
obtains patterns and the patterns’ expression of each subject
based on the covariance matrix of all the voxels from all the
subjects, which is a kind of pattern analysis (Alexander and
Moeller, 1994; Eidelberg, 2009). The patterns are whole-brain
images. Then two-sample T-test is applied to the patterns’
expression (i.e., SSF) to assess whether the SSF is different
between two groups of subjects. If the difference is significant,
the corresponding pattern is then named as difference-related
pattern, e.g., EOEC-related pattern in the current study or PD-
related pattern (PDRP) in previous studies (Ma et al., 2007;
Wu et al., 2013, 2015; Tomše et al., 2017). For a voxel in the
difference-related pattern, larger value means more contribution
or weight to the difference. On the other hand, for univariate
statistical method such as voxel-wise T-test, comparison is made
between the values of each single voxel from two groups of
subjects (two-sample T-test) or two conditions within a group of
subjects (one-sample T-test). The total number of comparisons
is very different for the SSM-PCA and T-test. For SSM-PCA,
the total number of comparisons is up to the total number of
patterns (up to 21 in the current study), but usually only a few
principle patterns are taken into account. And in practice like in
the current study and previous studies (Ma et al., 2007; Pagani
et al., 2016; Tomše et al., 2017), only the first one component
was used because the first component accounts much more
variance than the second one. For voxel-wise T-test, the total
number of comparisons is the total number of voxels (70,831
voxels in the current study). Therefore, false discovery problem
due to multiple comparisons is much more severe for univariate
statistical method in neuroimaging studies (Poldrack et al., 2011).
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FIGURE 4 | The upper, middle, and bottom rows represented the univariate T maps (A–C) (with |T | > 2.09 and cluster size >915 voxels for V1, 952 for V2, and 1137

for V3), z-transformed EOEC-patterns (D–F) (with total number of voxels the same as that of corresponding T maps), and overlap maps between T maps and

EOEC-patterns (G–I) of dataset V1, V2, and V3, respectively. The Dice Similarity Coefficient (DSC) for V1, V2, and V3 were 0.27, 0.31, and 0.37, respectively. The z

coordinates of slices were from −25 to 70mm with slice spacing of 5mm.

The aforementioned points reflected merely a theoretical
issue frommethodological perspective. From neurophysiological
perspectives, SSM-PCA is operating on the notion that localized
changes engage multiple, interacting brain regions that are
widely distributed over the whole brain owe to intrinsic

connectivity in neural substrates. A primary example to support
this view is the modulation of SSM-PCA pattern and clinical
correlation by neurosurgical interventions delivered locally on
any key nodes in the pattern (Peng et al., 2014). On the
other hand, T-test is relying on mean signal in image data to
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localize regionally- independent group differences over the whole
brain. This method does not explicitly account for important
functional interactions between different brain regions except
neighborhood autocorrelations on a small scale inherent in image
data.

We compared the EOEC-pattern with T-test pattern. While
the results showed overlapped brain regions, they also showed
method-specific brain regions. The T-test detected larger brain
regions in the primary sensorimotor area and superior temporal
gyrus, but SSM-PCA detected exclusively large visual area.
In a previous research study with voxel-wise paired T-test
analysis, it was also found that the mean CBF from ASL
technique was significantly lower under EC than EO conditions
in the primary visual cortex, which was not detected with
ALFF T-test (Zou et al., 2015a). Moreover, it is well known
that the visual cortex can be activated by visual input, so
it is reasonable to detect visual area in the EOEC-pattern.
Differences that are not significant enough in T-test may show
up in pattern from SSM-PCA as reported in PET literatures
(Habeck et al., 2008; Ma et al., 2009) and ASL literature (Asllani
et al., 2008). Consequently, SSM-PCA and univariate T-test are
two complementary data analytic approaches for application
studies.

Limitations
One limitation is the experimental design for inter-scanner
reliability. The current study aimed to investigate both intra-
and inter-scanner reliability. When we kept the interval of the
two visits of intra-scanner scanning to be similar across subjects,
it is impossible to keep the order of inter-scanner scanning
count-balanced. Therefore, the second visit was always before the
third visit. It means that the reliability between the second and
third scanning is a mixed effect of inter-scanner and test-retest

reliability. Another limitation is using within-group designs to
simulate between-group designs for SSM-PCA.

CONCLUSIONS

Both the intra- and inter-scanner reliability of SSM-PCA of RS-
fMRI ALFF was fair to good. The difference-related pattern of
SSM-PCA and T maps was similar but also showed method-
specific brain regions, indicating that the SSM-PCA and T-test
are two complementary statistical methods.
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