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ABSTRACT

Motivation: Although constraint-based flux analysis of knockout

strains has facilitated the production of desirable metabolites in mi-

crobes, current screening methods have placed a limitation on the

number knockouts that can be simultaneously analyzed.

Results: Here, we propose a novel screening method named

FastPros. In this method, the potential of a given reaction knockout

for production of a specific metabolite is evaluated by shadow pricing

of the constraint in the flux balance analysis, which generates a

screening score to obtain candidate knockout sets. To evaluate the

performance of FastPros, we screened knockout sets to produce

each metabolite in the entire Escherichia coli metabolic network. We

found that 75% of these metabolites could be produced under bio-

mass maximization conditions by adding up to 25 reaction knockouts.

Furthermore, we demonstrated that using FastPros in tandem with

another screening method, OptKnock, could further improve target

metabolite productivity.

Availability and implementation: Source code is freely available

at http://www-shimizu.ist.osaka-u.ac.jp/shimizu_lab/FastPros/, imple-

mented in MATLAB and COBRA toolbox.

Contact: chikara.furusawa@riken.jp or shimizu@ist.osaka-u.ac.jp

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on August 7, 2013; revised on October 25, 2013; accepted

on November 14, 2013

1 INTRODUCTION

Metabolic engineering of microbes has been successfully used for

the production of a variety of useful compounds in microbes
(Keasling, 2010; Shimizu, 2002; Stephanopoulos et al., 1998;

Zaldivar et al., 2001). Moreover, genetic modification techniques
have enabled the disruption and ‘rewiring’ of metabolic fluxes to

improve the production of target products (Atsumi et al., 2008;

Becker et al., 2011). Owing to the complexity of metabolic sys-
tems, however, achieving a desired metabolic state through gen-

etic modification remains difficult. Given that several individual
genetic modifications are often required to improve target prod-

uctivity (Becker et al., 2011; Yim et al., 2011), the selection of an
appropriate set of modifications from a large number of possible

combinations is challenging. To overcome this obstacle, tools

based on computer simulation and mathematical modeling

have been developed, which make possible screening for appro-

priate sets of genetic modifications to improve target productiv-

ity (Burgard et al., 2003; Patil et al., 2005; Tepper and Shlomi,

2010). Flux balance analysis (FBA) is a widely used method for

estimating metabolic fluxes using genome-scale metabolic models

(GSMs) (Feist and Palsson, 2008; Oberhardt et al., 2009). In

FBA, metabolic fluxes can be quantitatively estimated by assum-

ing a steady state metabolic system and optimization of an ob-

jective function. Maximization of biomass production flux has

been generally adopted as the objective function, and it has been

demonstrated that metabolic fluxes estimated by maximizing

biomass production are in agreement with experimentally ob-

tained fluxes (Varma and Palsson, 1994; Yoshikawa et al.,

2011). Therefore, quantitative flux predictions by FBA can ac-

celerate the rational design of metabolic networks to improve the

yield of target products (Alper, et al., 2005; Park, et al, 2007).
In silico screening of genetic modifications is a widely used

application of FBA for metabolic engineering, and to date sev-

eral such algorithms have been proposed (Tomar and De, 2013;

Zomorrodi et al., 2012). These algorithms can be classified into

two categories: comprehensive screening and iterative screening.

For example, the popular comprehensive knockout screening al-

gorithm OptKnock, which has been used in both academic and

industrial settings (Fong et al., 2005; Pharkya and Maranas,

2006; Yim et al., 2011), identifies the reaction knockouts that

hold the most promise for achieving the highest target produc-

tion yield among all possible sets of reaction knockouts (Burgard

et al., 2003). However, as the calculation time increases exponen-

tially as a function of the number of reaction knockouts that are

simultaneously present in the original network, the maximum

number of reaction knockouts to which this strategy can be

applied is limited.

Iterative screening for increasing the target productivity can be

carried out at relatively low computational costs. In a simple

iterative knockout screening method, the effects of all possible

single reaction knockouts on metabolic fluxes are evaluated in

the first iteration, and the reactions whose knockouts result in

the highest score (e.g. highest production yields under biomass

production maximization) are selected. In the second iteration, in

addition to the reaction knockouts selected in the first iteration,

the effects of additional single reaction knockouts are screened.

This approach has a drawback, however, of incompletely search-

ing the knockout combinations. For example, when target pro-

duction yields under biomass maximization are used as a score*To whom correspondence should be addressed.
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for screening, iterative screening fails to identify the combin-

ations of two knockouts that show higher production yields

only when they are disrupted simultaneously. To overcome this

drawback, several systematic screening methods have been de-

veloped, such as OptGene (Patil et al., 2005), OptFlux (Rocha

et al., 2010), Genetic Design through Local Search (GDLS) (Lun

et al., 2009) and Strength Pareto Evolutionary Algorithm (Link

et al., 2008). For example, OptGene uses a genetic algorithm to

search the vast solution space to obtain optimal knockout sets.

Using these approaches, sets of reaction knockouts that improve

the target production have been successfully identified with rela-

tively small computational costs. However, if the target produc-

tion yields are used for the screening score, it is often difficult to

identify which sets of multiple knockouts cause the target pro-

duction that occurs only when the knockouts are done simultan-

eously. One possible strategy for this problem is to use a

screening score that reflects the potential a knockout has to in-

crease the production yields in concert with other knockouts.
In the present study, we developed a new iterative screening

algorithm, Fast algorithm of knockout screening for target

Production based on shadow price analysis (FastPros), which

uses biomass production maximization to identify sets of meta-

bolic reactions whose simultaneous knockouts result in the pro-

duction of a target metabolite. In this algorithm, we adopted a

novel score for iterative knockout screening based on the change

in biomass production flux caused by a slight increase in the

target production flux, uTARGET. This value corresponds to the

shadow price of the constraint of the target-metabolite produc-

tion flux in the linear programming problem. We demonstrate

that uTARGET represents the potential of target production

and increasing this value by iterative screening of the reaction

knockouts generates sets of knockouts that realize the target

production. Furthermore, we show that combining FastPros

with another tool, OptKnock, provides further improvement of

the target production.

2 METHODS

2.1 Genome-scale metabolic model of Escherichia coli

As an original metabolic model, we used a GSM of E.coli K-12 MG1655

named iAF1260 (Feist et al., 2007), which contains 1260 open reading

frames from the latest genome annotation and over 2000 transport and

intracellular reactions. To evaluate the production potential of each cyto-

solic metabolite in this GSM, we added a transport reaction of the target

metabolite if it was absent in the original model, which was assumed to be

diffusion transport.

To reduce the computational cost of FBA-based screening, we con-

structed simplified metabolic models based on our previous study (Ohno

et al., 2013), which provides identical flux estimations and screening re-

sults to the original model. Briefly, we first identified metabolic reactions

whose maximum and minimum fluxes were zero under given environ-

mental conditions by flux variability analysis (Mahadevan and Schilling,

2003) and then removed these reactions from the original model to which

target metabolite transporters were added. Second, adjacent metabolic

reactions without branching were combined into a single lumped reac-

tion, as the knockout of adjacent reactions results in an identical effect on

the flux changes. Third, we identified combined reactions encoded by the

same gene sets, as these reactions cannot be separately disrupted in ex-

periments. Finally, knockouts of the reactions encoded by gapA, pgk, eno

and gpmA were removed from reaction sets, as their reactions appear

essential in vivo (Baba et al., 2006; Foster et al., 2010). Because the

reduced models, including lumped metabolic reactions, were used for

the knockout screening, we describe below a knockout using a represen-

tative reaction in the lumped reaction.

2.2 Flux balance analysis

Constraint-based FBA was performed based on previous studies (Ohno

et al., 2013; Orth et al., 2010; Shinfuku et al., 2009). Briefly, a pseudo-

steady state of the metabolic profile was assumed, i.e. the net sum of all

production and consumption metabolic fluxes for each internal metabol-

ite was set to zero. This assumption resulted in a feasible space that was a

convex set in the N-dimensional space of metabolic fluxes (where N

stands for the total number of fluxes). In FBA, a particular objective

function written as a linear combination of fluxes can be used to calculate

the optimal solution at one corner in the feasible flux space. In this study,

we used the maximization of biomass production flux as the objective

function. After obtaining the maximal biomass production flux by linear

programming, we further maximized the production flux of target me-

tabolites under fixed biomass production flux on the maximal value to

avoid alternative production flux.

For all simulations, glucose was used as the sole carbon source, and its

uptake rate was set to 10mmol/gDW/h. The oxygen uptake rate was set to

5mmol/gDW/h, which corresponds to a microaerobic condition, i.e. the

oxygen uptake is insufficient to oxidize all NADH produced in glycolysis

and the tricarboxylic acid cycle in the electron transfer system. This rela-

tively low oxygen uptake rate was chosen, as higher production yields of

target metabolites can be obtained under these conditions, in comparison

with the higher oxygen uptake rate when carbon is mainly used to generate

biomass and CO2. Other external metabolites such as CO2 and NH3 were

allowed to be freely transported through the cell membrane in accordance

with a previous study (Feist et al., 2007). All calculations, including linear

programming problems, were run using GNU Linear Programming Kit

(GLPK) (www.gnu.org/software/glpk/) andMATLABonaWindowsma-

chine with Intel Xeon 2.66GHz processors.

2.3 uTARGET: a novel score for knockout screening

Consider the case in which the production flux of a target metabolite is

zero under biomass flux maximization. In this case, the increase in the

target production flux from zero flux brings about a decrease in the bio-

mass production flux. In contrast, if the target is produced under biomass

production maximization, it corresponds to the case that an increase in

the target production flux increases the biomass production flux. The

change in biomass production flux caused by the increase in target pro-

duction flux is a useful measure to represent the potential of the target

production. In this study, we defined the potential of the target produc-

tion, uTARGET, as follows:

uTARGET ¼
�vgrowth
�vtarget

;

where �vgrowth is the change in biomass production flux caused by the

increase in the target production flux by �vtarget from zero flux. When

uTARGET is positive, the target is produced under the biomass production

maximization, whereas if it is negative, the target is not produced. Here,

the absolute value of uTARGET represents the difficulty of altering the sign

of this value. When uTARGET is a small negative value close to zero, a

change in its sign can be effected relatively easily by the addition of a

single reaction knockout. In contrast, when the value is large and nega-

tive, the probability of finding a reaction knockout that changes the sign

of uTARGET is small. The essence of FastPros is to use uTARGET as a score

for iterative knockout screening. Even if uTARGET of the wild-type meta-

bolic network is a large negative value, the iterative screening of single

reaction knockouts that increase this value can result in approaching a
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positive uTARGET, which corresponds to target production under biomass

production maximization.

uTARGET corresponds to the shadow price of the constraint in which a

target production rate is subjected in an FBA problem. The shadow price

in a linear programming problem is defined as the small change in the

objective function associated with the strengthening or relaxing of a par-

ticular constraint. Accordingly, uTARGET can be calculated using the

following linear programming problem:

max vgrowth
(v)

s. t.
P

j2R Si, j � vj ¼ 0 ð8i 2MÞ

vglc_uptake � �GUR

vo2_uptake � �OUR

vatp_main �NGAM

vgrowth � vmin
growth

vj¼ 0 (if reaction j is knocked out)

vtarget¼ btarget
vj �0 ð8j 2 RirrevÞ

vj 2 < ð8j 2 RrevÞ

whereM and R are the set of metabolites and reactions, respectively. vj is

the metabolic flux of reaction j. vgrowth, vglc_uptake, vo2_uptake and vatp_main

are the biomass production rate, the glucose uptake rate, the oxygen

uptake rate and non–growth-associated ATP maintenance requirement,

respectively. Si,j is the stoichiometric coefficient of metabolite i in reac-

tion j. Rirrev and Rrev are the set of irreversible and reversible reactions in

the metabolic model, respectively, and Rrev involves the exchange reac-

tions of available nutrients for a cell, based on a previous article (Feist

et al., 2007). btarget was set to 10�5 to avoid an alternative solution of

uTARGET. GUR and OUR are the maximum uptake rate of glucose and

oxygen, respectively, and were set to 10 and 5mmol/gDW/h, as described

earlier in the text. NGAM (the non–growth-associated ATP maintenance

requirement) was set to 8.39mmol/gDW/h per a previous study (Feist

et al., 2007). vmin
growth, the minimum cell growth rate, was set to 0.05/h, as

strains with such a growth rate are anticipated to be difficult to construct

experimentally. In this linear programming problem, uTARGET was calcu-

lated as the shadow price of the constraint of the target production flux

(vtarget¼ btarget).

2.4 Screening procedure of FastPros

The screening procedure is schematically illustrated in Supplementary

Figure S1. Starting from a reduced metabolic model of E.coli with N

possible single knockouts, the uTARGET of those networks with all possible

double reaction knockouts were calculated. Then, top P knockout sets

with regard to this score were chosen for the parent knockout sets. For

each generation, all possible single reaction knockouts were further added

to the parent sets (leading P�N knockout sets), and among these knock-

out sets that increased uTARGET from the parent sets, P knockout sets with

the largest uTARGET were selected as the parent sets of the next generation.

If uTARGET of a selected knockout set became positive or zero, this knock-

out set was excluded from the iterative screening and was stored as a

candidate knockout set for further analysis. The cycle of mutation (add-

itional single reaction knockout) and selection was continued until the

number of iterations (i.e. the number of knockouts) reached a maximum

number to obtain various sets of reaction knockouts whose additions to

the wild-type network result in positive uTARGET values. Throughout the

article, the maximum iteration number was set to 25.

The number of parent knockout sets, P, was determined heuristically.

We performed FastPros screening to obtain metabolites whose produc-

tion is predicted by adding up to 25 reaction knockouts using P¼ 0.5N,

P¼N and P¼ 1.5N. We found that the number of screened metabolites

in the case of P¼ 0.5N was significantly smaller than the case of P¼N

(�18%metabolites screened in P¼Nwere failed to be identified), where-

as the number of screened metabolites was the same for P¼N and

P¼ 1.5N. The average calculation times for performing the knockout

screening of one metabolite by single Xeon CPU (2.66GHz) were 2.6,

6.2 and 11.4 h for P¼ 0.5N, P¼N and P¼ 1.5N, respectively. Based on

these analyses, we determined P¼N is appropriate for FastPros screen-

ing using the reduced metabolic network of E.coli in this study.

3 RESULTS

3.1 Screening of knockout sets for target production

To investigate the performance of FastPros, we selected 625 me-

tabolites in the E.coli metabolic model and the screened reaction

knockout sets that result in the production of each metabolite

when the biomass production is maximized. For each target me-

tabolite, iterative screening of the reaction knockouts for increas-

ing the production was performed as described earlier in the text.

From this screening, positive or zero uTARGET values were ob-
tained for 472 (75%) of the 625 metabolites, including amino

acids, nucleic acids, lipids and cofactors by adding up to 25 re-

action knockouts to the wild-type metabolic network with each

target transporter. This result indicates that production of the

corresponding metabolites by the biomass production maximiza-

tion is possible when adding these selected knockout sets.
Figure 1 presents the distribution of the minimum number of

reaction knockouts necessary for the target metabolite produc-

tion. The list of producible metabolites and knockouts necessary

for their productions is presented in Supplementary Table S1

(available at http://www-shimizu.ist.osaka-u.ac.jp/shimizu_lab/

FastPros/).
The accuracy of the iterative screening by FastPros was eval-

uated by comparing the screening results to those obtained by

the comprehensive screening method OptKnock. Owing to the
computational cost, the maximum number of reaction knockouts

was set to 3 for OptKnock screening. Comprehensive screening

by OptKnock showed that 152 of 625 metabolites are produced

when maximizing the biomass production flux by adding three or

fewer reaction knockouts. Of the 152 metabolites screened by

OptKnock, 136 metabolites were also identified under a max-
imum of 3 knockouts using our iterative screening based

on uTARGET, indicating high accuracy of FastPros screening.

Fig. 1. Distribution of the minimum number of reaction knockouts ne-

cessary for target metabolite production
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The other 16 metabolites were also identified by 43 reaction

knockouts in FastPros (Supplementary Table S1). It should be

stressed that the computational time of comprehensive screening

generally increases exponentially with the number of knockouts,

and that the maximum number of knockouts is accordingly lim-

ited. In contrast, FastPros enables the screening of a larger

number of knockouts for target production with low computa-

tional cost and has an accuracy that is comparable with that of

comprehensive screening methods. In fact, our method demon-

strated that a significant number of metabolites exist whose pro-

duction requires410 reaction knockouts, an outcome that would

be difficult to identify by comprehensive screenings.

Furthermore, we compared the screening performance of

FastPros with OptGene and GDLS, which are widely-used itera-

tive knockout screening methods. In the OptGene and GDLS

screenings, we adopted the same parameter sets used in the ori-

ginal reports (Lun et al., 2009; Patil et al., 2005) except for the

maximum numbers of knockouts. As a result, 247 and 55 me-

tabolites were identified when adding a maximum of 25 reaction

knockouts, respectively. On the other hand, using FastPros, we

successfully screened 472 metabolites. The results of these screen-

ings are presented in Supplementary Table S1. Among the 247

metabolites screened by OptGene, 244 were also screened by

FastPros, whereas all 55 metabolites screened by GDLS were

screened by FastPros. As shown in Supplementary Figure S2,

although OptGene and GDLS successfully identified knockout

sets when using a small number of reaction knockouts, they

failed when relatively large numbers of simultaneous knockouts

were necessary for the metabolite productions. This result is be-

cause the target production flux, which was used as the fitness

score, needs to be increased in iterative knockout screenings. The

target production flux can be used for the fitness score only when

the target metabolites are already produced by the wild-type net-

work or after a small number of simultaneous knockouts.

Otherwise, searching the huge number of possible knockout

sets without target production makes finding a set of knockouts

with non-zero target production extremely difficult. For ex-

ample, in OptGene, the initial population of knockout sets is

usually determined randomly. If there is no set of knockouts

that result in the target production in the initial population, se-

lecting knockout sets with higher target production is effectively

impossible. In contrast, in FastPros, the use of uTARGET as the

fitness score enables us to find reaction knockouts that can po-

tentially contribute to the target production even when there are

no sets of knockouts that have the target production in the initial

population.

3.2 Improvement of target production yield by using

FastPros and OptKnock

Although FastPros provides sets of reaction knockout candi-

dates as described earlier, these knockout sets did not always

result in the desired high production yield of target metabolites

required for engineering metabolic design. The sign of uTARGET
represents only whether the production of a target metabolite is

beneficial for growth and the absolute value of this score does

not correspond to its productivity. Therefore, iterative screening

using uTARGET is insufficient for identifying the reaction knock-

outs that cause high-target productivity.

Therefore, we proposed an alternative algorithm for knockout

screening for high-target production using both FastPros and

OptKnock. As mentioned earlier in the text, iterative screening

using uTARGET generates sets of reaction knockouts that increase

the score to a positive value. It was anticipated that these

screened reaction knockouts have a relatively large impact on

the metabolic fluxes changing toward production of the target.

Accordingly, to obtain a set of reaction knockouts resulting in an

optimal yield of a target metabolite, it is appropriate to search

for an optimal combination of knockouts from those screened

based on uTARGET values. To obtain such a combination, we used

the OptKnock algorithm, in which candidates of reaction knock-

outs were restricted to those obtained in the FastPros screening.

Various sets of knockouts resulting in positive or zero uTARGET
values were collected, of which 30 unique reaction knockouts

that contributed to the highest production yields were used as

knockout candidates for the OptKnock screening with several

maximum numbers of knockouts (3, 5 and 10 KO). In this ana-

lysis, we considered the production of 380 target metabolites

whose productions were predicted by adding no more than 10

reaction knockouts by FastPros (Supplementary Table S2). We

found that for 106 (28%) of the target metabolites, production

yields increased by 45% of the theoretical maximum yield

(TMY) in comparison with the cases in which FastPros only

was used. For example, the production yields of succinate and

sedoheptulose 7-phosphate were predicted by FastPros only to

be 22 and 55% of the TMY, respectively, but were 74 and 79%

of TMY when using FastPros-based OptKnock screening

(Figure 2A and B). In another example, the production yield

of glycerol was estimated to be 68% of the TMY by FastPros-

based OptKnock screening, but zero using OptKnock only

(Fig. 2C). These results indicate that the combination of

FastPros and OptKnock can provide appropriate sets of reaction

knockouts for high-target production yields. Moreover, the

target production yields using both FastPros and OptKnock

compared favorably with those using OptGene or GDLS

(Supplementary Fig. S3), indicating the proposed approach can

be an alternative to the other knockout screening methods.

Fig. 2. Estimated production yields of (A) succinate, (B) sedoheptulose

7-phosphate and (C) glycerol by OptKnock, FastPros and FastPros-

based OptKnock. Maximum knockout number was set to 3 in

OptKnock, 10 in FastPros and 3, 5 and 10 in FastPros-based OptKnock
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3.3 Examples of knockout screening by FastPros

Geranyl diphosphate (GPP) can be biologically converted into

geraniol, which is an aromatic material commonly used in per-

fume. GPP is also an intermediate in a terpenoid biosynthesis

pathway (the non-mevalonate pathway). Accordingly, reaction

knockouts that increase the biosynthesis flux toward GPP can

increase the production of terpenoids in E.coli. Therefore, the

design of appropriate metabolic networks for GPP production

is valuable for engineering applications. We performed FastPros

screening for GPP production and identified 88 sets of reaction

knockouts that resulted in the production of GPP when biomass

production was maximized. These knockout sets contained 25

unique reactions that were selected for the OptKnock screening

(Supplementary Table S3). Knockouts of seven reactions re-

sulted in the highest yield of GPP, 0.34 g/g-glucose (53.3% of

TMY). Figure 3A and B shows the estimated flux profiles of

wild type and of the identified knockouts, respectively. The pro-

duction of GPP from glyceraldehyde 3-phosphate and pyruvate

as precursors requires the reducing power of NADH and

NADPH. Therefore, competing NADH and NADPH oxidiza-

tion pathways, such as ethanol and lactate production pathways,

were mainly disrupted for GPP production (see details in

Supplementary Material).
L-Phenylalanine (L-Phe) is an aromatic amino acid with many

applications in the food and pharmaceutical industries, such as

aspartame. Because chemical synthesis of L-Phe generates ra-

cemic mixtures of D- and L-Phe, the production of pure L-Phe

in bioprocesses is important. E.coli contains a natural L-Phe bio-

synthetic pathway that has been used in commercial production.

We performed FastPros screening and identified 57 knockout

sets for the production of L-Phe, including 44 unique reactions.

Of these, 30 reactions contributing higher production yields were

selected for OptKnock screening (Supplementary Table S4).

A production yield of 0.27 g/g-glucose (58.0% of TMY) was esti-

mated for the knockout of 10 reactions. Figure 3C shows the

estimated flux profile of the obtained L-Phe production network.

One mole of L-Phe is synthesized from 2mol of phosphoenolpyr-
uvate (PEP) in glycolysis and 1mol of erythrose 4-phosphate

(E4P) in the pentose phosphate pathway. Accordingly, reactions
that convert PEP or other metabolites in upper glycolysis into

pyruvate were knocked out, enhancing the carbon flow from

PEP and E4P to L-Phe (see details in Supplementary Material).

3.4 Similarity of knocked out reactions

The results of FastPros screening demonstrated that metabolites

often share the same reaction knockouts for their production.

Here, we analyzed the similarity of knockout candidate sets
among the target metabolites, with the aim of identifying a

common knockout set for the production of a specific class of
metabolites. The identification of such common knockout sets

enables the design of a common parent strain, from which pro-

duction strains for various target metabolites can be generated
by adding a variety of additional reaction knockouts to the

parent strain.
Figure 4 illustrates a dendrogram of the production targets, in

which the similarity between two targets has been calculated

by the membership-based Jaccard similarity coefficient
(Levanodowsky and Winter, 1971) of the reaction knockouts

sets obtained by FastPros-based OptKnock screening. It can
be seen that several clusters of metabolites exist, and we found

that metabolites belonging to a same cluster tend to be close in

the metabolic network (see Supplementary Table S5). For ex-
ample, Cluster 1 in Figure 4 consisted of 103 metabolites, most

of which were lipids or their derivatives such as decanoate, phos-
phatidylglycerol and GPP. In this cluster, knockouts of the alco-

hol dehydrogenase (ADH), lactate dehydrogenase (LDH),

methylglyoxal synthase (MGS), and PEP carboxylase (PPC) re-
actions were shared among 490% of these targets, suggesting

these knockouts could be a basic strategy for the production of

metabolites (i.e. lipids and their derivatives) in this cluster.
Cluster 2 comprised 15 target metabolites, which consisted of

intermediates and derivatives of the aromatic acid biosynthesis

Fig. 3. Metabolic flux profiles of (A) wild-type strain, (B) GPP production strain and (C) L-phenylalanine production strain. Arrow width represents

metabolic flux of the reaction. Solid arrows and dashed arrows indicate reactions in cytosol and exchange reactions, respectively. Crosses represent

reaction knockouts screened by our method. Abbreviations are described in Supplementary Material
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pathway (3-dehydro-shikimate, L-Phe, etc.), and knockouts of

PPC, pyruvate carboxylase, MGS and phosphoglycerate de-

hydrogenase were shared by the metabolites in this cluster.

Cluster 3 consisted of 29 target metabolites, most of which

were sugars or sugar phosphates, the production of which

shared knockouts of PPC, pyruvate kinase, phosphoglycerate

dehydrogenase and glucose 6-phosphate dehydrogenase. The de-

tailed mechanisms to produce the metabolites in Clusters 1, 2 and

3 are discussed in the Supplementary Material.

4 DISCUSSION

We have developed a novel algorithm, FastPros, to screen sets of

reaction knockouts that produce target metabolites. We used a

screening score, uTARGET, which is calculated as a shadow price in

a linear programming problem, to evaluate the potential of target

production under the condition of biomass productionmaximiza-

tion. It should be stressed that FastPros enables us to identify

reaction knockout sets with a large number of reactions, which

has hitherto been difficult to achieve by both comprehensive and

iterative screening methods. We confirmed that FastPros has sig-

nificant advantages for screening knockout sets to the widely used

methods OptGene and GDLS (Supplementary Fig. S2). We

expect that the use of FastPros will greatly accelerate computer-

aided metabolic design for industrial bioproductions.

The FastPros screening method we have proposed can be used

in collaboration with other in silicomethods for metabolic engin-

eering, for example, for the production of non-native metabolites.

Although in this study we considered only the screening of reac-

tion knockouts from a wild-type metabolic network, FastPros

screening would be applicable, for example, after the addition of

heterologous reaction pathways to produce desired non-native

targets (Chatsurachai et al., 2012; Cho et al., 2010; Pharkya

et al., 2004). The combinatorial use of FastPros and other net-

work-expansion algorithms enables us to design appropriate

metabolic networks for non-native metabolite productions. As

another example, metabolic networks designed by FastPros

screening can be used as initial conditions for other network-

design algorithms, such as OptKnock and OptStrain (Pharkya

et al., 2004). Knockout sets leading to higher target productivities

can effectively prune suboptimal solutions, thereby reducing com-

putation time to identify the global optimal solution in compre-

hensive screenings (Kim et al., 2011). Moreover, some previous

reports have successfully incorporated the effect of gene upregu-

lations for target metabolite productions (Kim and Reed, 2010;

Pharkya and Maranas, 2006). This strategy for the evaluation of

gene upregulation can be integrated into FastPros analysis, which

enables us to screen sets of gene manipulations, including both

gene deletions and upregulations, to realize target metabolite pre-

diction with high productivity.
Although FastPros is based on reaction knockouts, we also

considered gene deletions. As mentioned in Section 2, reactions

encoded by the same gene sets in a reducedmodel are knocked out

simultaneously (e.g. two transketolase reactions are knocked out

at once, as they both are encoded by the same tktA and tktB gene

sets), which avoids cases where only a part of the reactions

encoded by the same gene sets is disrupted in silico. By considering

the relationship between metabolic reactions and genes encoding

corresponding enzymes, we can develop strategies for gene ma-

nipulation using in silico screening by FastPros.
The algorithm of FastPros is based on the assumption of bio-

mass production maximization, that is, that metabolic fluxes are

organized to achieve an optimal profile for cellular growth. Of

course, this assumption is not always the case experimentally. If a

strain after the predicted reaction knockouts cannot be obtained

due to no or slow growth, screening should be performed again

with consideration of lethal or growth-defect knockouts. The in-

tegration of data on synthetic lethality (Typas et al., 2008) to

FastPros screening might facilitate avoiding mismatches between

predicted growth and experimental results. Setting larger growth

thresholds in FastPros can also help avoid mutant strains that

have growth defects. An alternative way to avoid growth defects

is to use an appropriate selection score, which ensures the cell

growth. For example, the Biomass-Product Coupled Yield is cal-

culated as a product of production yield and cell growth yield

(Patil et al., 2005). Using Biomass-Product Coupled Yield as the

selection score in the FastPros analysis, we can expect to obtain

knockout sets that result in both the target production and active

Fig. 4. Dendrogram of the target metabolites based on screened reaction knockouts for their production. Metabolites in the clusters generally belong to

same metabolic class. For example, majorities of metabolites in Clusters 1, 2 and 3 are lipid and their derivatives, aromatic amino acids and precursors

and sugars and sugar phosphates, respectively. Metabolites in the same cluster share the same reaction knockouts for their production (see details in

Supplementary Table S5)
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growth. Even if a strain after the predicted reaction knockouts is

successfully constructed, it can remain in a non-optimal metabolic

state. Conflicts between experiments and in silico predictions can

be eliminated by experimental evolution. Several studies have

demonstrated that when a microorganism strain is cultured for

an extended period to select individuals with optimized growth

under a given condition, the realized flux profile gradually

approaches the calculated optimal flux profile (Fong et al.,

2005; Lewis et al., 2010). The combination of in silico screening

and experimental evolution that achieves an optimal flux profile

experimentally is a potentially practical application for obtaining

valuable strains for bioproduction.
In conclusion, we have developed a novel computational al-

gorithm, FastPros, that accelerates microbial strain improvement

and have demonstrated the applicability of FastPros to cell-wide

metabolite productions in E.coli. uTARGET was adopted as the

screening score to identify those reaction knockouts that have

greater potential for target metabolite production. This score

could be readily calculated as a shadow price in modified FBA

simulations. We identified numerous metabolites in E.coli whose

production was enhanced under biomass production maximiza-

tion only when multiple reactions were simultaneously knocked

out. We expect that our algorithm and the concept of uTARGET
will improve metabolic engineering technologies and facilitate

biological production of a broad range of valuable chemicals.
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