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Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the

gastrointestinal tract, including Crohn’s disease, ulcerative colitis and

inflammatory bowel disease-undefined (IBD-U). IBD are understood to be

multifactorial, involving genetic, immune, microbial and environmental

factors. Advances in next generation sequencing facilitated the growing

identification of over 80 monogenic causes of IBD, many of which overlap

with Inborn errors of immunity (IEI); Approximately a third of currently

identified IEI result in gastrointestinal manifestations, many of which are

inflammatory in nature, such as IBD. Indeed, the gastrointestinal tract

represents an opportune system to study IEI as it consists of the largest mass

of lymphoid tissue in the body and employs a thin layer of intestinal epithelial

cells as the critical barrier between the intestinal lumen and the host. In this

mini-review, a selection of pertinent IEI resulting in monogenic IBD is

described involving disorders in the intestinal epithelial barrier, phagocytosis,

T and B cell defects, as well as those impairing central and peripheral tolerance.

The contribution of disrupted gut-microbiota-host interactions in disturbing

intestinal homeostasis among patients with intestinal disease is also discussed.

The molecular mechanisms driving pathogenesis are reviewed along with the

personalized therapeutic interventions and investigational avenues this

growing knowledge has enabled.

KEYWORDS

inborn errors of immunity (IEI), monogenic inflammatory bowel disease, mechanisms
of disease, very early onset IBD (VEOIBD), genetics
Introduction

The gastrointestinal tract juggles many roles including absorption of nutrients,

transport of electrolytes and fluids, all while maintaining mucosal homeostasis. It is

perhaps not surprising that it harbors the largest collection of immune cells in the body,

sophistically organized to orchestrate an appropriate immune response against harmful
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pathogens, while permitting tolerance toward commensal

organisms. The immune compartments of the gastrointestinal

tract have been categorized into: inductive sites and effector sites

(1). Inductive sites include the mesenteric lymph nodes and the gut

associated lymphoid tissue armored with T cells, B cells and innate

immune cells such as mast cells, granulocytes, dendritic cells and

group 3 innate lymphoid cells. It is in these inductive sites where

adaptive immune cells undergo priming and differentiation. This

works alongside effector sites, such as the lamina propria and the

epithelium, where primed adaptive immune cells reside to assure

appropriate immunity against harmful pathogens (1).

Inborn errors of immunity (IEI) are monogenic germline

mutations that result in primary immunodeficies (2). Well over

400 IEI have been identified (3), with roughly a third involving a

gastrointestinal manifestation, most being inflammatory in

nature (4, 5). Inflammatory bowel diseases (IBD) are chronic

inflammatory diseases of the gastrointestinal tract. They include

Crohn’s disease (CD), a transmural disease, that can affect the

mouth to the anus; ulcerative colitis (UC) that results in mucosal

inflammation of the colon; and IBD-undefined comprising a

mixed picture. The pathophysiology of IBD is believed to involve

one’s immune system, genetic predisposition, microbiome and

environmental factors.

There are over 80 monogenic causes of IBD (6–8), most of

which are IEI (Table 1). Consequences of the breakdown of the

immune system are robustly reflected in the gastrointestinal

tract and often result in disease at an especially young age.

Monogenic IBD is predominantly identified in patients

diagnosed prior to 6 years old, known as very early onset IBD

(VEOIBD) (9). Two large North American centers identified the

prevalence of monogenic VEOIBD to be roughly 8% (10, 11), but

this varies depending on the population studied (12, 13).

Interleukin 10 (IL10) signaling defects exemplify IEI where

life-threatening infantile-onset IBD is the most striking feature

(14). However, in most cases of IEI resulting in IBD, intestinal

inflammation represents one of many disorders. IBD from

underlying IEI can be categorized as: epithelial barrier defects

that lead to mucosal inflammation; phagocytic defects that lead

to alterations in pathogen clearance; T and B cell defects that

present with intestinal inflammation; and defects in central and

peripheral tolerance that lead to disruption of intestinal

homeostasis. Inclusion in one group does not preclude

function in another. In this non-exhaustive mini-review, a

selection of IEI from each of these categories is described,

along with mechanisms driving disease, and associated

therapeutic implications (Table 2). Importance of the gut

microbiota in intestinal inflammation is highlighted.
Disordered epithelial barrier

The intestinal epithelial barrier consists of a single layer of

epithelial cells, a mucous layer, and an organization of immune
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cells. A delicate balance of cell turnover is imperative for

appropriate barrier function. Disruption of the epithelial

barrier can be subdivided into: defects in epithelial

organization; intrinsic cell defects; and defects in epithelial cell

death (8).
Defects in epithelial organization

Mutations in KINDLIN-1, also known as FERMT1, result in

kindler syndrome, an IEI that manifests primarily as a skin

disorder, characterized by acral blistering as neonates and

poikiloderma with age (15). Gastrointestinal manifestations

include anal, esophageal and ileal strictures (16, 17).

Approximately 15% of patients develop UC (18). Kindlin-1

knock out mice exhibit severe colitis with extensive epithelial

detachment, ensuing perinatal lethality (19). In humans, the

severity of UC is milder and does not correlate with specific

genotypes (20).

The molecular basis of kindler syndrome results from

dysfunctional kindlin-1, a cytoplasmic adaptor protein that

normally anchors the actin cytoskeleton to the extracellular

matrix (15, 21, 22). It is important in cell adhesion and polarity

(23). In the colon and rectum, kindlin-1 is localized in the

periphery of epithelial cells, while there is only minimal

expression in the terminal ileum (23), consistent with patients’

colitis phenotype. Microscopically, the colon displays extensive

ulceration with focal detachment and loss of epithelium from the

underlying tissue, along with altered cell polarity (23), increased

mitotic activity and infiltration of plasma cells and eosinophils

(23, 24). The breach of intestinal barrier is thought to result in

penetration of antigens, inflammation, and mucosal changes (23).

While the contribution of barrier dysfunction to

mechanisms generating IBD remains incompletely understood,

mutations in FERMT1 illustrate how breakdown of this barrier

can result in colitis (23). At present there is no cure for kindler

syndrome. In some, colitis is managed with anti-inflammatory

agents (16), others respond to immune modulators (25), while

others require colectomy (23). Potential therapeutic avenues

include gene therapy or protein replacement (26).
Intrinsic cell defects

Mutations in STXBP2 result in an IEI responsible for familial

hemophagocytic lymphohistiocytosis, often associated with

hypogammaglobulinemia, hearing loss, and bleeding

tendencies (27, 28). About 38% of patients develop IBD,

characterized by enteropathy and colitis, often within months

of life (28, 29). There is no identifiable genotype-phenotype

correlation (30). STXBP2 is expressed in intestinal epithelial cells

(IECs) and is important for regulating intracellular granule

trafficking and docking at the plasma membrane (29, 31, 32).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1026511
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ouahed 10.3389/fimmu.2022.1026511
TABLE 1 Monogenic causes of inflammatory bowel disease revealing strong overlap among inborn errors of immunity.

Monogenic cause of
IBD

Disorder Concurrent inborn error of immunity
(IEI)

ADA Atypical combined immune deficiency (CID) Yes

ADAM17 Inflammatory skin and bowel disease Yes

AICDA Immunodeficiency with Hyper-IgM Yes

ALPI Intestinal Alkaline Phosphatase deficiency Yes

ARPC1B Wiskott-Aldrich syndrome-like Yes

BTK Agammaglobulinemia, X-linked 1 Yes

CASP8 Caspase 8 deficiency Yes

CD3G Atypical Severe combined immune deficiency (SCID) Yes

CD40LG Immunodeficiency, X-linked with hyper-IgM Yes

CD55 CHAPLE syndrome Yes

COL7A1 Dystrophic epidermolysis bullosa No

CTLA4 Autoimmune lymphoproliferative syndrome, type V Yes

CYBA Chronic granulomatous disease Yes

CYBB Chronic granulomatous disease Yes

DCLREIC Omenn syndrome (Artemis deficiency) Yes

DKC1 Dyskeratosis congenita-Hoyeraal Hriedarsson Syndrome Yes

DOCK8 Dedicator of Cytokinesis 8 (DOCK8) deficiency Yes

DUOX2 DUOX2 deficiency No

FCN3 Ficolin 3 deficiency Yes

FERMT1 Kindler syndrome Yes

FOXP3 Immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX)
syndrome

Yes

G6PC3 Congenital neutropenia Yes

GUCY2C Familial diarrhea No

HPS1 Hermansky-Pudlak syndrome (Type 1) No

HPS4 Hermansky-Pudlak syndrome (Type 4) No

HPS6 Hermansky-Pudlak syndrome (Type 6) No

ICOS Inducible co-stimulator (ICOS) deficiency Yes

IKBKG X-linked ectodermal dysplasia, anhidrotic and immunodeficiency Yes

IL10 IL10 deficiency Yes

IL10RA IL10 receptor deficiency Yes

IL10RB IL10 receptor deficiency Yes

IL21 IL21 deficiency Yes

IL2RB IPEX-like disorder Yes

IL2RA IL2RB immune dysregulation Yes

IL2RG Atypical SCID Yes

ITCH ITCH deficiency Yes

ITGB2 Leukocyte Adhesion Deficiency I Yes

LIG4 Atypical SCID Yes

LRBA Combined variable immunodeficiency Yes

MALT1 MALT1 (MALT1 deficiency; IPEX-like) Yes

MASP2 Mannan Binding Lectin Serine Peptidase 2 defect Yes

MEFV Familial Mediterranean Fever Yes

MVK Mevalonate Kinase Deficiency Yes

NCF1 Chronic granulomatous disease Yes

NCF2 Chronic granulomatous disease Yes

NCF4 Chronic granulomatous disease Yes

NLRC4 Autoinflammation with infantile enterocolitis Yes

(Continued)
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Damaging mutations in STXBP2 result in impaired

degranulation of NK cells and cytotoxic T cells, ensuing

compromised cytotoxicity (33, 34) and diminished granule

fusion in neutrophils, resulting in impaired bacterial killing

(35). Additionally, mutations in STXBP2 result in altered

epithelial cell polarity (29, 30).
Frontiers in Immunology 04
Damaging mutations in STXBP3, a related gene also

important in regulating intracellular vesicular trafficking,

results in life-threatening infantile-onset IBD of both large and

small intestine, usually associated with hearing loss (36).

STXBP3 is expressed in epithelial and immune cells and is

required for IEC polarization (36). Intestinal disease is
TABLE 1 Continued

Monogenic cause of
IBD

Disorder Concurrent inborn error of immunity
(IEI)

NOX1 NOX1 deficiency No

NPC1 Niemann-Pick type C No

ORAI1 ORAI-1 deficiency Yes

PIK3CD PIK3CD deficiency and activated PI3K delta syndrome (APDS) Yes

PIK3R1 Agammaglobulinemia Type 7 and activated PI3K syndrome Yes

PLA2G4A Cryptogenic multifocal ulcerative stenosis enteritis (CMUSE) No

PLCG2 Autoinflammation, antibody deficiency and immune dysregulation syndrome Yes

POLA1 PDR syndrome (pigmentary disorder, reticulate, with systemic manifestation) Yes

PTEN PTEN Hamartoma Tumor Syndrome (PHTS) Yes

RAG1 Atypical SCID Yes

RAG2 Atypical SCID Yes

RIPK1 RIPK1 deficiency Yes

RTEL1 Dyskeratosis congenita-Hoyerall Hriedarsson Syndrome Yes

SH2D1A X-linked lymphoproliferative syndrome (XLP1) Yes

SKIV2L Trichohepatoenteric Syndrome 2 Yes

SLC37A4 Glycogen storage disease type 1b No

SLC9A3 Congenital diarrhea No

SLC02A1 Prostaglandin transporter deficiency No

STAT1 IPEX-like Yes

STAT3 Autoimmune disease, multisystem, infantile-onset, 1 Yes

STIM1 STIM1 deficiency Yes

STXBP2 Familial hemophagocytic lymphohistiocytosis type 5 Yes

STXBP3 Syntaxin binding protein 3 defect No

TGFB1 TGFB1 deficiency Yes

TGFBR1 Loeys-Dietz syndrome 1 Yes

TGFBR2 Loeys-Dietz syndrome 1 Yes

TNFAIP3 Autoinflammatory syndrome, familial Behcet-like Syndrome Yes

TRIM22 TRIM22 defect Yes

TRNT1 sideroblastic anemia, immunodeficiency, periodic fevers, and developmental
delay (SIFD)

Yes

TTC37 Trichohepatoenteric syndrome 1 Yes

TTC7A TTC7A deficiency Yes

WAS Wiskott-Aldrich Syndrome Yes

XIAP X-linked lymphoproliferative syndrome 2 (SLP2) Yes

ZAP70 Atypical SCID Yes

ZBTB24 Immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome Yes
Monogenic causes of IBD that are concurrent IEI are in bold. IEI are defined as per Tangye et al Human Inborn Errors of Immunity: 2022 Update on the Classification from the
International Union of Immunological Societies Expert Committee. J Clin Immunol. 20223. CHAPLE, CD55 deficiency with hyper-activation of complement angiopathic thrombosis, and
severe protein-losing enteropathy; IL, interleukin; ITCH, itchy E3 ubiquitin protein ligase; MALT1, mucosa-associated lymphoid tissue lymphoma-translocation gene 1; NOX1,
nicotinamide adenine dinucleotide phosphate oxidase 1; PIK3CD, Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Delta; PIK3R1, Phosphoinositide-3-Kinase
Regulatory Subunit 1; PI3K phosphoinositide-3-kinase; PTEN, Phosphatase and tensin homolog; RIPK1, receptor interacting serine/threonine kinase 1; STIM1, stromal interaction
molecule 1; TGFB1, transforming growth factor Beta 1; TRIM22, Tripartite motif containing 22; TTC7A, tetratricopeptide repeat domain 7A.
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TABLE 2 Selection of IEI resulting in IBD, histologic features and molecular mechanisms of intestinal disease and summary of available cures and
therapeutics warranting further investigation.

Immune
category

Immune
subcategory

Genes
involved

IBD phenotype
and other

gastrointestinal
manifestations

Histologic features of
intestinal disease

Molecular mechanism
of disease

Established
cures for
intestinal
disease

Therapeutic
avenues

warranting
investigation
for managing
intestinal
disease

Disordered
Epithelial
barrier

Defects in
epithelial
organization

FERMT1 Ulcerative colitis;
Strictures of
esophagus, ileum and
esophagus.

Focal detachment of the
epithelium;
Altered polarity;
Extensive ulceration;
Increased mitotic activity.

Dysfunctional kindlin-1 fails to
adequately anchor the actin
cytoskeleton to the
extracellular matrix;
Abnormal cell adhesion and
polarity.

Nil Consideration for
gene therapy and
protein
replacement.

Intrinsic cell
defects

STXBP2;
STXBP3

Life-threatening
enteropathy and
colitis.

Lymphoplasmacytic
inflammation; Neutrophilic
crypt abscesses;
Villous atrophy;
Eosinophilia;
Apoptosis;
Crypt destruction.

Impaired intracellular vesicular
trafficking;
Abnormal epithelial cell
polarization.

BMT may have
a role in some;
STXBP3:
Colectomy is
curative in
some.

Consideration for
gene therapy.

Defects in
epithelial cell
death

TTC7A MIA
Life-threatening
VEOIBD of small
and large intestine.

Intestinal atresias: Crypt
degeneration; Marked
apoptosis; Hypertrophy of
the muscularis mucosa;
Spindle cell nodules.

Increased susceptibility to
apoptosis and aberrant
intestinal epithelial polarity
secondary to impaired
localization of PI4KIIIa to the
plasma membrane and
aberrant AKT signaling.

Nil Leflunamide;
Rho kinase
inhibitors;
AKT signaling
agonists.

Defects in
phagocytosis

CYBA,
CYBB,
CYBC1,
NCF1,
NCF2,
NCF4

Inflammatory and
fistulizing Crohn’s
disease;
Strictures and
obstructions of the
esophagus and
pylorus.

Microgranulomas;
Pigmented macrophages;
Eosinophilia;
Villous shortening.

Impaired phagocytosis;
Reduced memory B cells;
Defective autophagy; Increased
inflammasome activation.

BMT Anti-IL1 therapy;
Gene therapy;
IFNg therapy.

Defect in T
and B cells

DKC1 and
RTEL1

Colitis
Enteropathy
Strictures of the
esophagus and
rectum.

Increased apoptosis. Bone marrow failure;
Intrinsic epithelial cell defects.

Nil Wnt agonists.

RAG1
RAG2

Infantile-onset
colitis.

Not well characterized in
literature.

Proliferation of T lymphocytes
with impaired adaptive
immunity; Impaired central
tolerance; Defective generation
of Treg; Allergic inflammation.

BMT Gene therapy and
gene editing.

Disorders
affecting
central and
peripheral
tolerance

Disorders of
central
tolerance

AIRE No IBD.
Features of intestinal
dysfunction
(diarrhea,
constipation,
enteropathy,
malabsorption).

Absence of enteroendocrine
cells.

Impaired central tolerance
resulting in autoreactive T cells
and autoimmunity.

Nil Gene editing of
iPSCs.

Disorders of
peripheral
tolerance

FOXP3 Early onset
enteropathy and
occasionally colitis.

Severe villous atrophy;
Extensive eosinophilic and
lymphocytic infiltrate.

Impaired Treg function. BMT Lentiviral FOXP3
gene transfer of
autologous
CD4+T cells.
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BMT, bone marrow transplant; IBD, inflammatory bowel disease; iPSC, induced pluripotent stem cells; MIA, multiple intestinal atresias; PI4KIIIa, phosphatidylinositol 4
phosphatdylinositol 4-kinase III alpha; Treg, T regulatory cell; VEOBID very early onset inflammatory bowel disease.
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histologica l ly character ized by lymphoplasmacyt ic

inflammation, neutrophilic crypt abscesses, villous atrophy,

eosinophilia, apoptosis, and crypt destruction (36). Colitis is

refractory to immune suppression (36). One patient described

exhibited remission of colitis following bone marrow transplant

(BMT), while colectomies were curative in four (36).

The unifying molecular functions of STXBP2 and STXBP3

point to their importance in membrane trafficking and

maintaining a polarized IEC layer. Disruption in polarity

seems, at least partly, responsible for the IBD that persists in a

subset of patients with mutations in STXBP2 following

successful BMT (29). Additional studies are necessary to

delineate mechanisms and cellular components whereby

STXBP2 and STXBP3 maintain mucosal homeostasis.
Defects in epithelial cell death

Patients with damaging mutations in TTC7A can present

with multiple intestinal atresias (MIA) of the large and small

intestine (37), VEOIBD, and a combined immune deficiency

(CID) (38–41). VEOIBD from TTC7A deficiency results in

profuse bloody diarrhea shortly after birth, usually

necessitating parenteral nutrition (39–41). Intestinal disease is

microscopically characterized by atresias, architectural

distortion, crypt degeneration, pronounced apoptosis,

hypertrophy of the muscularis mucosa and spindle cell

nodules (42). While all patients present with intestinal

manifestations (MIA or VEOIBD, with or without CID), it

remains unclear what drives the phenotypic variability.

TTC7A is a scaffolding protein normally expressed in the

plasma membrane of intestinal cells (40). It localizes

phosphatidylinositol 4 phosphatdylinositol 4-kinase III alpha

(PI4KIIIa) to the plasma membrane to facilitate synthesis of

PI4-phosphate (40). PI4-phosphate is an upstream precursor of

the AKT signaling pathway, critical in preventing apoptosis and

promoting proliferation (43). TTC7A deficiency thereby results

in increased susceptibility to apoptosis, consistent with patients’

histologic features (40), and aberrant IEC polarity, in line with

intestinal atresias (38). Intestinal organoids derived from

patients demonstrate disrupted apico-basal polarity, poor

epithelial cell integrity, reduced proliferation and absence of

luminal space (38). This illustrates the damaging consequences

of deficient TTC7A on the intestinal epithelial barrier, in absence

of effects from the microbiome and immune system. TTC7A is

also expressed in the thymus, but its contribution to CID

remains undefined (44).

TTC7A deficiency is fatal in over 50% of patients (45). While

BMT can correct the CID, it does not rectify intestinal disease (39,

41, 45), which remains life-threatening (38, 40, 41, 46). VEOIBD is

resistant to immune suppression (41, 45) andMIA recur following

surgical resection (47). Administration of a RhoA kinase inhibitor
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to patient-derived organoids reverses defects in polarity and

ameliorates proliferation via mechanisms that remain to be

elucidated (38). Jardine et al. identified that leflunomide reduces

apoptosis, optimizes structure and ion transport in patient-

derived colonoids and also restores gut function in a ttc7a-/-

zebrafish model (48). While the mechanism remains unclear,

leflunomide rescues defective AKT signaling, critical in

preventing apoptosis and promoting proliferation (43, 48).

TTC7A deficiency highlights the importance of these functions

in maintaining mucosal homeostasis.
Disordered phagocytic functions

The nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase complex, normally generates hydrogen

peroxide and reactive oxygen species in phagocytes. Damaging

variants in genes encoding components of the NADPH oxidase

complex (CYBA, CYBB, CYBC1 (49), NCF1, NCF2, and NCF4)

result in impaired anti-microbial activities in phagocytes (50),

and thereby chronic granulomatous disease (CGD) (51).

Patients have increased susceptibility to infections, especially

catalase positive bacteria and fungi (52). Intestinal

manifestations include inflammatory and fistulizing CD, which

can be mistaken for non-monogenic IBD (51, 53–55). The colon

is usual ly affected, histological ly characterized by

microgranulomas, pigmented macrophages, eosinophilia and

occasionally the small intestine displays villous shortening

(56). Esophageal, pyloric and intestinal strictures and

obstructions are additional gastrointestinal manifestations

(56–59).

The specific mechanisms driving intestinal inflammation in

patients with CGD remains to be elucidated. Patient survival is

related to the amount of residual NADPH oxidase function (60).

In addition to impaired phagocytosis, evidence has pointed to

reduced memory B cells (61), defective autophagy and increased

inflammasome activation with increased IL1b activity (62, 63).

BMT is curative for both susceptibility to infections and IBD

(64–66). Yet, prior to transplant, management of CD in CGD

patients is challenging. One needs to balance the inherent high

susceptibility to infection with need for immune suppression to

control intestinal inflammation. Anti-TNF agents, conventionally

used in CD, are avoided given risk of life-threatening infection

(67). To minimize extra-intestinal immune suppression, the gut-

specific agent, Vedolizumab (an anti-a4b7 integrin blocker), has

been tried, but does not result in endoscopic improvement (68).

Anti-IL1 agents have been used in small numbers, and while it

restores autophagy, reports on whether it improves colitis are

mixed (62, 63, 69). This is being further studied (70). IFNg is used
in CGD patients for infection prophylaxis by stimulating

superoxide release, but its effects on IBD remains unclear (71,

72). Gene therapy is being investigated (73).
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Defects in T and B cells

Mutations in DKC1 and RTEL1, result in dyskeratosis

congenita (DC), telomeropathies with accelerated shortening

or damage of telomeres and bone marrow failure (74–76). The

classic clinical triad is dysplastic nails, abnormal skin

pigmentation and oral leukoplakia (74). Other features include

pulmonary fibrosis, liver disease, and cancer predisposition (74,

77, 78). Hoyeraal-Hreidarsson syndrome is a severe form of DC

with intrauterine growth retardation, microcephaly, cerebellar

hypoplasia and often VEOIBD (78–81), in addition to

esophageal and rectal strictures (79–81). Patients with DC

have progressive T, B and NK cell lymphopenia (77–81).

Mutations in DKC1 result in medically refractory enterocolitis

(76, 80, 81). Similarly, mutated RTEL1 leads to refractory colitis

or enteropathy (74, 75, 77). Histologically, intestinal disease is

characterized by increased apoptosis, whether attributed to

mutations in DKC1 (76, 80) or RTEL1 (74, 77).

The molecular basis of IBD in DC is incompletely

understood. DKC1 encodes dyskerin, which is ubiquitously

expressed, including the colon, small intestine and peripheral

blood cells (82). Dyskerin is important in ribosome biogenesis,

preserving telomere integrity (83), responding to DNA damage

(84), and vesicular trafficking (85). RTEL1 is expressed in

murine intestinal crypts, where intestinal stem cells reside,

which are imperative in intestinal homeostasis given their self-

renewal capacity (86). RTEL1 is essential for DNA replication

and telomere maintenance (87). RTEL1-deficient cells exhibit

spontaneous apoptosis and senescence (77).

The course of IBD following BMT in DC patients is poorly

described: some report resolution in patients with RTEL1

mutation (77), while IBD persisted in at least one patient with

DKC1 mutation (81). This variable response suggests that the

underlying mechanism of disease may extend beyond effects of

bone marrow failure. This notion is supported by identifying that

intestinal organoids generated from a patient with mutated DKC1

exhibit poor growth and differentiation with decreased epithelial

markers and reduced Wnt signaling, resulting in attenuated

intestinal stem cell renewal (88). These features, observable in

absence of input of the immune system, reversed following

treatment with a Wnt agonist (88). Similar reversible features

were recapitulated in mice lacking telomerase when treated with a

Wnt agonist (89). This suggests that telomeropathies have

intrinsic epithelial defects in addition to immune deficiencies

and bone marrow failure that contribute to IBD. These findings

can be harnessed by consideringWnt agonists in the management

of this medically refractory IBD (90, 91).

Omenn syndrome (OS), is an IEI that typically presents

within weeks of life with immunodeficiency, lymphadenopathy,

hepatosplenomegaly, erythroderma and fever, often with

infantile-onset colitis (92–95). Patients have a dysplastic

thymus, impaired central tolerance resulting in oligoclonality
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of T cells (2, 95) and absent mature T and B cells (96, 97). OS can

result from various IEI, including mutations in RAG1 and RAG2

responsible for somatic V(D)J recombination which defines B

and T cell repertoire (95). RAG1 and RAG2 are primarily

expressed in T and B lymphocytes (98–100). Genotype-

phenotype correlations are variable (101).

The mechanisms driving IBD in OS are unclear. It is thought

that impaired central tolerance, proliferation of T lymphocytes

with impaired adaptive immunity, defective generation of

immune suppressing T regulatory cells (Treg), absent mature

T and B cells, and allergic inflammation are all involved (95).

Murine models of OS exhibit prominent gastrointestinal

inflammation driven by T cells, as their adoptive transfer in

immunodeficient hosts suffices to result in colitis, whereas

depletion of CD4+ T cells improves their intestinal

inflammation (102).

BMT reverses intestinal inflammation and cures OS, which

is otherwise fatal (103). The striking life-threatening disease in

OS illustrates the critical role of mature T and B cells in the

gastrointestinal tract and beyond. Gene therapy and gene editing

are potential therapeutic approaches (104).
Disorders affecting central and
peripheral tolerance

Disorders of central tolerance

While OS holds features of disordered central tolerance, this is

better illustrated by mutations in AIRE resulting in autoimmune

polyendocrinopathy, candidiasis ecto-dermal dystrophy

(APECED). AIRE is normally expressed in the medulla of the

thymus and drives negative selection of autoreactive T cells (105).

Patients manifest autoimmunity of endocrine and non-endocrine

tissues and chronic mucocutaneous candidiasis (106). While

patients do not develop IBD, they experience various

gastrointestinal disorders: autoimmune hepatitis, atrophic

gastritis, malabsorption, and poorly described chronic diarrhea

and constipation (106–108). Some exhibit enteropathy with

antibodies against tryptophan hydroxylase (109, 110). A unique

histologic feature among some APECED patients is loss of

enteroendocrine cells (110–112). Studies are warranted to better

characterize these gastrointestinal disorders. Symptomatic

management is employed as there is no cure. A potential future

curative intervention is to restore AIRE expression in patient-

derived induced pluripotent stem cells (113).
Disorders of peripheral tolerance

Aside from central tolerance, peripheral tolerance is also

critical for maintaining intestinal homeostasis. Tregs normally
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maintain peripheral immune tolerance and suppress excessive

immune responses (114–118). FOXP3 is critical for the

development and function of Tregs (116, 119, 120). FOXP3+

cells are densely expressed in lymphoid follicles and scattered in

the lamina propria (121). They expand following intestinal

inflammation from IBD (121, 122). Immune dysregulation,

polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome

results from damaging mutations in FOXP3 (123–125). The

typical clinical triad is endocrinopathy, enteropathy, and

dermatitis, with enteropathy often being the first and most

severe phenotype. Intestinal disease most commonly affects the

small bowel, but patients can also have colitis (126). The

histologic hallmark is severe villous atrophy with extensive

eosinophil and lymphocytic infiltrates (126, 127). Other

features of IPEX syndrome include: allergies, autoimmune

hematologic disorders, hepatit is , nephropathy, and

susceptibility to infection (126, 128). There is extensive

phenotypic variability, even among patients with identical

genotype (126). IPEX syndrome and other IPEX-like diseases

(129) underscore the imperative role of peripheral tolerance in

maintaining homeostasis in various systems, especially

the intestine.

IPEX syndrome can be managed with immune suppression,

ideally using sirolimus to spare Tregs (130). However, disease-

free survival is poor following immune suppression (126). BMT

is currently the only effective cure, with the most significant

predictor of survival being the lowest organ involvement (126).

A clinical trial is ongoing with lentiviral FOXP3 gene transfer of

autologous CD4+T cells (131, 132), hypothesized to reverse the

life-threatening multisystemic effects of IPEX syndrome.
Disrupted gut-microbiota-
host interactions

The gut microbiota and host immune system are closely

intertwined such that each affects development and function of

the other (133–135). The bidirectional crosstalk between the gut

microbiota and host immune system is disrupted in IBD.

Patients with non-monogenic IBD have dysbiosis (136–138)

and reduced microbial diversity (139, 140) which may affect

intestinal permeability and promote inflammation (141). Those

with an IEI driving IBD also have distinct variations of their

microbiome as described in CGD and TTC7A deficiency (142)

among others (141). Moreover, microbiota changes have been

identified following therapeutic interventions, such as increased

bacterial diversity in an IPEX patient after fecal microbial

transplantation (FMT) (143) and changes in the microbiome

of patients with severe combined immune deficiency after BMT

(144). Despite limited efficacy to date, eagerness remains in

therapeutically targeting dysbiosis via antibiotics, prebiotics,

probiotics and FMT in IBD (145–147).
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Conclusion

Herein, a selection of IEI is presented, highlighting how

interruption of various components of immunity contribute to IBD

development. Detrimental consequences ensue when IEI disrupt the

necessary mechanisms that maintain intestinal homeostasis.

Among patients with monogenic IBD, employing

conventional therapeutics is oftentimes inadequate. Indeed,

biologics are only effective in 25.5% of patients with monogenic

IBD (9). Moreover, among VEOIBD patients, monogenic disease

is a driver of disease severity, including death (10). The growing

number of IEI manifesting with IBD, and interaction with the

microbiome permits a deeper understanding of the molecular

mechanisms driving intestinal inflammation. This knowledge

holds important prospects to facilitate personalized therapeutic

options and optimized prognostics (148, 149). In some scenarios,

understanding the mechanisms driving intestinal inflammation

reveals pathways of importance that merit evaluation for

therapeutic targeting. Examples include consideration of

leflunomide to rescue defective AKT signaling in patients with

TTC7A deficiency and refurbishing IL1 antagonists after learning

that CGD involves defective autophagy with increased IL1b
activity. In other situations, gained insight serves to avoid

potentially life-threatening interventions, such as use of anti-

TNF agents in CGD patients, or BMT for patients with

epithelial barrier defects. Finally, in other circumstances,

curative interventions are enabled in otherwise life-threatening

disease, such as BMT for IL10 signaling defects, CGD, IPEX

syndrome and OS, and sets the groundwork for investigating gene

therapy and manipulation of the microbiome.

Clinicians managing patients with IBD from underlying IEI are

challenged to think outside the box, delve into the pathologic

mechanism at play, and consider innovative personalized approaches.

While understanding the molecular mechanisms of IEI driving IBD

inspired critical advancements in personalized therapeutics, there

remains an urgent need to further advance this field. Developments

have been achieved by studying murine models, intestinal organoids,

and transcriptomics. More is attainable by harnessing multi-omic

efforts in a collaborative and interdisciplinary fashion.
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