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INTRODUCTION

The cornea is a highly specialized tissue that, along with 
the conjunctiva, comprises the ocular surface (OS).[1] It 
is a transparent structure composed of five layers. The 
most superficial is the corneal epithelium, followed 
by Bowman layer, stroma, Descemet membrane, and 
endothelium. The transparency and curvature of the 
cornea permit and refract light onto the retina.[1] Like 
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other exposed surfaces, the cornea also shields the 
vulnerable intraocular structures from external insults 
resulting in repetitive injuries.[2] Unlike other surfaces, 
however, when the cornea repairs itself, it needs to 
restore optical clarity in order to maintain vision. If an 
injury is significant and deep enough, corneal scarring 
ensues.[3] Currently, it has been estimated that vision 
loss from corneal scarring is second only to cataracts 
worldwide.[4] It is commonly accepted that early 
treatment of superficial epithelial wounds prevents the 
development of deeper, visually debilitating wounds.[5] 
Therefore, optimal corneal epithelial wound healing is 
essential to preserve vision. Wound healing involves 
the coordinated regulation of cellular proliferation, 
migration, and differentiation.[6] While the renewal and 
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wound healing of the corneal epithelium have been 
studied,[7] there remains a need to precisely define the 
sequence of biological events required for restoring 
the corneal epithelium. This review covers the corneal 
epithelium’s role as a protective barrier from external 
insults, specifically: (1) UV radiation, (2) pathogens, and 
(3) external stimuli. Collectively, these roles allow the 
cornea to not only maintain vision but also protect the 
intraocular structures. Recent relevant discoveries within 
each area will be covered with the goal of promoting 
further investigation.

ULTRAVIOLET RADIATION

The two surfaces that are exposed to chronic UV 
radiation are skin and OS.[8] Extensive research has been 
dedicated to the effects of UV radiation on cutaneous 
keratinocytes, but fewer studies have been performed 
using corneal epithelial cells.[9] Clinically, acute UV 
exposure can cause photokeratitis, which is analogous 
to a sunburn, producing haze, edema, and opacification 
from damage to the corneal epithelium, stroma, and 
endothelium.[10] Chronic UV exposure can lead to 
climatic droplet keratopathy, endothelial dysfunction, 
and tumors.[10-14] However, the risk of developing a 
malignancy of the OS from sun‑exposure is extremely 
low, around 0.3 per million in the United States. Moreover, 
the majority of cases do not arise from or involve the 
corneal epithelium but develop in the conjunctiva.[11,15] 
Compared to cutaneous non‑melanoma skin cancer, 
which is estimated to be over 14,000 per million in the 
United States, the corneal epithelium is significantly 
less susceptible to UV‑induced cancer.[8,16] Although the 
corneal epithelium shares many similarities with skin, 
there is a clear difference in risk for UV‑induced neoplasia 
between corneal epithelial cells and keratinocytes.[8] 
These observations suggest that corneal epithelium is 
resistant to UV‑induced carcinogenesis. Identifying the 
mechanisms that make corneal epithelium resistant to 
UV‑induced carcinogenesis could illuminate potential 
therapeutic approaches for cancers.[8]

A recent study by Mallet et al revealed that corneal 
epithelium is primed for efficient repair of UV induced 
DNA mutations.[8] UV light is partitioned into three 
categories: UVA (320‑400 nm), UVB (280‑320 nm), and 
UVC (100‑280 nm).[17,18] Nearly all UVC and the lower 
range of UVB  (280‑290 nm) are blocked by the ozone 
layer and atmosphere, and are not as relevant as UVA 
and UVB radiation.[18] The role of UVB, in particular, 
has been well validated in sun‑related cancers.[19,20] The 
OS receives around 59% to 77% of the UV light directed 
to the head.[21] The tear film absorbs wavelengths up to 
300 nm,[22] while the cornea absorbs wavelengths under 
290 nm and most wavelengths above 300 nm, covering 
much of the UVB spectrum.[18,23-26] The corneal stroma, 
on the other hand, is moderately permeable.[18] Thus, the 

corneal epithelium absorbs much of the UV radiation, 
protecting underlying structures from the harmful effects 
of UV rays.[8,18,23,25]

While UVA radiation causes DNA damage through 
oxidative stress, UVB radiation is directly absorbed by 
DNA, resulting in production of cyclobutane pyrimidine 
dimers  (CPD) and pyrimidine  (6–4) pyrimidone 
photoproducts (6‑4PP).[27-30] CPDs are the most frequent 
and pro‑mutagenic signature UVB‑induced DNA 
product, causing C→T and CC→TT substitutions 
at dipyrimidine sites.[8,28-31] Mallet et  al previously 
demonstrated the presence of CPDs in corneas at similar 
levels to skin.[8,18] In general, it is thought cells have three 
main mechanisms to mitigate damage caused by UV 
radiation: (1) resistance to UV‑induced DNA damage, 
(2) repair of damage, and (3) apoptosis.[32,33] The corneal 
epithelium lacks features skin possesses to resist UV 
damage, such as a thicker epithelial layer, stratum 
corneum, and melanocytes, which all help to mitigate 
the effects of UV radiation.[34,35] Mallet et al show instead 
that corneal epithelium appears to repair signature 
UV‑induced mutations more efficiently.[8] Using cultured 
human corneal epithelial cells, they found that CPD 
mutations decreased by half within the first 12 hours 
after UV exposure, which is 4×  faster than epidermal 
keratinocytes.[8] Mallet et al deduced that the faster repair 
rate was from prolonged stabilization of proteins that 
recognize CPDs, specifically, DDB2, XPC, and p53, which 
led to higher intracellular levels of them.[8]

Intriguingly, in the same study, Mallet et  al did 
not find increased levels of UV‑induced apoptosis 
in corneal epithelial cells but the contrary.[8] Several 
previous groups have shown corneal epithelial cells 
exhibit UV‑induced apoptosis.[8,36,37] Podskochy et  al, 
for example, demonstrated that the lower range of 
UVB radiation causes apoptosis in corneal epithelial 
cells and superficial keratocytes of rabbits, while the 
higher range induced apoptosis in all corneal layers.[36] 
However, Mallet et al found lower levels of apoptosis in 
corneal epithelial cells compared to keratinocytes for the 
same amount of UV radiation.[8] They believe the lower 
UV‑induced apoptosis sensitivity in corneal epithelial 
cells could be related to the more efficient repair of 
UV‑induced DNA mutations. Additionally, other studies 
have shown that UV radiation induces the production of 
matrix metalloproteinases (MMP) by corneal cells.[38,39] 
This is the primary mechanism of sterile keratolysis, 
which may cooperate with UV induced apoptosis.[40] 
The need to eliminate highly damaged cells by apoptosis 
would therefore be reduced when coordinated with 
MMP secretion.[8]

PATHOGENS

Corneal inflammation from external pathogens, 
particularly infectious agents, is a major cause of 
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preventable blindness in the world.[5] In the United States, 
it incurs about $175 million dollars in direct health care 
costs.[41] It is considered a clinical emergency since it 
frequently leads to ulceration that requires immediate 
intervention to prevent irreversible scarring.[42] Accurate 
diagnosis of the pathogen, however, can be difficult; 
and often entails ancillary testing to identify the 
cause.[42] Given this potential threat, the cornea has 
adopted protective mechanisms that include physical, 
chemical, and signaling methods.

A major physical barrier of the corneal epithelium 
stems from the intercellular junctions between the 
cells.[3,43] This is corroborated by the clinical observation 
that microbial invasion often requires disruption of the 
epithelial barrier except for a few exceptions like contact 
lens related infections.[43] Four types of junctions have 
been identified in the corneal epithelium, which include 
tight junctions (zonula occludens), desmosomes (macula 
adherens), adherens junctions  (zonula adherens), and 
gap junctions.[3] Many of the junctions contribute to the 
structure of the tissue and adherence to extracellular 
matrices, but the tight junctions in the apical epithelial 
layer create a resistance barrier to external pathogens.[3,44] 
This barrier is further enforced by the production of 
heavily O‑glycosylated transmembrane mucins, MUC1, 
MUC4, and MUC16, by corneal epithelial cells.[45,46] 
It has been shown that the mucin layer prevents 
pathogens from binding to the corneal epithelium, and 
promotes clearance from the OS in the tear film.[43,47] 
Suppression of MUC16 expression, for example, leads 
to increased adherence of Staphylococcus  aureus,[48,49] 
while epidemic‑causing strain of Streptococcus pneumonia 
produces a zinc metalloprotinase that targets MUC16 
in order to gain access to corneal epithelial cells.[50] 
Furthermore, MUC1 knockout mice have been found 
to be more susceptible to blepharitis and bacterial 
conjunctivitis.[51]

Transmembrane mucins have also been shown 
to decrease viral infectivity, most likely by masking 
galectin‑3 on the epithelial glycocalyx.[52] Galectins are 
utilized by viruses to invade host cells and replicate.[53] 
Recent data have demonstrated that herpes simplex 
virus type  1  (HSV‑1), one of the most common viral 
pathogens of the cornea, directly binds to human 
galectin‑3. Disruption of galectin‑3 impairs HSV‑1 
infectivity in human corneal epithelial cells, suggesting 
viruses use galectin‑3 to invade the cells.[52] Pseudomonas 
aeruginosa, a common contact lens related pathogen, also 
binds galectin‑3, indicating a similar role for galectin in 
bacterial‑host interactions at the OS.[54]

If the corneal epithelium is breached, cell surface 
glycosylation becomes impaired and galectin‑3 expression 
increases. These are two of many molecular events that 
render the cornea vulnerable to infections.[55-57] Corneal 
epithelial cells respond by producing antimicrobial 
peptides, such as β‑defensins.[58] In‑vivo studies showed 

that β‑defensins 2 and 3 have an important role in 
protection against Pseudomonas aeruginosa.[59,60] A recent 
study by Tam and Fleiszig also identified a novel class 
of antimicrobial peptides constitutively produced 
by corneal epithelial cells.[61] These keratin‑derived 
antimicrobial peptides, or KDAMPs, appear to be 
distinct from β‑defensins and have broad anti‑microbial 
activity.[62] Additionally, corneal epithelial cells possess 
phagocytic properties, and have been shown to 
phagocytize foreign particulates, including live and 
dead bacteria.[63–66]

The corneal epithelium also assists in modulating the 
immune response. Normally, the corneal epithelium 
and stroma contain heterogeneous populations of 
macrophages and dendritic cells, such as Langerhans 
cells.[67–71] Epithelial exposure to live or killed bacteria have 
been shown to activate signaling pathways in resident 
myeloid and corneal epithelial cells, leading to secretion 
of pro‑inflammatory and chemotactic cytokines in the 
cornea. The Toll‑Like Receptor (TLR) family is a class 
of single membrane‑spanning receptors that recognize 
conserved motifs derived from microbes.[62] When the 
corneal epithelium is violated, resident immune cells 
in the cornea respond to TLR2, TLR3, TLR5, and TLR9 
ligands and secrete chemokines that help recruit bone 
marrow derived cells.[72–76] Human corneal epithelial 
cells likely contribute to this response through TLR 
receptors as well.[77–79] In response to TLR2, TLR3, and 
TLR5 ligands, for example, corneal epithelial cells release 
β‑defensins and cathelicidin.[73,80,81] Membrane nanotubes 
are thought to facilitate cell‑cell communication in the 
cornea and modulate these responses.[68]

SENSORY

Similar to other epithelial surfaces, the cornea serves 
as a sensory device, which, in addition to many 
functions, helps protect the OS and intraocular 
structures from potential damage.[82,83] Physical stimuli, 
for example, generates the blink reflex. However, it is 
diminished or abolished in certain pathologies such as 
herpetic keratitis.[84,85] As part of the peripheral nervous 
system  (PNS), the corneal nerves originate from the 
ophthalmic branch of the trigeminal ganglion; travel in 
the suprachoroidal space; then enter the corneal stroma 
near the limbus.[85] Because of their clinical relevance 
and expanding appreciation of their involvement in 
wound healing, functions of these nerves are a growing 
interest.[86–89]

Sixty to eighty myelinated trunks enter the corneal 
stroma, where they eventually lose their myelin sheathes 
in order to preserve optical clarity. Anteriorly, the nerves 
form the subepithelial plexus, which is a dense network 
of nerves located between Bowman layer and anterior 
stroma. The nerves then pierce through the corneal 
epithelial basement membrane, forming the subbasal 
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plexus. Subbasal corneal nerves remain within the corneal 
epithelial basal cells where β4 integrin is expressed.[90] 
The nerves continue as free naked nerve endings towards 
the superficial epithelial layers, where they are referred 
to as intraepithelial corneal nerves (ICNs).[85,91–94] ICNs 
terminate at the suprabasal and wing cell layers, where 
β4 integrin is no longer expressed.[86]

In general, PNS nerves are accompanied by neural 
crest‑derived Schwann cells (SCs).[95] SCs are the primary 
glial cells of the PNS. Depending on their subtype, their 
functions can include myelin production, phagocytosing 
axonal debris during development and wound healing, 
and coordinating cytokine signaling and inflammatory 
responses.[86] When the corneal nerves leave the 
stroma, however, SCs are no longer with them in the 
epithelium.[87] In fact, ICNs travel for several millimeters 
within the epithelium without SC support. The only 
PNS nerves that are not associated with SCs are sensory 
free nerve endings, such as in skin and hair follicles. 
Nevertheless, in skin and hair follicles, free nerve endings 
are typically shorter than 100 μm long. In the cornea, they 
extend for millimeters.[92,93] Imaging studies have shown 
that the corneal nerves, instead, become surrounded by 
the plasma membranes of epithelial basal cells.[85,93]

Because of their close anatomical relationship, 
it has been proposed that corneal epithelial cells 
function as glial cells.[86] The corneal epithelium may 
have evolved to take over these functions in order 
to maintain transparency.[86] One supporting arm of 
this theory is that corneal epithelial cells express SC 
specific proteins, such as GAP‑43 and p75NTR.[86,96,97] 
Through a combination of different animal models 
and in‑vitro studies, many SC proteins have been 
uncovered in corneal epithelial cells.[86,98–100] Han et al 
also show precedence for this theory by demonstrating 
that epidermal cells are the primary phagocytes for 
clearing degenerating dendrites during dendrite 
pruning and injury of sensory neurons in Drosophila.[101] 
Given their capability for phagocytizing pathogens and 
other debris, it plausible that corneal epithelial cells 
could assist in ICN phagocytosis.[86] Stepp et al show 
that corneal epithelial cells phagocytize distal axon 
fragments within hours of ICN crush wounds in vitro.[7] 
In addition, six hours after crush wounds, degenerating 
ICN fragments are found to co‑localize with LAMP1, 
a lysosomal protein, in corneal epithelial cells.[7] The 
molecular and cellular responses of corneal epithelial 
cells to axonal injury appear to be similar to those of 
SCs during Wallerian Degeneration, which is the major 
nerve injury response that involve SCs.[7,97,102]

In return, ICNs may provide corneal epithelium with 
nutrients and raw materials that it can utilize rapidly.[86] 
Since the cornea is an avascular tissue, corneal epithelial 
cells contain large stores of glycogen as their primary 
energy source.[103] Phagocytosis of axonal debris would 
eliminate damaged lipids and proteins that corneal 

epithelial cells could amass and use.[86] In addition, SCs 
also store glycogen, which they release to support axonal 
function.[104,105] When corneal epithelium is wounded, SCs 
that persist in the subepithelial plexus could provide the 
corneal epithelial cells with a source of energy during 
wound repair. In support of this, studies have shown 
that glycogen could be visualized in the corneal subbasal 
nerves.[94,105]

SUMMARY

Diseases of the OS are one of the leading causes of 
blindness worldwide, second only to cataracts.[4] 
According to the World Health Organization estimates, 
4.9 million people suffer from bilateral blindness, while 
23 million people suffer from unilateral vision loss due 
to OS disease.[106] Unilateral and bilateral vision loss have 
been both associated with decreased quality of life and 
activities of daily living; high disability adjusted life 
years; and depression.[106-109]

Vision requires an intact, functional OS. To refract 
light, the cornea must maintain its transparency 
and curvature. As an exposed surface, however, the 
cornea also serves as first line defense against external 
insults.[4,106] The corneal epithelium endures steady 
damages, and therefore must activate wound healing 
pathways to repair itself. These pathways are then 
deactivated once the epithelium has been reconstituted. 
When wounds penetrate deeper, violating the epithelial 
basement membrane and Bowman layer, scarring 
occurs.[3] Currently, surgical interventions are the only 
treatment options available for visually debilitating 
corneal opacification. Such treatments, in of themselves, 
can be associated with poor outcomes and complications, 
as well as being inaccessible universally.[5] It is generally 
acknowledged that small, corneal epithelial abrasions or 
non‑healing corneal epithelial defects often precede the 
development of visually debilitating corneal ulcers.[4,5] 
If a therapeutic intervention could be developed to 
repair these initial defects, this strategy would provide 
the most benefit to patients in cases of preventable 
corneal scarring.[4,5] Therefore, much focus has been 
on regenerating the corneal epithelium. However, 
re‑establishing the corneal epithelium is beyond just 
replacing the morphology of the epithelial surface. 
Hopefully, this review provided insight into some of 
the other critical functions the corneal epithelium serves 
that also need to be addressed in regenerative studies.
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