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Abstract: Verticillium wilt, caused by the ascomycete fungus Verticillium dahliae (Vd), is a devastating
disease of numerous plant species. However, the pathogenicity/virulence-related genes in this fungus,
which may be potential targets for improving plant resistance, remain poorly elucidated. For the
study of these genes in Vd, we used a well-established host-induced gene silencing (HIGS) approach
and identified 16 candidate genes, including a putative adenylate kinase gene (VdAK). Transiently
VdAK-silenced plants developed milder wilt symptoms than control plants did. VdAK-knockout
mutants were more sensitive to abiotic stresses and had reduced germination and virulence on host
plants. Transgenic Nicotiana benthamiana and Arabidopsis thaliana plants that overexpressed VdAK
dsRNAs had improved Vd resistance than the wild-type. RT-qPCR results showed that VdAK was
also crucial for energy metabolism. Importantly, in an analysis of total small RNAs from Vd strains
isolated from the transgenic plants, a small interfering RNA (siRNA) targeting VdAK was identified
in transgenic N. benthamiana. Our results demonstrate that HIGS is a promising strategy for efficiently
screening pathogenicity/virulence-related genes of Vd and that VdAK is a potential target to control
this fungus.

Keywords: host-induced gene silencing (HIGS); Verticillium dahliae; pathogenicity factor; adenylate
kinase

1. Introduction

Verticillium dahliae (Vd), the causal agent of Verticillium wilt (Vw), is a destructive fungal pathogen
infecting over 400 plant species, including important ornamental, horticultural, agronomical, and woody
plants [1]. Symptoms are not uniform among different plant species [2], and in general, the fungus is
difficult to control because it survives in the plant vascular system and infects the hosts via infested soil
and diseased plant debris [3]. Once the plants are infected, no fungicides can cure the plants [4]. Vd can
cause severe economic losses worldwide. In China, approximately 250-310 million US dollar losses
have been reported for cotton annually due to Vd [5]. Considerable studies on Vw and the associated
fungi and the public release of the genomic sequence of Vd and its sister fungus V. alfalfae, have enabled
the identification of candidate pathogenicity and virulence genes [6-8]. However, the complexity
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of the pathogenic mechanism is a serious constraint on developing effective management strategies.
In addition, we still have little knowledge about virulence factors in Verticillium species [9-12], although
a few genes from Vd are known to be involved in its virulence of this fungus. For instance, the deletion
of the (3-1,6-endoglucanase gene substantially reduced disease symptoms in eggplant by compromising
the utilization of cellulose [13]. The adhesion protein Vta2 and transmembrane protein mucin Msb,
which serve as positive regulators, enable microsclerotial formation, adhesive capacity, invasive
growth, and/or sporulation [10,14]. VdMcm1, a MADS-box transcription factor, has multiple biological
functions during spore and microsclerotial production, secondary metabolism, and virulence [15]. As a
member of the Myosin V family, VdMyo5 may participate in vesicle transport to regulate vegetative
growth and is essential for full virulence [16]. Although multiple genes playing a role in signal
pathways, development, and nutrition have been reported [17-20], few have been confirmed as feasible
candidates for the control of Vd in plants.

A host-induced gene silencing (HIGS) method for in planta RNAI silencing of a parasitic fungal
gene achieved a breakthrough as a pathogen-derived resistance strategy to control fungi and other
microorganisms [21-25]. With this method, manipulation of the accumulation of dsRNA that targets
fungal transcripts in barley (Hordeum vulgare) and wheat (Triticum aestivum) inhibited the development
of the powdery mildew fungus Blumeria graminis [26]. HIGS, guided by Barley stripe mosaic virus
(BSMYV), interfered with the expression of three predicted pathogenicity genes, thus suppressing
invasion and colonization by the wheat leaf rust fungus, Puccinia triticina [27]. Synthetic dsSRNAs could
compromise expression of the targeted fungal gene and inhibited conidial germination of Fusarium
oxysporum f. sp. cubense and Mycosphaerella fijiensis [28]. In a transgenic banana that expressed a
hairpin RNA against velvet and Fusarium transcription factor 1 genes of F. oxysporum f. sp. cubense
(Foc), resistance was improved for 8 months, indicating potential use for breeding [29]. HIGS-assisted
silencing of 3-1,3-glucan synthase gene FcGls1 caused elevated resistance against Fusarium head
blight [30]. In recent independent studies, the HIGS strategy was deployed to interfere with desirable
target genes of Vd, and new virulence factors, e.g., RGS1, Avel, Sgel, and NLP1, were identified [31,32].
For instance, HIGS-assisted interference with Vd RGS1 conferred elevated resistance in cotton [31].

In previous studies, we generated transgenic plants by overexpressing dsRNA against VAAAC
(ADP, ATP carrier: Responsible for transferring ATP from the mitochondria into the cytoplasm) and
VdSTT3 (oligosaccharyl transferase subunit, playing an essential role in glycoprotein modification) to
improve resistance against Vd [33,34]. To explore more candidate genes from Vd to target and further
verify the use of the HIGS system, here we (1) screened for Vd candidate pathogenicity/virulence
factors to take advantage of genomics data and the well-established HIGS approach; (2) characterized
adenylate kinase (VdAK) functions in virulence; (3) evaluated the resistance level of transgenic Nicotiana
benthamiana, and Arabidopsis thaliana harboring dsVdAK against Vd and (4) demonstrated that small
interfering RNAs (siRNAs) can enter fungi from within the plants and improve the resistance of
host plants.

2. Materials and Methods

2.1. Plant Materials and Growth Conditions

N. benthamiana plants were cultivated in pots containing sterilized soil (peat compost: vermiculite,
1:1, w/w) in a greenhouse (25 + 2 °C and 75% relative humidity, 16 h light and 8 h dark). A. thaliana
ecotype Columbia-0 was sown and grown in the growth chamber (23 + 2 °C, 70% relative humidity,
16 h light and 8 h dark, light intensity 4000 1x).

2.2. Construction of HIGS and Transforming Plasmids and Plant Transformation

Total RNA was isolated using an RNA extraction kit (YPHBio, Tianjin, China), and 1 pg of the
total RNA was used to synthesize the first-strand cDNA using a reverse transcription kit (TransGen,
Beijing, China) according to the manufacturer’s instructions. The construction of HIGS plasmids
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was initiated using PCR amplification of target fragments of 400 to 600 bp. These sequence-verified
target fragments were cloned into tobacco rattle virus (TRV) vector via double-digestion with BamHI
and EcoRI and ligation with T4 ligase using standard protocols. TRV:00 or its derivatives were
independently transformed into Agrobacterium tumefaciens strain GV3101 by electroporation [35].
Subsequently, the constructs were agroinfiltrated into seedlings with a needleless syringe [36,37].
The primers used for PCR amplification are listed in Supplementary Table S1.

Gateway cloning technology was used to construct the plasmid for expressing dsRNA of VAAK.
The target fragment was produced by PCR amplification from Vd cDNA, then cloned into the
intermediate vector pPDONR207. The expression cassette pK7TGWIWG2(I)::VdAK was obtained via attL
and attR (LR) recombination reaction between the entry plasmid pDONR207::VdAK and the destination
vector pK7GWIWG2(I) using Gateway LR Clonase II Enzyme Mix (Invitrogen, San Diego, CA).
The sequence-verified plasmid was transformed into A. tumefaciens strain LBA4404 by electroporation
to transform N. benthamiana and A. thaliana plants using a leaf disc co-cultivation method and floral dip
method, respectively [38—40]. The primers are listed in Supplementary Table S2.

2.3. Assessment of Disease Resistance

The highly virulent wild-type Vd strain V991 was shake-cultured in a complete medium (CM)
containing 50 mg/L ampicillin and 50 mg/L kanamycin at 25 °C for 6 days. The roots of seedlings were
incubated for 2 min in a suspension of 1 X 10° spores/mL, and immediately replanted into new pots.
Disease severity (DS) at 10 to 12 days post-inoculation (dpi) was scored using previously described
methods [33,41] as 0, no wilt; 1, less than 2 leaves wilting; 2, 3-5 leaves wilting; 3, more than 5 leaves
wilting or chlorotic; and 4, plant death or near death, to calculate a disease index (DI): DI = [}, (No. of
plants x DS score)/(Total no. of plants x Highest DS score)] x100.

The fungal biomass in tissues was quantified using a slight modification of a previously described
method [12]. In brief, DNA was extracted using the Plant Genomic DNA Kit (TTANGEN, Beijing,
China) separately from infected roots, stems (0-3 cm above the ground surface), and leaves of 5 plants.
ITS1 and ITS2 regions of the ribosomal RNA genes (Z29511) of Vd were amplified to quantify fungal
DNA as previously described [12].

Hyphal development in roots of host plants after inoculation with Vd-GFP (green fluorescent
protein) and AVAAK-GFP strains (described next) was assessed at 5 dpi using a confocal microscope
(Zeiss LSM 700, Jena, Germany).

2.4. VAAK Gene Disruption, Complementation, and VAAK-GFP Mutant Strains

The VAAK gene knockout plasmid was generated using a previously described method [33].
Briefly, ~1.2-kb upstream and downstream flanking fragments of VdAK and hygromycin resistance
(HPT) gene expression cassette were fused by overlap PCR. The knockout fragment was obtained
using nested PCR by fusion PCR product as the template, then cloned into the pGKO2 vector by attB
and attP (BP) recombination reaction using Gateway BP Clonase II Enzyme Mix (Invitrogen, San Diego,
CA, USA).

For the construction of the AVAAK-GFP strains, the neomycin resistance (Neo®) gene expression
cassette amplified from pCAM-neo with TrpC promoter and TrpC terminator was inserted into the
expression plasmid pCAMBIA1302 via Xbal and BstEII restriction sites. The GFP expression cassette
was cloned into the plasmid via the Xbal and Kpnl restriction sites to generate pCAMBIA1302::neo::GFP.
Then, the GFP open reading frame (ORF) was replaced with the VdAK ORF via the Scal and Pstl
restriction enzyme sites to generate pPCAMBIA1302::neo::VdAK for AVAAK-C.

Transformants, including the AVAAK, AVAAK-C strains and AVAAK-GFP, were obtained by
protoplast transformation [42]. Positive transformants were selected by RT-PCR and parallel antibiotic
resistance. The primers used in these constructions are listed in Table S3.
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2.5. Stress Treatments

A 10 pL drop of 1 x 10° spores/mL of the respective strains was placed on a plate of Czapek-Dox
agar amended with 0.5 M NaCl or 0.5 M sorbitol or treated with a 10 s pulse of 302 nm UV light [43].
Colony diameters were measured after 4 weeks. For estimating spore production, 3 mL of sterilized
water was added to each plate, which was gently shaken to release the spores [12]. The spores were
counted using a hemacytometer and light microscope (OLYMPUS BX52, Tokyo, Japan).

2.6. RT-gPCR

The expression of target genes was quantified by RT-qPCR using a 7500 Real Time PCR System
(Applied Biosystems, Foster City, CA, USA) and TransStart Top Green qPCR SuperMix (TransGen,
Beijing, China) according to the manufacturer’s instructions. The 2"4A¢t
quantification of transcripts for each gene [44]; the N. benthamiana housekeeping gene (Nbactin),
A. thaliana housekeeping gene (AtEF-1a) or Vd housekeeping gene (Vdactin) was used as an internal
control. The primers are listed in Supplementary Table S4.

method was used for relative

2.7. Small RNA (sRNA) Sequencing and Data Analysis

The stems of Vd-infected seedlings were surface-disinfested and placed on potato dextrose agar
(PDA). After 1 week, any fungal colony that had grown from the infected stems was cultured on PDA
for observation and in CM broth for RNA extraction. sSRNA library construction and sequencing were
performed by Novogene (http://www.novogene.com/). Total SRNAs were mapped to the published
genomes of Verticillium (Broad Institute, https://www.broadinstitute.org/). The targeting relationship
between reads and targeted sequences of VdAK was predicted by miRanda (http://www.microrna.org/
microrna/home.do). Information on sSRNAs from Vd isolated from Vd-infected seedlings is listed in
Table S5.

2.8. Statistical Analysis

Data from 3 independent experiments were analyzed using Duncan’s multiple range test using
SPSS Statistics 17.0 software (SPSS, Chicago, IL, USA).

3. Results

3.1. HIGS Candidate Pathogenicity Factors Were Selected Based on Available Protein-Encoding Genes

To identify the pathogenicity factor genes that are required for Vd virulence, we employed a
well-established virus-guided HIGS system [45]. For the classification and annotation of the 10,535
publicly available predicted protein-encoding genes of the Vd strain VdLs.17 [6], GO analysis was
carried out (Figure S1). Based on SwissProt and Blast results, these genes were divided into cellular
components, molecular functions, and biological processes; 92 fungal genes involved in diverse
biological processes (energy, metabolism, development, secreted protein, and others) were considered
as candidates for HIGS in N. benthamiana system (Table S1). They had no sequence similarity in an
analysis of sequence similarity between these genes and the N. benthamiana transcriptome using online
databases (https://www.ncbinlm.nih.gov/).

3.2. HIGS-Assisted Screening for the Candidate Genes

Ten days after infiltration, the seedlings were dipped into 10° spores/mL of resuspended Vd
conidia, and the DI was calculated from severity scores at 10-12 dpi (Table S1). Plants that were
injected with the TRV:00 (control group) showed typical wilting, stunting, chlorosis, and necrosis, and
the DI reached 100 at 10 dpi. The plantlets in the RNAi groups, however, displayed varying levels of
increased resistance to Vd compared with the control group.
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The DI for the different RNAi groups gradually increased over time from 10 dpi. According to the
Chinese national criteria for evaluating tolerance to Vw in cotton (GB/T 22101.5-2009), a plant variety
is tolerant to Vw when DI <35. Within the RNAi groups, the DI for infected plants infiltrated with any
of the 16 RNAi constructs used in the HIGS was obviously reduced (Table S6 and Figure 1). These 16
candidates are involved in energy metabolism, material transportation, protein modification, glucose
metabolism, cell proliferation, DNA replication, and resistance. These results suggested that HIGS of
Vid genes could be deployed to identify candidate virulence factors.
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Figure 1. Disease index over time for N. benthamiana seedlings infiltrated with 16 Vd strains that had
been silenced for a candidate virulence-related gene.

3.3. VAAK May Be Responsible for Adaptation to Abiotic Stress

Based on the phenotypes and DI above, seedlings infiltrated with TRV:VdAK (VDAG_01040.1)
displayed slight wilt. AK is a regulator of the metabolic pool of ATP, ADP, and AMP [46]. ADP and
AMP are not only the source of energy [47], but also crucial factors in signal pathways for growth,
development, and stress responses [48]. To ascertain the functions of VdAK, we generated disruption
mutants (AVAAK) via homologous recombination, a GFP strain (AVdAK-GFP), and a complementation
strain (AVdAK-C) via random insertion (Figure S2A-C). The transformants were selected after three
generations and confirmed by RT-PCR (Figure S2D).

Subsequently, we investigated the putative roles of VdAK in adaptive responses of the fungus
to various stresses. Strain AVAAK displayed no distinct defect in development or spore production,
but growth and sporulation were significantly diminished by 0.5 M NaCl, 0.5 M sorbitol, and the 10 s
UV treatment (Figure 2). Especially on media with NaCl and sorbitol, AVdAK colonies had statistically
delayed hyphal growth and produced fewer spores than the wild-type Vd and AVAAK-C strains, which
did not differ from each other. These results suggested VdAK has a positive role in fungal response to
abiotic stress.
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Figure 2. The deletion of VdAK compromises mycelial growth and spore production during abiotic

stress. A 10 pL drop of 10° spores/mL was placed in the center of Czapek Dox agar in a petri dish.

Colony morphology (A), colony diameter (B), and spore production (C) of disruption (AVAAK) and

complementation (AVAAK-C) mutants and wild-type Vd strain exposed to three abiotic stresses were

analyzed after 4 weeks. Means (+SE) from three independent experiments were analyzed for significant

differences among treatments using Duncan’s test (p <0.05). Different letters above bars within a

treatment indicate significant differences among the strains.

3.4. VAAK Is Required for Full Vd Virulence

We further investigated the virulence of AVAAK, AVAAK-C, and wild-type Vd strains by inoculating
6-week-old seedlings of N. benthamiana with respective conidia. At 12 dpi, wilting symptoms and leaf
necrosis were not visible on plants inoculated with AVAAK mutants, but symptoms were visible on
plants inoculated with wild-type Vd (Figure 3A). The biomass of strain AVdAK was much lower in roots,
stems, and leaves relative to that of the wild-type Vd (Figure 3B). Complementation strain AVAAK-C
did not differ in virulence or biomass from the wild-type Vd (Figure 3A,B). Furthermore, hyphae of
both Vd-GFP and AVAAK-GFP had colonized the roots by 5 dpi. Notably, spore germination was lower,
and hyphae less abundant for the strain AVAAK-GFP than for Vd-GFP on the root surface (Figure 3C).
In A. thaliana, strain AVdAK was less virulent and produced less biomass than did the wild-type and
complementary strains, whereas the virulence of AVdAK-C and the wild-type Vd were equivalent
(Figure S3A-C). Thus, these results confirmed that VdAK is indispensable for the full virulence of Vd.
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Figure 3. Virulence analysis of disruption (AVAAK), complementation (AVAdAK-C), and wild-type Vd
strains in N. benthamiana. (A) Symptoms on seedlings 12 days after roots were dipped in 10° spores/mL
of AVAAK, AVAAK-C, or wild-type Vd (Vd wt). (B) Relative amounts of fungal DNA as determined by
RT-gPCR. Means (+ SE) from three independent experiments were analyzed for significant differences
among treatments using Duncan’s test (p <0.05), as indicated by different letters. (C) Micrographs of
fluorescing hyphae in N. benthamiana root tips at 5 dpi with Vd-GFP or AVAAK-GFP.

3.5. dsVAAK-Owverexpressing Transgenic Plants Had Significant Resistance against Vd

To further validate whether VdAK is associated with disease development, we generated stable
transgenic lines of N. benthamiana and A. thaliana by inserting an RNAi construct with a 536 bp fragment
of VdAK and the constitutive cauliflower mosaic viral 35S promoter. When 6-week-old T, plants of
three independent transgenic lines of N. benthamiana were tested for Vd resistance using the wild-type
Vd, wilt symptoms were visibly milder at 12 dpi than on the control lines (Figure 4A). RT-qPCR
analysis showed that the accumulation of fungal DNA was significantly suppressed in roots, stems,
and leaves of the transgenic lines, relative to the wild-type (Figure 4B). The transcript level of VAAK in
the transgenic lines was significantly reduced up to 4-fold compared with the wild-type (Figure 4C).
In A. thaliana, the reduction of VAdAK expression in transgenic plants resulted in increased Vd resistance
and a reduction of fungal biomass (Figure S4A—-C). Thus, the results demonstrated that the knockdown
of VAdAK expression compromised the virulence of Vd.
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Figure 4. Expression of dsRNA of VdAK improved Vd resistance in N. benthamiana compared to
wild-type plants (WT). WT and trans-VdAK plants were inoculated with wild-type Vd (Vd wt).
(A) Symptoms on transgenic and wild-type plants at 12 days after roots were dipped in 10° spores/mL
of the respective strains. (B) Relative amounts of fungal DNA as determined by RT-qPCR. (C) Transcript
levels of VAAK in stems of transgenic and WT plants. Means (+ SE) from three independent experiments
that differed significantly among treatments in Duncan’s test (p <0.05) are indicated by different letters.

3.6. VAAK Is Associated with Energy Metabolism

Among various proteins involved in energy metabolism, adenylate kinases have vital roles
in maintaining an ADP/ATP balance [49,50]. In addition, the vacuolar ATPase (VA) can enhance
vacuolar H* pumping activity and Na* compartmentalization capacity [51]. ATP6 is one of the
three main subunits in membrane-localized ATP synthase FO, which is highly similar, functionally
and mechanistically, to V-ATPase [52,53]. Furthermore, adenylate cyclase (AC), catalyzing the
conversion of ATP to 3’,5’-cyclic AMP (cAMP), has key regulatory roles in signaling pathways [54].
ATP-phosphoribosyltransferase (ATP-PRT), the rate-limiting enzyme of the histidine pathway,
is completely reversible depending on the ATP concentration [55,56]. To ascertain whether energy
metabolism in Vd is affected with the knockout of VAAK, we quantified transcripts of the marker
genes VAVA, VAATP6, VAAC and VAATP-PRT using RT-qPCR and harvested mycelium of strains
AVdAK, AVAAK-C, and wild-type Vd, which had been cultured in CM broth for 7 days (Figure 5A-D).
Transcript levels for VAVA, VAATP6, and VAAC were significantly elevated up to 2-fold, and VAATP-PRT
transcripts increased significantly (>10-fold) in AVAAK when compared to levels in the AVAAK-C and
wild-type Vd. Thus, manipulating the VAdAK transcripts resulted in transcriptional reprogramming of
these genes associated with energy metabolism.
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Figure 5. Relative expression of fungal genes associated with energy metabolism in AVAAK, AVAAK-C,
and wild-type Vd (Vd wt) strains. Strains were cultured in complete medium (CM) broth for 7 days.
Transcript levels of VAVA (A), VAATP6 (B), VAAC (C), and VAATP-PRT (D). Mean (+ SE) levels from
three independent experiments that differed significantly in Duncan’s test (p <0.05) are indicated by
different letters.

3.7. A siRNA Targeting VAAK May Contribute to Cross-Kingdom Gene Silencing and Virulence Inhibition

To further corroborate the reduction in wilt, the HIGS experiment was repeated in
VdAK1-transgenic lines (Figure 6). At 12 dpi, the transgenic seedlings appeared to have significant
resistance compared with WT N. benthamiana seedlings. Colonies recovered from transgenic seedling
stems also differed distinctly from those from the WT seedlings (Figure 6A). To investigate whether
siRNAs were generated in transgenic seedlings and entered V4, the isolated fungi were cultured in
CM broth, and the total RNA of the mycelium was subsequently extracted and sequenced (Figure 6B).
Among small RNAs, one was found to target VdAK specifically (Figure 6B; Table S5). To validate
HIGS, we further examined the VAdAK transcripts in Vd using RT-qPCR. Transcript levels for VAAK
were downregulated about 4-fold by HIGS (Figure 6C). Moreover, the expression of two marker genes,
determined using RT-qPCR, was upregulated after VdAK silencing (Figure 6D,E). These results support
the view that exogenous siRNAs can enter pathogenic fungi through plants and silence the target gene
to improve host resistance.
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Figure 6. Host-induced gene silencing of VdAK enhanced resistance against V. dahliae (Vd). (A) Disease
symptoms on N. benthamiana at 12 dpi and growth phenotype on PDA of Vd isolated from infected
seedlings. (B) Specific siRNA targeted the VAAK position. The siRNA sequence aligned with VdAK
at the predicted binding site. Relative expression levels of VdAK (C), VdVA (D), and VdATP6 (E) in
RT-qPCR analysis of the recovered mycelium. Mean (+ SE) from three independent experiments that
differed significantly in Duncan’s test (p <0.05) are indicated by different letters.

4. Discussion

In this study, we first developed a HIGS system for large-scale screening of pathogenicity/virulence
factors, and found 16 potential candidates. Subsequently, we confirmed that the VAdAK plays a vital
role in fungal metabolism, conidiation, and pathogenicity and could be a valuable gene to transform
plants for increased resistance to Vd. Indeed, the RNAi-VdAK transgenic plants exhibited significant
resistance to Vd. Notably, siRNA that targeted VdAK was identified in transgenic plants. It may prove
to be useful for cross-kingdom gene silencing.

In eukaryotic organisms, RNA interference (RNAI) is a highly conserved mechanism, and a
valid tool to knock down gene expression [57-59]. Based on this mechanism, the TRV-mediated gene
silencing has been used to downregulate endogenous genes in plants [36,38,60]. Recently, HIGS has
also proved to be a promising strategy for silencing a foreign gene in a host to investigate numerous
plant-pathogen systems [61,62], including Vd in various hosts [33,34,63]. In the present study, positive
plants at 10 days after infiltration showed distinct photobleaching, suggesting the massive presence of
dsRNA and its active role in gene silencing [64—66]. In our study, seedlings that were inoculated with
Vd developed varying degrees of wilting from 10 to 12 dpi. The whole process took about 25 days.
Hence, HIGS can be utilized as an efficient platform for genome-wide high-throughput RNAi screening
to identify pathogenic genes. We also screened for Vd candidate pathogenicity/virulence factor genes
using publicly available genomic resources and the TRV system. Within a comparatively short time,
we identified 16 candidate genes, that when silenced, resulted in significant resistance to Vd.
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We used a GO analysis for our preliminary selection of candidate genes of Vd involved in highly
conserved biological function. A similar approach has also been used for Blumeria graminis in which
targeted silencing of important genes such as heat shock protein 70, 40S ribosomal protein, and
ADP/ATP carrier protein led to reduced sporulation [26]. We focused on an in-depth analysis of one
candidate gene, VAAK, that encodes a putative adenylate kinase, whose reduced expression led to
an obvious decrease in the virulence of Vd. Adenylate kinase is a critical phosphotransferase that
catalyzes the interconversion of ADP and ATP [67-69]. Transphosphorylation of adenine nucleotides
regulates the cellular concentrations of ADP, ATP, and AMP, which directly affects the adenylate
distribution during glucose and nucleic acid metabolism [70,71]. This gene is indispensable for
controlling the balance between ATP and ADP in cells [67,72] and thus is important for adaptation to
diverse stresses [73], as shown by our analysis of AVAAK strains exposed to various stresses. Under
stress, strain AVAAK grew significantly less and produced fewer spores compared to the wild-type.
This decrease was rescued by complementation with a functional VdAK gene. Using the VdAK
disruption and VdAK complementation mutant strains, we found that disruption of VdAK increased
fungal sensitivity to different stresses. Thus, VAAK apparently contributes to improved responses to
diverse stresses.

Transcripts of VAAC, VAATP6, VAAC, and VAATP-PRT were upregulated in strain AVAAK,
presumably triggered by a high ratio of ADP/AMP [74]. The upregulation of the vacuolar ATPase
(VA) gene is associated with improved salt tolerance in halotolerant peppermint Keyuan-1 [51].
The upregulation of VdVA, VdATP6, and VAAC might also be related to ATP synthesis and the
signal network [75-77]. When VAATP-PRT expression is strongly enhanced, glycometabolism may
be stimulated and thus provide cellular energy [78-80]. Taken together, the accumulative evidence
suggests that VdAK is a positive virulence regulator that is linked to energy metabolism. Moreover,
the ability to germinate and colonize the root surface of N. benthamiana and A. thaliana may also be
impaired in AVAAK, leading to less colonization in the plant vessels. Our results clearly indicate that
the VdAK gene positively regulates virulence of Vd. Given the roles of AK in energy metabolism,
when VdAK is suppressed, ADP/ATP turnover might also be disturbed, reducing fungal growth,
development, and virulence. The compromised virulence and stress tolerance of the AVAAK disruption
mutant support this hypothesis.

As a group of small, noncoding RNAs, siRNAs regulate post-transcriptional gene expression and
participate in diverse biological processes, including resistance against stress [81-84]. In screening
and study of a class of miRNAs related to Phytophthora sojae resistance in three soybean cultivars [85],
the expression of miR393 in soybean significantly increases in response to P. sojae infection [86]. After
Vd infection, cotton and A. thaliana increase the production of miRNA166 and miRNA159 to target Vd
genes and result in improved resistance [87]. Five miRNAs in a highly resistant strain of Vitis davidii,
revealed by microRNA sequencing, were specifically expressed and used to investigate further the
potential inhibition of grape white rot disease caused by Coniella diplodiwlla [88]. In our study, a specific
siRNA against VdAK was detected in Vd isolated from transgenic plants, which provides further
insights into the action between siRNA and fungi in planta. VAAK was silenced due to the presence of
siRNA, which results in the increased expression of VdVA and VAdATP6 involved in energy metabolism.
These results are consistent with the expression of the marker genes in AVAAK strains. The reduced
wilt symptoms are likely caused by the disruption of energy metabolism of Vd and subsequent growth
in transgenic seedlings. These results illustrate that the VdAK gene has potential as another target for a
HIGS strategy to control Vd.

5. Conclusions

In summary, we confirmed that the HIGS system is very efficient for screening candidate pathogenic
factors in Vd. As a positive regulator needed for full virulence, VdAK holds promise as a target to
enhance the resistance of transgenic plants harboring dsVdAK against Vd.
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