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Primary sensory cortex has long been believed to play a straightforward role in
the initial processing of sensory information. Yet, the superficial layers of
cortex overall are sparsely active, even during sensory stimulation; addition-
ally, cortical activity is influenced by other modalities, task context, reward,
and behavioral state. Our study demonstrates that reinforcement learning
dramatically alters representations among longitudinally imaged neurons in
superficial layers of mouse primary somatosensory cortex. Learning an object
detection task recruits previously unresponsive neurons, enlarging the neu-
ronal population sensitive to touch and behavioral choice. Cortical responses
decrease upon repeated stimulus presentation outside of the behavioral task.
Moreover, training improves population encoding of the passage of time, and
unexpected deviations in trial timing elicit even stronger responses than
touches do. In conclusion, the superficial layers of sensory cortex exhibit a
high degree of learning-dependent plasticity and are strongly modulated by
non-sensory but behaviorally-relevant features, such as timing and surprise.

The established view of cortical processing assumes that primary
sensory cortex performs basic tasks at an early stage in a sensory
processing workflow, with more complex computations occurring
downstream (for review see Grill-Spector & Malach'). However, there is
mounting evidence that more “associative” processing occurs in pri-
mary sensory cortices and that activity in these regions is influenced by
factors beyond simple sensation of a single modality> . Additionally,
the canonical view implies robust stimulus responses by primary
sensory cortex>"*; on the contrary, some primary sensory cortical
cells, especially superficial layer neurons, often exhibit low levels of
activity even during strong sensory stimulation'*¢,

A large volume of research now suggests that sensory-driven
responses in primary cortical areas are modulated by learning and
stimulus-reward associations® 7", In the superficial layers (layer 2/3)
of primary visual cortex (V1), initially quiet cells begin responding to
behaviorally relevant stimuli after pairing with reward®, with repre-
sentations becoming more selective and stable over the course of
learning”. Meanwhile, structural changes have been found to occur in

layer 2/3 of primary somatosensory cortex”, where certain groups of
cells respond more strongly to touch after learning”. Yet the degree to
which learning-related plasticity occurs in primary somatosensory
cortex (S1), and how it manifests, remain unclear: in some cases, sti-
mulus representations have been found to remain stable*, with little
plasticity®.

Mismatch between expectation and sensation has also been pro-
posed to influence activity in primary sensory cortex**”. In fact, pre-
diction, mismatch, and predictive coding in general have been
theorized to play a crucial role in cortical processing, and may drive
learning-related plasticity’>”. For instance, Keller and colleagues®
showed that disturbances in optic flow, such as the sudden cessation
of visual motion, led to increased V1 activity. However, an alternative
mechanism has been proposed for this finding*® whereby V1 responses
increase whenever visual motion slows due to cells’ velocity pre-
ferences, regardless of direction of motion or whether the change
violated the animals’ expectations (but see Keller et al. and Zmarz &
Keller, who did not observe altered V1 activity during passive viewing
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of the stimulus®*?!). Meanwhile, perturbations in expected tactile flow
mainly result in decreased neuronal activity in barrel cortex (the
whisker-related portion of S1)”. Thus, despite the increasing con-
sensus regarding the importance of predictive coding?*?, the nature of
mismatch signals in primary sensory cortices is still poorly understood.

The seemingly disparate observations across these studies may be
interconnected if primary sensory cortices construct a model over the
course of learning, placing stimuli, rewards, and other events into a
temporal context. Various brain regions have been already implicated
in time processing. For instance, compelling evidence of “time cells”
has been demonstrated in the hippocampus. These cells specifically
respond at given moments in a trial and have been proposed to con-
tribute to working and episodic memory by linking events across a
delay*** and by representing their sequential order®. Similar
sequence-driven coding schemes may be at play in striatum®*’. Some
degree of time encoding was also identified in the amygdala and sev-
eral association cortical areas®®. As for sensory cortical regions, barrel
cortical neurons were shown to be sensitive to temporally patterned
stimuli*’; conversely, temporally precise patterns of neuronal activity
have been found to contain tactile information*’. Similarly, putative
“memory cells” in primate somatosensory cortex exhibit temporal
patterns of activity during a tactile working memory task*. Some
studies that found learning-related influences on V1 activity also noted
that cells in V1 anticipated the timing of reward and punishment>'**2,
Yet, no study has directly investigated time coding in sensory cortex.

The current study asks: to what degree does learning impact the
activity of neurons in superficial layers of primary somatosensory
cortex? What aspects of the behavioral paradigm do these cells
encode? What kind of mismatch signals are present in S1? We used
2-photon calcium imaging to measure cortical activity during the
learning of a simple Pavlovian detection task. We found that learning a
stimulus-reward association engages previously unresponsive cells in a
longitudinally tracked population, leading to an enhanced repre-
sentation of tactile stimuli. In addition, learning rendered cells able to
encode non-sensory aspects of the behavioral paradigm and animals’
experience, including animals’ choice, the temporal progression of
events, and the expectation of event timing.

Results

To investigate learning-related effects on cortical activity, we used
2-photon calcium imaging to monitor the activity of GCaMPéf-
expressing neurons in superficial layers (layer 2/3) of S1, while mice
learned a Pavlovian whisker-based object-detection task. In our beha-
vioral paradigm, stimuli were presented to water-restricted mice via a
rotating wheel (Fig. 1a, top). On rewarded trials, a flat surface rotated
into the whisker field, stopped and remained stationary for 2s, and
then rotated away, after which a water reward was presented (Fig. 1a,
bottom; see Methods). On unrewarded trials, the wheel rotated to an
empty position in which no surface contacted the whiskers, and no
water was given. Thirsty mice licked at the water port in anticipation of
the reward, and we quantified the level of anticipatory licking as a
measure of learning. Initially, mice licked indiscriminately on both
stimulus-present and stimulus-absent trials (Fig. 1b, left), but after
learning the association between stimulus and reward, they licked
preferentially during stimulus-present trials, in anticipation of reward
(Fig. 1b, right; n=10 mice). Individual animals’ licking behavior was
qualitatively similar to the average (see Supplementary Fig. 1).

The Pavlovian nature of the behavioral paradigm meant that an
animal’s actions did not impact the outcome of the trial (whether or
not a water droplet emerged from the lick-port). Nonetheless, to
quantify learning, we labeled mouse responses as follows: anticipatory
licking on a stimulus-present trial was categorized as a “hit”, suppres-
sion of licking on a stimulus-absent trial was a “correct rejection”,
licking on a stimulus-absent trial was a “false alarm”, and lack of licking
on a stimulus-present trial was a “miss”. The former two response types

were considered “correct”, and the latter two were “incorrect”. Mice
began to perform above chance in as few as three sessions, but we
continued training them until their performance exceeded 70%
(Fig. 1c) and in some cases exceeded 90%. Performance on this task fell
to chance when whiskers were trimmed off (in 5 out of 5 whisker-
trimmed mice).

Prior to training and 2-photon imaging (Fig. 1d), we used intrinsic
signal imaging to locate the barrel cortex, where we would later record
neuronal activity. After recording, we confirmed the imaging location
by using the 2-photon laser to create a small lesion at the imaging site,
and, with the help of vasculature patterns, identifying the corre-
sponding location relative to the layer 4 barrels in post hoc histol-
ogy (Fig. le).

Conditioning, but not repeated stimulus exposure, enhances
object representation

Across the neuronal population, cellular activity was variable: neurons
responded at different times within the trial, both in naive and expert
sessions (example mouse in Fig. 2a, top). For most mice, average
responses to the stimulus increased in amplitude as mice became
proficient at the detection task: on early days, the average population
activity was relatively flat; after conditioning, the activity peaked in
response to the onset and offset of the stimulus (Fig. 2a, bottom; same
example mouse). In addition to analyzing the overall change in fluor-
escence, we extracted the times of calcium transients (see Methods;
Supplementary Fig. 2). All subsequent analyses are based on the time
or rate of these calcium transients, unless otherwise noted. We quan-
tified the neuronal population response for each mouse on early and
expert sessions as the mean number of calcium transients across cells.
Population responses to object arrival increased from early to expert
days (p=0.001, two-sided paired t-test, n =10 mice; Fig. 2b).

Averaging signals across all cells obscures the variability in cell
responses within the population, so we next examined individual cell
activity. The responses of individual cells (neary =1163 cells, Nexpert =
1112 cells) could be categorized into several groups based on the
timing of their calcium transients (Fig. 2c; see Methods for classifica-
tion criteria). Some cells responded specifically at the onset of the
stimulus (“on” cells), while others responded at the stimulus offset
(“off” cells); another group responded at both onset and offset (“on-
off” cells); finally, a small subset only responded late in the trial, fol-
lowing reward presentation (“reward” cells). The “on,” “off,” and “on-
off” cells dominated layer 2/3 S1 activity, as can be seen in the average
rate of calcium transients across all imaged cells: transients occurred
most frequently at stimulus onset and offset as well as, to a lesser
extent, the period in between (Fig. 2d). This effect was more pro-
nounced in expert mice, consistent with the increased population of
these cells (as described below).

In addition to these four response profiles, many cells displayed
no obvious response patterns (“none” cells): in fact, in naive mice, the
majority of cells were in this category (Fig. 2e, left). We refer to these
neurons as unresponsive to contrast them with cells that exhibited
immediate responses at the time of object arrival, departure, or reward
delivery; this category may include cells that were active but did not
meet our classification criteria for the other cell groups. As mice
learned, the proportion of these unresponsive “none” cells decreased
(p<0.001, Z approximation to a binomial), and the proportion of
stimulus-responsive cells increased (p<0.001 for “on” cells and
p<0.001 for “off” cells). In expert mice, most cells were stimulus-
responsive (Fig. 2e, right).

Was this substantial increase in the population of cells responsive
to object arrival a genuine effect of conditioning, or could mere
repeated exposure to stimuli suffice to increase cells’ responses? We
explored this issue using a new cohort of animals—mice that were
exposed to the same behavioral paradigm with respect to stimulus
presentation, but were not water-restricted and never received
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Fig. 1| L2/3 calcium imaging in barrel cortex while mice learn whisker-based
object detection task. a Behavior schematic (top) and timecourse (bottom):
rotating wheel brings either object or empty space into mouse whisker field.
Stimulus “enters” the whisker field and then “stops”. The now stationary sti-
mulus is present for 2 s before rotating away (45 degrees over the course of
~-400 ms, such that the gap between wheel arms is in front of the animal’s face).
On object-present trials, water drop is given following the stimulus. Antici-
patory licks are counted during the “stimulus present” interval. b Anticipatory
licking histograms (n =10 mice) for early (left) and expert (right) days, quanti-
fying the rate of licking for stimulus-present rewarded (blue) trials and stimulus-
absent unrewarded (black) trials. Mice initially lick equally for object-present
(rewarded) and object-absent (unrewarded) conditions, but learn to lick
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preferentially for the object-present condition with training. The panel includes
shaded areas corresponding to SEMs, but these are too small to be seen.

¢ Learning curve (n =10 mice). Solid line is the performance, calculated as
number of correct trials for all mice, normalized by the total number of trials in
each session. Shading corresponds to 95% confidence interval. Source data
provided in a Source Data file. d Example field of view for calcium imaging
during learning. Calcium activity was measured in GCaMP6f-expressing neurons
in layer 2/3 of barrel cortex. e Intrinsic signal imaging targeting of 2-photon
imaging (all mice) was confirmed by histology in 2 mice. Left: Example L2/3
tangential slice, showing lesion location (marked with arrow). Right: L4 tan-
gential slice from same mouse, showing corresponding area of barrel map.
Dashed circles indicate blood vessels used to match location in barrel map.

rewards (n =7 mice). Comparing the change in proportion of cells of
each type as mice progressed through the protocols revealed that the
presence of reward was in fact crucial for the increase in stimulus-
responsive cells. Repeated exposure produced no increase in the
percentage of responsive cells; rather, we saw a decrease in the pro-
portion of these cells (p < 0.001 for “on” cells; p = 0.03 for “off” cells),
with unresponsive “none” cells growing to an even larger population
(p<0.001) after repeated exposure to the stimuli—the reverse of the
effect seen in conditioned mice (Fig. 2f). These findings suggest that
two opposing adaptation mechanisms exist in layer 2/3: irrelevant
stimuli shrink the population of responsive cells while behaviorally
important stimuli enlarge it.

Learning switches response category of longitudinally tracked
neurons

As mice learned the behavioral task above, a neuronal population
initially dominated by unresponsive cells transformed into a population
mainly comprising stimulus-responsive cells. However, that analysis was
unable to reveal the dynamics of individual cells: what degree of fluc-
tuation or stability did individual cells exhibit across consecutive days
and over the course of learning? To address this question, we examined
how individual cell responses shift over the course of conditioning.

We longitudinally tracked individual neurons across training ses-
sions. To identify the same cells across two sessions, we warped the
imaging field of view of one day to align with that of another day by
applying an affine transformation to the time average of one imaging
session; we then applied the same transformation to each region-of-
interest (ROI) and located matching ROIs across sessions (Fig. 3a; see
Methods).

As mice progressed from naive to expert levels of behavioral
performance, longitudinally tracked cells’ activity dramatically
increased (see examples in Fig. 3b). Averaged across mice, the majority
(69%) of previously unresponsive cells began responding to the sti-
muli. Meanwhile, cells that were already responsive to the stimulus
mostly remained responsive (83%), and only a small fraction (17%)
became unresponsive (Fig. 3¢, left). For the repeated-exposure mice,
on the other hand, tracked cells became less responsive to stimuli, with
more than half (55%) of originally responsive cells losing responsive-
ness, and most unresponsive cells (62%) remaining unresponsive
(Fig. 3c, right). The magnitudes of these changes were similar if we
considered cells pooled across mice (Supplementary Fig. 3a) rather
than averaged. (For an illustration of the turnover of cells of different
response-pattern subclasses (“on”, “off”, “on-off”), see Supplemen-
tary Fig. 3b.)
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Fig. 2 | Behavioral training, but not stimulus exposure, increases proportion of
stimulus-responsive cells. (7 =10 mice). a Cells respond at different times in trial.
Top: heat maps from 100 cells in a naive session (left) and 104 cells in an expert
session (right) in an example mouse; Bottom: average across cells for this mouse,
for the same early (left) and expert (right) session. Shaded region corresponds to
95% confidence interval. b Average number of transients per cell for early and
expert sessions (p =0.001, two-sided paired t-test). Each point corresponds to 1
mouse. Data shown in Source Data file. ¢ Raster plots of calcium transients for 4
example cells show diverse patterns of activity. d Transient event rate in naive
(blue) and expert (orange) animals. Rate of transients was calculated across all cells,
normalized by number of trials and number of cells. e Proportions of different cell

types in the population, on early vs expert days for conditioned mice: on cells
(blue): p=4.33 x107%; off cells (red): p=5.41x107'% on-off cells (green): p=0.1;
reward cells (purple): p = 0.4; none cells (gray): p =2.36 x 107 (based on two-sided
Z-test approximation to the binomial, corrected for multiple comparisons; sample
Sizes: Nearly = 1163 cells; nexpere =1112 cells). £ Change in the proportion of cells of
each type (expert - naive), for conditioned mice that experience reward-pairing
(n=10) and for mice that only experience repeated exposure to the stimulus
without reward (n=7). For repeated exposure mice: on: p = 6.77 x10°%; off: p = 0.03;
on-off: p=0.22; none: p=2.6 x 102 (based on two-sided Z-test approximation to
the binomial and corrected for multiple comparisons). Data for conditioned mice
same as in e. Source data provided in Source Data file.

However, in mice that had experienced reward-pairing, long-
itudinal cell tracking revealed that cells maintained a “memory” of the
task and were relatively stable across consecutive days: 81% of cells
were consistently within the same responsive/unresponsive category
across consecutive expert sessions. Thus, over the course of learning,
individual tracked cells’ representations become biased toward rein-
forced stimuli, but only in conditioned mice. Later, the activity of these
same cells stabilized as the animals gained understanding of task rules.

Training enhances decodability of stimulus and choice

Learning rendered cells not only more responsive, but also more
predictive of trial type and the animal’s behavior. We trained a support
vector machine with a linear kernel to decode the stimulus (the pre-
sence or absence of the object) or choice (whether or not the mouse
displayed anticipatory licking) from calcium transients in the neuronal
population (Fig. 4). Stimulus decoding performance on naive days was
greater than chance but did not reach perfect accuracy, consistent

with the unresponsive and unreliable nature of layer 2/3 cells . On
average, decoding accuracy for both stimulus (Fig. 4a; two-sided
paired t-test, p=0.007) and choice (Fig. 4b; two-sided paired t-test,
p <0.001) improved along with animals’ performance.

The above analysis used all imaged neurons, including the unre-
sponsive “none” cells. Non-classically responsive cells have previously
been shown to be informative in sensory cortex and other cortical
regions*> ™, Interestingly, our unresponsive cells also contributed
significantly to the decoders. Unresponsive cells had smaller con-
tributions (decoder weights) in the stimulus classifier than did cells of
other response profiles (two-sided Mann-Whitney U-test, p=0.002)
but had similar weights for choice decoding (two-sided Mann-Whitney
U-test, p=0.32). Yet even for the stimulus classification, decoding just
from “none” cells yielded above chance performance on expert days
(76.8% decoder performance; two-sided t-test, p < 0.001).

Furthermore, even though the decoder could discriminate the
trial type classes above chance even in naive mice, the trial types
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trating decoding performance, averaged across mice, for stimulus (left) and choice
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indicate mean of shuffled data; shaded area shows 99% confidence interval for
shuffled data (n =10 mice). b Number of time bins from which stimulus (left) and
choice (right) can be decoded above chance (significantly different from shuffle),
on naive (blue) and expert (orange) days: above-chance decoding performance at
more time bins on the trained day (stimulus: p = 0.008; choice: p = 0.005, two-sided
Wilcoxon signed rank test; n=10 mice). Data is provided in Source Data file. ¢ First
time in trial when stimulus can be decoded: stimulus can be decoded earlier in the
trial after training (p = 0.03, two-sided Wilcoxon signed rank test). Each dot is
one mouse.

became more separable on expert days compared to early-training
days (Fig. 4c): projecting neuronal activity across the coding axis
(determined by the classifier weights) revealed that the trial type
classes diverged on expert days, and therefore that the decoder was
more “confident” in classifying the trial types (Supplementary Fig. 4a,b;
average earth mover’s distance between stimulus classes increased
from 0.91 to 1.75; two-sided Wilcoxon signed rank test, p=0.005;
average earth mover’s distance between choice classes increased from
0.18 to 1.02, p=0.005). Note that for mice in the repeated exposure
cohort, the ability to decode the stimulus from neuronal activity did
not improve with continued stimulus presentation (Supplementary
Fig. 4c), nor did the stimulus classes diverge (Supplementary Fig. 4d).

Since the total number of cells was not identical across different
imaging sessions (ranging between 50 and 260 cells; mean =116 cells),
a potential confound could arise if decoding performance scales with

population size®. Comparing decoding accuracy using differently
sized subsets of the same neuronal population relieved this concern by
showing that, while the decoding performance did initially increase
with the number of cells used, it rapidly plateaued at sizes smaller than
that of our typical imaging datasets (Fig. 4d). In fact, decoding from
just 50 cells was above chance (two-sided t-test, p<0.001 for both
stimulus and choice)—on average 93% for stimulus and 78% for choice.
Thus, the different population sizes across sessions cannot explain the
learning-dependent improvement in decodability of stimulus and
choice.

So far, we have demonstrated that, at least on expert sessions, we
were able to decode both stimulus and choice. However, these two
measures become increasingly correlated as mouse performance
improves: while mice never reach perfect performance, we expect
stimulus and choice to be substantially correlated on expert days,
when mice mainly choose to lick on stimulus-present trials and inhibit
their response on stimulus-absent trials. Therefore, a problem arises:
on expert days, cells’ activity may truly predict only stimulus or choice,
and our ability to decode both measures might stem from the corre-
lation between them. To disambiguate our claim from this alternative
explanation, we took advantage of the fact that mice do make errors
even while performing relatively well, and we re-ran the decoding
analysis using trial-balancing", whereby each trial type was weighted
inversely to the frequency with which it occurred; in other words, rare
trial types (miss and false alarm trials) were weighted more strongly
than frequent trial types (hit and correct rejection trials). On expert
days, when stimulus and choice are correlated, trial-balanced decod-
ing performance for both measures was lower compared to decoding
performance using an unbalanced approach (Supplementary Fig. 5a, b;
two-sided paired ¢-test, stimulus p=0.03, choice p <0.001), but both
remained significantly above chance (Supplementary Fig. 5c; two-
sided t-test, stimulus p < 0.001, choice p < 0.001). Consequently, while
some degree of decoder performance is attributable to stimulus-
choice correlation, the ability to decode one variable is not simply due
to its correlation with the other.

Stimulus and choice could also be decoded from individual cells,
albeit to a lesser extent than from the entire population. On expert
days, the decoder could predict trial type and the animal’s response
with greater accuracy from a larger percentage of single cells than on
early days (Supplementary Fig. 6a). When compared to shuffled data,
the stimulus and choice could be decoded above chance from more
cells on expert days than on naive days (Supplementary Fig. 6b; two-
sided paired ¢-test, stimulus p=0.004; choice p <0.001). Finally, for
individual, longitudinally tracked cells, decoding performance
improved as the mice learned the task (Supplementary Fig. 6c; two-
sided paired t-test, stimulus p<0.001; choice p<0.001). Thus, as
mouse behavioral performance improved, individual cells, as well as
population activity, became more predictive of trial type and mouse
response type.

Temporal properties of neural representations

We next examined the temporal dimension of the neuronal repre-
sentations by decoding stimulus and choice at various timepoints
throughout the trial. We split the trials into time bins, with each bin
containing 10 frames (1/3 of a second), and used the population
activity at each time bin to decode stimulus and choice, yielding a
decoding timecourse (Fig. 5a). The number of time bins at which the
decoder could predict stimulus and choice above chance increased as
mice learned the task (Fig. 5b; two-sided Wilcoxon signed rank test,
stimulus p=0.008, choice p=0.005). Moreover, the first time bin
from which trial type could be predicted shifted earlier over the course
of learning (Fig. 5c; two-sided Wilcoxon signed rank test, p=0.03),
suggesting that cells” activity encodes information about the stimulus
(or future response) earlier in the trial as mice begin to comprehend
the task demands and the relevance of the stimulus.
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Population activity encodes time

The above finding implies a temporal aspect to the cells’ informa-
tion coding, but the information encoded still only concerns trial
parameters. Consequently, we asked: does neuronal activity also
contain information about the progression of time? Specifically,
could we predict the position of a given time bin within the tem-
poral sequence from the population activity at that time? Indeed, in
expert mice, we were able to decode time from calcium transients,
not only at moments when a trial event was occurring (such as the
stimulus arriving or leaving, or reward being delivered), but also
during intervals when little was changing, such as the 2-s period
during which the stimulus was stationary in front of the mouse’s
face (Fig. 6a, right). In naive mice (Fig. 6a, left) and in the repeated
exposure cohort (Supplementary Fig. 7a), the neuronal activity was
less predictive of time bin identity, indicating that the temporal
information encoded by the cell population arises due to learning.
Varying the bin size (Supplementary Fig. 8a) reveals that the reso-
lution of the encoded temporal information was on the timescale of
~150-200 ms (Supplementary Fig. 8b).

We noticed that training on “hit” trials allowed the decoder to
predict time on “hit” trials and “miss” trials, for which the stimulus
was present, but not on “correct reject” trials, for which the stimulus
was absent. We were unable to decode time on “correct reject” trials
even when we trained the decoder on that trial type (Fig. 6a). The
inability to predict time on stimulus-absent trials could be due to
the lack of tactile signals or lack of animal attention for that
trial type.

Interestingly, time coding did not differ between thirsty and
satiated states: decoding from the first third versus the last third of a
session did not reveal qualitative differences in time coding (Supple-
mentary Fig. 7b). Thus, while time coding may depend on attention, as
it arises only in expert mice in a behaviorally relevant context, it also
appears to exist independent of motivational state.

Importantly, these timekeeping effects are not inevitable.
Decoding time with high precision on a trial-by-trial basis from calcium
transients in expert mice means that learning stabilizes previously
unstructured trajectories in neuronal state space. Time decoding
would be unsuccessful if these trajectories were inconsistent across
trials®® or if they exhibited fixed-point dynamics®.

Having ascertained that the neuronal population encodes time
with remarkable temporal resolution, we naturally asked how:
which coding scheme does barrel cortex use to track time? Potential
coding schemes include precise time-varying activity patterns of
individual cells, stabilization of time constants of ramping activity,
or response sequences across the neuronal population akin to those
of hippocampal time cells. We found that neuronal activity can be
described by the last option: cells are active during temporally-
constrained periods that tile the duration of the trial (Fig. 6b; see
Methods).

When characterizing the responses of time-tuned cells, we
found that these neurons mostly belong to the “responsive” cate-
gory: 70% of time-tuned cells are responsive in naive mice, and 89%
are responsive in expert mice. In expert mice, time-tuned cells can
mostly be classified as “on” cells (46%), though 22% are “off” cells,
and 18% are “on-off”. In line with this observation, we found that,
across the population of cells (Fig. 6¢), time-tuned regions cluster
around the stimulus onset and offset, consistent with time-tuned
cells belonging to “on”, “off”, and “on-off” classes. Yet, many of
these time-tuned regions occur during the intermediate period as
well, especially in expert mice (Fig. 6c, bottom). Temporal
sequences of neuronal activity constitute an especially effective
time coding scheme®; the fact that we see evidence of this type of
temporal coding in a primary sensory cortical region supports the
notion that timekeeping is a distributed process comprising mul-
tiple brain networks.

Movement does not account for learning-dependent changes in
activity

Given that our behavioral paradigm is whisker-based, one might
speculate that animals’ whisking in response to stimulus presentation
could modulate barrel cortex responses in a manner that could explain
the findings described thus far. To examine this possibility, we ana-
lyzed whisker motion from videos of the mice recorded throughout
learning (Fig. 7a). We quantified whisking motion as the mean differ-
ence between consecutive video frames. We identified bouts of
whisking (including whisking during both trials and intertrial intervals)
and calculated a whisk-triggered average of neuronal fluorescence (see
Methods). Comparison of whisking-driven responses (Fig. 7b, top) and
stimulus-driven responses (bottom) of the same population of cells
reveals that neurons respond strongly to stimuli, but not to whisking.
In addition, the degree of whisking does not increase with learning: if
anything, whisking decreases (Fig. 7c).

We also directly tested the contributions of movement to the
cells’ responses by performing a linear regression, using stimulus
onset, stimulus offset, reward, whisking, and licking as features. While
the contributions (as determined by coefficients) of stimulus onset
and offset increased with learning, the contributions of whisking and
licking remained near zero (Supplementary Fig. 9).

Next, we investigated whether movement can explain the afore-
mentioned temporal information encoded by barrel cortex neurons.
While the progression of time could be decoded from the activity of
the cell population, it could not be decoded from whisker motion
(Fig. 7d). The vertical bars in Fig. 7d show that decoders based on
whisking consistently misclassify the time within the trial.

Similarly, licking cannot account for the temporal decoding
results, as we were able to decode time progression from population
activity on “miss” trials during the stimulus (pre-reward) window, when
there was no anticipatory licking (Fig. 6a, upper-right panel). In addi-
tion, time could not be decoded from licking behavior (Supplementary
Fig. 7c, top). Thus, neither of these predominant movements can
explain our results.

Temporal surprise is an effective driver of neuronal activity
Finally, we investigated whether a mismatch of expectation and sen-
sation can modify neuronal activity. Mismatch-related amplification of
neuronal activity has been observed in primary visual cortex®; in
somatosensory cortex, on the other hand, cell responses have been
found to be dampened when sensory feedback did not match
expectations”. These previous studies investigated mismatch through
perturbations of optic or tactile flow, by altering the velocity of the
visual or tactile stimulus. Sudden shifts in velocity constitute a change
of stimulus properties, which might alternatively explain the resulting
variations in cortical activity®.

Given the ability of barrel cortex to represent within-trial time
progression as described above, perturbing the timing of the stimulus
would be a useful means of disrupting an animal’'s expectations,
without altering the intrinsic properties of the stimulus. Accordingly,
we performed a “delayed-offset” experiment in expert mice, in which
stimulus offset and corresponding reward were delayed by 1s on 20%
of the trials (Fig. 8a, bottom). We compared trial-averaged fluores-
cence for delayed-offset vs normal trials and noticed that a large subset
of cells (32%, 169/527) exhibited significantly stronger offset responses
on the delayed-offset trials compared to normal trials (see Fig. 8a, top
and middle for representative example cells). Note that these analyses
were corrected for multiple comparisons (false discovery rate). We
quantified this difference across the neuronal population and dis-
covered that a majority of cells show a greater response (39% increase
in response, on average) to the delayed offset compared to normal
stimulus offset (Fig. 8b; two-sided Wilcoxon signed rank test,
p <0.001), indicating that surprising events yield stronger signals than
expected events. Furthermore, the cell population response to delayed
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hit trials; bottom left: correct rejection (CR) trial, after training on hit trials; bottom
right: correct rejection trials, after training on correct reject trials. 4-fold cross-
validation was used for all instances of decoding. b Cells are tuned to time intervals
that span the duration of the trial. Shaded areas correspond to time-tuned regions.
Some regions are highlighted (orange) to illustrate how these regions tile the trial
timecourse. ¢ Histograms indicating the total number of time-tuned regions tuned
to different times in the trial, in naive (blue, top) and expert (orange, bottom) mice.

stimulus offset was on average even stronger (36% increase on
average) than the response to stimulus onset (Fig. 8c, p<0.001),
whereas for normal trials, the amplitude of the response to stimulus
onset exceeded the response to stimulus offset (Supplementary
Fig. 10a, p <0.001). Thus, even in a primary sensory area, basic sti-
mulus features are not necessarily the strongest driver of cortical
activity.

To ensure that the temporal surprise responses do not merely
reflect a change in animals’ behavior on the delayed-offset trials, we
checked the licking and whisking behaviors on both trial types. Both
whisking (Supplementary Fig. 11a) and licking (Supplementary Fig. 11b)
behaviors remained similar on normal and delayed-offset trials, indi-
cating that the enhanced neuronal responses on the delayed-offset
trials likely stem from the animals’ experience of “surprise” or pre-
diction error, rather than altered movements.

Further characterizing the neuronal responses to temporal sur-
prise, we found that “surprise” neurons came from all of the response-
pattern categories previously discussed, including stimulus “on” cells
(19%), stimulus “off” cells (40%), stimulus “on-off” cells (9%), “reward”
cells (8%) and otherwise unresponsive neurons (24%). We also found
that found that cells with an “off” response retain an “off” response in
the surprising delayed-offset condition, but shift the time of
responding to the new offset time during the delayed-offset trials. In
addition, some cells with other response patterns, such as “on” cells,
are re-recruited and respond once more to the delayed offset (Sup-
plementary Fig. 10b).

Finally, we investigated whether the subset of neurons that pre-
ferentially responded to the unexpected stimulus offset in expert mice
might have always responded to novelty by checking the responses of
these cells on early training days, when all stimuli were novel.
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Interestingly, we discovered that these “surprise” cells did not respond
to the stimulus onset or offset in naive mice (Supplementary Fig. 10c).
On the surface, these observations may seem contradictory. However,
the behavioral relevance of the stimulus on naive and expert days
differs markedly: on early-training days, stimuli may be novel, but are
still behaviorally meaningless to the mice, and are therefore not
necessarily “surprising”. From these results, we conclude that unex-
pected events are even more effective in eliciting layer 2/3 activity than
sensory stimuli.

Discussion

In recent years, a growing body of research has begun to reveal
nuances of processing in primary sensory cortices. Contrary to the
canonical view of primary sensory cortex as an early stage in a
sensory processing hierarchy, we now have reasons to believe that
primary cortex may have a role in multisensory integration*'
and in the processing of non-sensory information such as choice,
reward, and reward expectation®>>'%, In addition to this evidence
for complexity and higher-level processing in primary cortical
areas, parallel evidence contradicts the straightforward notion that
primary cortical cells are highly responsive to stimuli of the corre-
sponding modality: for instance, while deep layer cells in barrel
cortex respond vigorously to whisker stimulation, even spatially
and temporally complex whisker stimuli elicit only low levels of
activity in superficial layer cells'*", though these cells may respond
more to whisker contacts when they are behaviorally relevant”. The
current study contributes to this alternative view of primary sensory
cortex as akin to association cortex, and unveils additional facets of
cortical processing.

Here, we demonstrate that learning recruits previously
unresponsive cells in barrel cortex, creating a neuronal popula-
tion that better represents tactile stimuli that have been paired
with reward. Previous studies have identified structural and
functional plasticity in barrel cortex after sensory deprivation®**
as well spine plasticity after learning”, so one might have
anticipated learning to alter neural representations as well.
However, there remains disagreement in the field on this issue:
some studies have indeed found learning-related functional
changes”, while other studies observed more stability across
learning. Kim and colleagues** observed a high variability and
turnover in the responsiveness and selectivity of barrel cortical
cells while mice learned an object-angle discrimination task, but
those authors and others?*** reported that the proportion of
responsive cells remained unchanged across learning. Interest-
ingly, Makino & Komiyama' find that the number of layer 2/3
responsive cells actually decreases with learning, though that
study is in a different modality, and in an aversive conditioning
task, which may explain the discrepancy. In contrast with these
latter studies (but in agreement with Chen et al.”!), we find that
the ratio of responsive neurons markedly increases with learning:
this recruitment of previously unresponsive cells into a newly
responsive neuronal population explains our observation of
increased overall touch responsiveness of barrel cortex. As for
individual longitudinally tracked cells, we did observe some
degree of bidirectional turnover, including both cells that lost
responsiveness as well as those that became more responsive.
However, training appeared to rebalance these dynamics such
that, while only a minority of cells that were originally active lost
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(p=7.59 x10™", two-sided Wilcoxon signed rank test). Source data shown in Source
Data file.

their responsiveness, most unresponsive neurons gained stimulus
responses.

In stark contrast, repeated exposure to a stimulus without reward-
pairing actually reduced barrel cortex responsiveness to the stimulus.
The latter phenomenon likely arises due to habituation: whereas mice
learn the behavioral relevance of a stimulus followed by reward, they
can equally learn the relative unimportance of a stimulus that is pre-
sented without positive or negative consequences. Similar findings
have been reported in the mouse primary visual cortex’***—repeated
presentation of visual gratings led to adaptation of neural responses
over the course of behavioral training.

One plausible mechanism for this retuning of sensory
representation is contextual information conveyed to barrel
cortex via long-range top-down inputs from higher-order cortical
areas. Orbitofrontal cortex (OFC) has recently been shown to play
an important feedback role, but is unlikely to be involved in the
effects described here: input to S1 from OFC has been shown to
be activated (and indeed required) in complex tasks such as
reversal learning, but OFC only became active during the complex
(rule switch) aspects of the task, not during initial learning®’.
However, other top-down inputs, such as those from the pre-
frontal cortex (PFC), could contribute in our task and others®*™,
For instance, some high-level information about task context has
been identified in both primary auditory cortex (Al) and PFC*
during auditory behaviors—presumably, this information was
conveyed to the primary sensory region from PFC. In addition,
prefrontal inputs to primary visual cortex have been shown to
enhance mismatch signals®®. Persuasive evidence also points to
top-down modulation of primary sensory cortical activity by
retrosplenial cortex during learning'.

Alternatively or additionally, the effects we observed may have a
mechanism of neuromodulatory origin, whereby in the presence of
reward, neuromodulatory inputs to barrel cortex create an environ-
ment for local plasticity to occur and unveil neuronal responses to the
stimuli. While multiple neuromodulatory systems may be implicated,
several are particularly compelling. Norepinephrine, for instance, is
intimately involved in task engagement and attention and could play a
role in the enhancement of sensory responses to behaviorally relevant
stimuli®’. In fact, there exists evidence for the ability of noradrenergic
neuromodulation to induce plasticity in primary auditory cortex and
strengthen Al responses to auditory stimuli®® and to increase neuronal
excitability in S1°. Acetylcholine, too, has been shown to augment
neuronal responses in studies of V1**%, The fact that reward uncoupled
with stimulus presentation is sufficient to potentiate cell responses in
V1% supports the neuromodulation model, as the slow timecourse of
neuromodulation may allow for the potentiation of signals even when
those signals are not temporally locked to reward. Future studies
should investigate this possibility and identify which neuromodulators
might be responsible for retuning cortical representations according
to reinforcement.

Our results also illustrate how barrel cortex activity becomes
more patterned as mice learn the behavioral task, as confirmed by the
improved ability of a classifier to decode the presence or absence of
the stimulus as well as the nature of animals’ responses. Furthermore,
learning enabled decoding of the trial type from more time bins and,
crucially, earlier in the trial, allowing cells to more quickly access
information about the trial. This phenomenon may underlie enhanced
reaction times as behaviors become more ingrained, and may be
explained by a temporal difference model of reinforcement learning,
whereby the reward value is attributed to progressively earlier stimuli
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(or perhaps to earlier moments of time within the trial) over the course
of learning.

Barrel cortex encodes time progression

We found that time could be decoded with remarkably high precision
from population activity in well-trained mice but not in naive animals,
meaning that cells in barrel cortex could track the progression of time.
Previously, in barrel cortex, temporally precise response patterns have
been shown to carry sensory information*°, though this finding was
obtained in anesthetized rats, making the relevance to behavior and
learning somewhat difficult to interpret. Yet, a related finding in the
somatosensory cortex of awake primates discovered so-called “mem-
ory cells”, which displayed specific patterns of activity during the delay
period of a tactile working memory task*. However, our ability to
decode time likely stems from time cell-like responses across the
neuronal population rather than from temporally precise activity
patterns of individual cells like those observed by Arabzadeh et al.*’.
To our knowledge, our results present the first direct evidence of
activity in barrel cortex encoding the progression of time on a beha-
vioral timescale, or of temporal encoding in any rodent primary sen-
sory cortical area.

One could imagine that the temporal information in S1 cells arises
due to patterns of whisking: stereotyped whisking patterns would lead
to temporally precise series of whisker contacts; consequently, even
though the stimulus is not moving, and seemingly no new events
occur, a series of stimulus responses could emerge. The timecourse of
such signals could conceivably have been the source of the timing
information as well as our inability to decode time on stimulus-absent
trials. However, we were not able to decode time from whisking
(Fig. 7d), ruling out whisker movement as the relevant source of
temporal coding in S1.

Another possible source of time coding is the sensitivity of the
neuronal population to trial events. After all, time coding arises with
learning, as cells gain stimulus responsiveness. We attempted to
decode time progression from trial events (stimulus onset, stimulus
offset, and reward) as well as animal movements (licking and whisk-
ing). Even with all these features included, we were unable to decode
time (Supplementary Fig. 7c, bottom), suggesting that the neuronal
population is encoding time per se, rather than a series of trial events
and movements.

Cells respond to mismatch of temporal expectations

Our experiments uncovered mismatch signals in barrel cortex: in
expert mice, delivering the stimulus offset at an unexpected time
yielded the highest levels of cellular activity. Unexpected events have
previously been shown to evoke strong responses in primary sensory
cortex (e.g., oddball stimuli eliciting responses in “deviance detector”
cells of V1°°). Those kinds of experiments, however, typically use sti-
muli that have different sensory characteristics from the “non-deviant”
stimuli. As a result, the increased responses to oddball stimuli can be
explained by synaptic or circuit adaptation to the common stimulus,
and a lack of adaptation to the oddball.

Other studies®*” have reported altered responses in V1 and S1
to perturbations to optic and tactile flow, respectively, in which
sensory input did not match the expected outcome of self-
generated motion. Yet, an alternative explanation for these results
has been offered*, invoking cortical cells’ preferences for different
stimulus velocities, rather than mismatch between expectations
and sensory feedback. An important advantage of our experimental
design is that we do not change velocity or any other stimulus
property to investigate mismatch, but rather the timing of the sti-
mulus. Consequently, the surprising events in our experiment have
the same sensory features as expected events, yet they violate the
animal’s internally constructed model of the world—the temporal
structure of the task.

In fact, the “surprise” signals we observe constitute further evi-
dence for the existence and importance of timing information in S1:
the enhancement of cells’ responses to a disturbance of an event’s
timing implies that they have “knowledge” of its timecourse, as access
to timing information is necessary for sensory cortical cells to exhibit
this response to temporal mismatch. The presence of a surprise
response in primary sensory cortex may in turn provide the animal
with a means for rapid behavioral outcomes to salient, unexpected
events, perhaps bypassing slower processing in higher cortical areas
more traditionally thought of as associational.

In conclusion, we have demonstrated that primary somatosensory
cortex behaves in a more nuanced way than traditionally thought:
rather than directly responding to sensory stimuli, sensory cortical
representations undergo large bidirectional changes over the course
of learning, either expanding to better represent stimuli paired with
reward, or habituating and contracting following repeated exposure
without reward pairing. Indeed, these effects extend beyond mere
stimulus responses, and encompass temporal encoding as well as
modeling expected events and their timecourse, implying that time-
keeping may be widespread and distributed throughout the brain.

Methods

Subjects

All experiments were approved by the Columbia University Institu-
tional Animal Care and Use Committee. 17 C57BL/6) mice (male and
female; age range p60-p300) were used in the experiments described
here. Mice were housed in groups of 2-5, unless fighting or barbering
was observed (in which case they were singly housed). The room in
which the animals were housed had a 12 h light/dark cycle: light during
the day and dark during the night, switching at 7:00 and 19:00. The
ambient temperature was 22 °C. Mice were provided with a running
wheel for enrichment as well as ad libitum food. During behavioral
training, mice were water-restricted and maintained at 80% of their
original weight. If daily weighing determined that mice were too light,
they were given 5 min of free access to water in their home cage.

Virus injection and cranial window implant surgeries
CaMKII-GCaMP6f virus (AAV5.CamKIL.GCaMP6f.WPRE.SV40, nominal
titer 2.3 x 10" gc/mL) was injected into left barrel cortex of the mice.
The injection site was targeted at 1.5 mm posterior and 3.5 mm lateral
relative to bregma. To accomplish this surgery, mice were anesthe-
tized with isoflurane (3% for induction; 1-2% for maintenance), and
subcutaneous analgesics buprenorphine, carprofen, and bupivacaine
were administered. Eye ointment was applied, and mice were fixed into
the stereotax with earbars. Scalp was shaved and cleaned, and then cut
to expose the skull. After locating the injection site, a small area of skull
was thinned with a dental drill, until a glass injection pipette could be
inserted through cracks in the thinned bone. Virus was injected at
depths of 300 um and 150 um, with three 50-nL injections at each
depth (injections were spaced 1 min apart, with three minutes between
depths and before removing the pipette). The pipette was then with-
drawn, the thinned area of skull was covered with superglue, and the
scalp was sutured closed.

Mice were given an additional carprofen dose 24 h after surgery,
and monitored for 5 days. We allowed a three-month interval for the
virus to express, and then performed a cranial window implantation
surgery.

For this second surgery, intramuscular dexamethasone was
administered 3 h prior to surgery. Isoflurane anesthesia was carried out
as before, and buprenorphine was administered subcutaneously.
Remaining surgical preparation was done as before, but this time a
circle of scalp was removed entirely. The skull was cleaned, and a4-mm
diameter craniotomy was made over the barrel cortex. A glass cover
slip was placed over the craniotomy and sealed with superglue. Then a
metal headplate was affixed to the skull using dental cement.
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Subcutaneous buprenorphine was given every 12 h for two days after
surgery. Mice were allowed two weeks to recover and for blood to clear
from the cranial window.

Intrinsic signal imaging and 2-photon calcium imaging

Barrel cortex was located using intrinsic signal imaging in anesthetized
mice, during which individual whiskers were stimulated with a piezo-
electric device at 5 Hz (10 pulses, with a 10-s gap between pulse trains).
Under red light illumination, and through a 5x objective, we recorded
reflectance at the brain surface with a Rolera-mGi Plus digital camera:
changes in blood flow to the barrel corresponding to the deflected
whisker yielded a visible change in reflectance.

Two-photon calcium imaging, through a 16x/0.8NA water
immersion Nikon objective and with the laser set to 940 nm, was
conducted on a Sutter Moveable Objective Microscope; images (512 x
512 pixels) were acquired using Scanlmage software with a 30 Hz
acquisition frame rate.

Cells in L2/3 of barrel cortex were imaged each day during beha-
vioral training, and the field of view was kept constant between days.
The center of the barrel field (C or D row) was targeted for imaging.

Whisker-based object-detection behavioral paradigm

Our behavioral paradigm was a Pavlovian object-detection task. 10
mice learned the task described below; all data from the “conditioned”
cohort come from this group of mice. First, mice were hand-habituated
for several days. Second, a “lick-training” phase occurred: mice were
water-restricted and head-fixed into the behavioral apparatus, and
water was delivered through a lick-port. Initially, water was delivered
manually; once mice began to spontaneously lick at the lick-port, water
was delivered contingent upon the animals’ licking. Licks were mea-
sured using an infrared lick-detector: whenever the tongue touched
the lick-port, it covered a fiber-optic cable leading to the infrared
detector, and the event was registered as a lick.

Finally, the detection task training began. In this paradigm
(Fig. 1a), two objects were affixed to opposite arms of a plus-shaped
wheel. The other two arms were left empty. A motor rotated the wheel,
and brought one of the arms toward the animal’s face on each trial. The
object “enters” the whisker field at time O (Fig. 1a, bottom), and then
stops 500 ms later. The wheel remained in this position for 2s, and
then rotated 45 degrees, such that the space between two arms was in
front of the face. On each trial, the wheel randomly rotated either
clockwise or counter-clockwise. Both directions could result in a
rewarded stimulus. The arm that was ultimately presented was also
selected at random. If the arm presented to the mouse had an object
attached to it, that trial was a “stimulus-present” trial, and was followed
by water reward. The onset of water delivery began 407 ms after the
wheel began to rotate away (10 ms after the wheel completed the 45
degree rotation). On unrewarded, “stimulus-absent” trials, one of the
empty arms was presented, and no water was given. The aforemen-
tioned infrared lick-detector was used to measure licks: anticipatory
licks were counted during the 2's leading up to the reward, or lack
thereof. Sessions lasted ~30 min, and animals performed on average
150-200 trials per session.

For the delayed-offset experiment, stimulus onset did not change,
but for a random 20% of trials, the offset was delayed by 1s (i.e., for
those trials, the stimulus (or empty arm) was present for 3 s rather than
the usual 2s). On rewarded trials, the reward timing did not change
relative to the offset of the stimulus.

To ensure that any effects we observed were due to stimulus-
reward conditioning rather than repeated exposure to stimuli, a
separate control group of 7 mice were trained without rewards. These
mice had ad libitum access to water, and during behavioral training, no
water was delivered through the lick-port. The rest of the task para-
meters remained the same, and these mice were trained, on average,
for the same length of time as the mice in the conditioning cohort.

Histological confirmation of imaging location

After training and imaging experiments were complete, the two-
photon laser was used to create a small lesion at the center of the
imaging field of view (at a depth of 100-150 um). Mice were then
perfused and their brains harvested. 50 um tangential sections were
made, and stained with streptavidin-Alexa 647 in order to visualize the
barrels.

Data processing and analysis

Motion correction and cell identification. Suite2p was used for
motion correction, to identify ROIs, and to extract their signals®®.
These automatically detected ROIs were then manually curated to
remove likely false positives.

Longitudinal tracking. Motion-corrected time averages were aligned
across any two days by warping one image (time average of Day 2) to
match the other (time average of Day 1) with an affine transformation
(using the Python OpenCV library). The same transformation was then
applied to each ROI mask of Day 2, such that the ROI was warped and
shifted to the appropriate location. All ROl locations from the two days
were then compared and checked for degree of overlap. Overlapping
ROIs were given the same label, which identified them as corre-
sponding to the same cell across the two days. In cases where an ROI
from one day overlapped with more than one ROI from the other day,
ROI pairs with the greatest degree of overlap were given the same
labels. Approximately 10% of ROIs exhibited this kind of “double
overlap”. We also performed the same longitudinal tracking analysis,
excluding ROIs with “double overlap”, and saw similar results (Sup-
plementary Fig. 3c).

Once a cell has been found in two imaging sessions and given a
label, it maintains that identity when tracked across additional sessions:
thus, a cell can be longitudinally tracked across numerous sessions.

Quantifying cell responses. Signals were smoothed with a
Savitzky-Golay filter. AF/F at each timepoint was calculated using a
baseline determined by the 8th percentile of a 50 s rolling window
centered at that timepoint.

Transient detection. For each cell, a threshold was set at 2 standard
deviations above the median AF/F for that cell. A transient event onset
was marked whenever the AF/F first crossed the threshold (and the
transient event was considered to end when the AF/F fell below the
threshold) (See Supplementary Fig. 2).

Classifying cell response types. Cells were classified as “on”, “off”,
“on-off”, “reward”, or “none” cells based on the timing of their
responses. Once transients were detected for each cell, a histogram
was calculated indicating the probability of a transient event
occurring at each time within a trial; this probability curve was then
compared to that of shuffled data. Shuffled data was generated by
doing 5000 iterations of a circular shuffle, whereby the data in each
trial was shifted by a random number of frames; thus, any temporal
dynamics were preserved, while the relationship of the data to the
trial timecourse was disturbed. A Z-test compared the transient
probabilities during relevant 1s intervals (around the stimulus
onset and offset, and following reward) to the shuffled data on the
same intervals. This test revealed time intervals during which the
probability of a transient occurring was greater than chance. If a
cell’s transient probability was significantly greater than chance
only during the stimulus onset bin, that cell was classified as an “on”
cell; cells with significant transient probability only at stimulus
offset were “off” cells; “on-off” cells had significant transient prob-
ability at both intervals, and “reward” cells had significant transient
probability after reward. A false discovery rate (FDR) correction
accounted for the large number of cells.
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Decoding analyses. Using Python scikit-learn software®’, we trained
linear support vector machine (SVM) classifiers to decode stimulus
(i.e., classify trial type as “stimulus-present” or “stimulus-absent”), and
to decode choice (i.e., classify the animals’ response as “lick” or “no
lick”), using 4-fold cross-validation (training on 3/4 of the data and
testing on the remaining 1/4). In both cases, we matched the number of
trials between the two classes. We computed the separability of the
classes by projecting (via dot product) neuronal activity of trials of
each class onto the coding direction (as determined by the classifier
weights), and quantifying the earth mover’s distance between the
distributions. Overlap between the distributions corresponds to
decoding errors, and the classes are judged to be more separable the
further apart the distributions are.

To decode time, we split trials into 10-frame-long time bins (1/3 s
duration), and trained SVM decoders to distinguish between time bins.
A confusion matrix (see Fig. 6a) with true time bin identity on the y-axis
and predicted time bins on the x-axis illustrated the ability to decode
time, by showing the proportion of trials for which a given time bin y
was predicted to be time bin x. The matrix was normalized by the true
time bin classes, so the values of each row sum to 1.

Identifying temporal tuning. The degree of temporal information in
each cell’s activity was quantified using the Skaggs spatial information
metric®®. This metric is commonly used to quantify spatial tuning, but
has been applied to the temporal dimension as well®®. We defined cells
as time-tuned if their temporal information exceeded the 95th per-
centile of the temporal information in shuffled data. Among these
time-tuned cells, we then identified the specific temporal “regions” to
which they were tuned, where each cell’s “tuning curve” (probability of
transients across time) was above 95% of shuffled curves.

Whisking analysis

Throughout conditioning, whisking videos were acquired at 125Hz
using a Sony PS3eye camera. Using the Python OpenCV library, we
extracted pixel values within a hand-drawn ROI near the animal’s face,
on the side of the face contacted by the stimuli. The mean difference
between consecutive video frames was used as a measure of whisking
motion. Whisking bouts were identified in a similar manner to calcium
transient events, by tracking where the whisking motion crossed a
threshold. We defined a whisking bout as lasting >0.5 s, so a new bout
could not begin until that time interval elapsed. Whisk-triggered
averages were computed by aligning fluorescence data with the onset
of whisking bouts.

Statistics and reproducibility

Sample sizes were chosen to be comparable to sample sizes of other
studies in the field, and were not chosen based on statistical
methods?*?>?**85¢, No data were excluded from the analyses. Both
trials and experimental groups were randomized: the trial type was
selected randomly for each trial, and animals were allocated to the
conditioned and repeated exposure groups at random. However,
blinding was impossible, as the cohort identity (conditioned vs repe-
ated exposure) was obvious to both the experimenter and the mice for
a number of reasons: repeated exposure mice did not receive water
rewards during the task, so the experimenter had to ensure that this
cohort of mice received water outside of the task context; in addition,
water-restricted mice weighed less.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Due to the size of imaging data, data will be available upon request
from the authors. Source data are provided with this paper.
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