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The modification on proteins with O-linked N-acetyl-β-D-glucosamine (O-GlcNAcylation) is
essential for normal cell physiology. Dysregulation of O-GlcNAcylation leads to many
human diseases, such as cancer, diabetes and neurodegenerative diseases. Recently, the
functional role of O-GlcNAcylation in different physiological states has been elucidated due
to the booming detection technologies. Chemical approaches for the enrichment of
O-GlcNAcylated proteins combined with mass spectrometry-based proteomics enable
the profiling of protein O-GlcNAcylation in a system-wide level. In this review, we
summarize recent progresses on the enrichment and proteomic profiling of protein
O-GlcNAcylation.
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INTRODUCTION

O-GlcNAcylation is a prevalent form of posttranslational modifications on the hydroxyl group of
serine and/or threonine residues (Torres and Hart, 1984). Starting from fructose-6-phosphate, a
glycolytic intermediate, a series of enzymatic reactions (collectively termed the hexosamine
biosynthetic pathway) generate Uridine-Diphosphate N-acetylglucosamine (UDP-GlcNAc), the
sugar donor for protein O-GlcNAcylation (Figure 1). UDP-GlcNAc can also be generated from
the exogenous GlcNAc through the salvage pathway (Bond and Hanover, 2015), and by the
enzymatic conversion of UDP-GalNAc by UDP-galactose-4′-epimerase (GALE) (Figure 1)
(Boyce et al., 2011). Despite the occurrence of O-GlcNAcylation on numerous proteins, only
two enzymes are responsible for the recycling of this modification in cells. O-GlcNAc transferase
(OGT) catalyzes the addition of O-GlcNAc onto diverse protein substrates, while O-GlcNAc
hydrolase (OGA) catalyzes the removal of this modification (Haltiwanger et al., 1990; Lubas
et al., 1997). Notably, O-GlcNAcylation is reversible and highly dynamic in response to different
cellular stimuli to regulate the structure and function of various intracellular proteins (Gao et al.,
2001; Jang et al., 2012; Li and Yi, 2014; Ong et al., 2018). Besides, O-GlcNAcylation can interact with
other posttranslational modifications including phosphorylation, acetylation and ubiquitination
(Vercoutter-Edouart et al., 2015). These features make O-GlcNAcylation a regulator of various
important and basic biological processes such as transcription, stem cell differentiation, signal
transduction, cell cycle progression, and metabolic reprogramming (Hart et al., 2011; Bond and
Hanover, 2015). For example, recent studies revealed that O-GlcNAcylation of Notch1 elevated its
stability by abolishing the binding of E3 ubiquitin ligase Itch, thus maintaining the self-renewal of
adult neural stem cells (Chen et al., 2021). Tan et al. found that O-GlcNAcylation of serine/arginine-
rich protein kinase 2 (SRPK2) promoted de novo lipogenesis by regulating pre-mRNA splicing (Tan
et al., 2021). Duan et al. revealed O-GlcNAcylation of RACK1 on serine 122 promoted its protein
stability, ribosome binding and interaction with PKCβII to modulate hepatocellular carcinoma
(HCC) tumorigenesis (Duan et al., 2018). Consequently, dysregulation of O-GlcNAc cycling has
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been implicated in the pathology of various diseases, including
but not limited to, diabetes, cancer, cardiovascular diseases, and
neuronal disorders (Slawson and Hart, 2011; Vaidyanathan and
Wells, 2014; Yuzwa and Vocadlo, 2014). However, the specific
molecular mechanisms by which O-GlcNAcylation contributes to
the development and progression of these diseases remain to be
elucidated.

Elucidating the function of O-GlcNAcylation in both
physiological and pathological processes requires reliable and
powerful detection tools to visualize and quantify the dynamics
of O-GlcNAcylation. However, it is challenging to detect
O-GlcNAcylated proteins by conventional techniques due to the
regulatory nature of the modification (e.g., low abundance and
highly dynamic) and the unique chemical characteristics (e.g., low
immunogenicity and chemically/enzymatically labile) (Thompson
et al., 2018). These features have called for the development of
effective approaches to enrich and quantify this modification. In this
review, we aim to provide a concise summary of recent advances to
use chemistry-assisted proteomic methods to profile protein
O-GlcNAcylation in a system-wise level.

ENRICHMENT STRATEGIES FOR PROTEIN
O-GLCNACYLATION

Antibodies and Lectins
Unlike phosphorylation and other PTMs for which site-specific
antibodies are available, effective and specific antibodies for

O-GlcNAc are difficult to develop due to the low
immunogenicity of the neutral O-GlcNAc sugar (Monsigny
et al., 1979). The commonly used O-GlcNAc antibodies are two
pan-antibodies (CTD110.6 and RL2), raised against
glycopeptides derived from the C-terminal domain of RNA
polymerase II, and rat liver nuclear envelopes, respectively
(Snow et al., 1987; Comer et al., 2001). In addition, a few
mouse monoclonal antibodies were developed, including
HGAC85 (Turner et al., 1990), 10D8 (Yoshida et al., 1989),
18B10.7C (#3), 9D1. E4 (#10), and 1F5. D6 (#14) (Teo et al.,
2010). These pan-antibodies were produced to yield the broad
possible coverage of the modification. Although these
antibodies can be employed for the detection of
O-GlcNAcylated proteins, they exhibit different substrate
recognition specificity. For example, CTD110.6, 18B10. 7C
(#3), and 9D1. E4 (#10) are more inclined to recognize
O-GlcNAc on the cell surface glycoproteins, and CTD110.6
shows cross-reactivity toward GlcNAc-containing N-glycans.
RL2 also has a preference toward specific peptide sequences
(Tashima and Stanley, 2014). In addition to the antibodies,
specific lectins were also used in studies to detect O-GlcNAc.
The lectin WGA (Wheat Germ Agglutinin) was first applied to
detect and enrich O-GlcNAcylated proteins. But this plant
lectin can recognize all terminal GlcNAc sugars as well as
sialic acids (Monsigny et al., 1979; Snow et al., 1987). To
increase the specificity, the succinyl WGA (sWGA) was
developed, in which the recognition of sialic acid was
inhibited via succinylation of WGA into the sialic acid

FIGURE 1 | The source of O-GlcNAcylation donor UDP-GlcNAc in the cells. Glucose is converted to UDP-GlcNAc through the hexosamine biosynthetic pathway
(HBP). Enzyme names shown in blue. GFAT: Glutamine fructose-6-phosphate amino-transferase, GNPNAT1: Glucosamine-Phosphate N-Acetyltransferase 1, PGM3:
Phosphoglucomutase 3, UAP1: UDP-N-Acetylglucosamine pyrophosphorylase 1. UDP-GlcNAc also can be produced by the GlcNAc and GalNAc salvage pathways.
Enzyme names shown in blue. NAGK: GlcNAc kinase, AGM1: GlcNAc-6-phosphate mutase, AGX1 or AGX2: UDP-GlcNAc pyrophosphorylase, GALK2:
Galactokinase 2, GALE: UDP-galactose-4′-epimerase. Bold arrow represents that reaction is easier to perform. O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase
(OGA) regulate the addition and the removal of O-GlcNAc, respectively.
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recognition domain (Nakanuma et al., 1993). Another two
fungal lectins PVL and AAL2 can bind to terminal non-
reducing GlcNAc moieties (Kochibe and Matta, 1989; Ren
et al., 2013). Recently, a recombinant lectin PVL (rPVL)
produced from Escherichia coli was reported to have a
higher specificity and affinity for proteins with multiple
GlcNAc than WGA, AAL2 and PVLA (Machon et al., 2017).
All of these lectins do not distinguish between terminal
N-linked GlcNAc and O-GlcNAc residues, thus, the addition
of PNGase F and/or sialidase is needed to remove the complex
N-glycans and sialic acids during the detection and enrichment
of O-GlcNAcylated proteins (Cieniewski-Bernard et al., 2004;
Lefebvre et al., 2004; Zachara, 2009).

Metabolic Labeling of O-GlcNAcylated
Proteins
Metabolic chemical reporters (MCRs) of glycosylation are
unnatural monosaccharide analogs that contain bioorthogonal
functionalities such as an alkyne or azide (Grammel and Hang,
2013; Chuh and Pratt, 2015; Chuh et al., 2016). Metabolic
incorporation of these MCRs followed by bioorthogonal
reactions such as the copper (I)-catalyzed azide-alkyne
cycloaddition (CuAAC) has been extensively used to label
complex glycans containing sialic acids, fucose, GalNAc, or
GlcNAc (Figure 2A) (Prescher and Bertozzi, 2005; Best, 2009).

In the detection of O-GlcNAcylation, a few specific MCRs were
developed (Figure 2B). The first O-GlcNAc-targeted MCR
1,3,5,6-tetra-O-acetyl-N-azidoacetyl-glucosamine (Ac4GlcNAz,
1) has been employed for the visualization and proteomic
profiling of O-GlcNAcylated proteins (Vocadlo et al., 2003).
The acetyl groups act as protecting groups to enhance the
permeability of GlcNAz into the cell. After deacetylation by
cellular esterases, Ac4GlcNAz could be metabolically converted
to UDP-GlcNAz which was then transferred to proteins by OGT
(Zaro et al., 2011). Using this MCR, Hahne et al. identified about
1,500 O-GlcNAc proteins in cells. Coupled with β-elimination
reaction, they mapped 185 O-GlcNAc modification sites on 80
proteins (Hahne et al., 2013). However, GlcNAz showed low
selectivity since it could be incorporated into N-glycans
(Cieniewski-Bernard et al., 2014). Subsequently, 1,3,5,6-tetra-O-
acetyl-N-azidoacetyl-galactosamine (Ac4GalNAz, 2) was used to
label O-GlcNAcylated proteins (Boyce et al., 2011). However,
further studies revealed that GlcNAz and GalNAz could
interconvert to each other in cells, causing the labeling reaction
unable to distinguish O-GlcNAc frommucin-type O-linked glycans
(Chuh et al., 2014; Qin et al., 2020). To solve this problem, Zaro et al.
(2011) employed alkyneacetyl-GlcNAc analogue (GlcNAlk, 3) and
alkyneacetyl-GalNAc analogue (GalNAlk, 4) to label
O-GlcNAcylated proteins. They found that GlcNAlk could not
metabolically convert to GalNAlk, thus it would not label mucin-
type O-linked glycans. GalNAlk showed a lower labeling efficiency

FIGURE 2 | Metabolic labeling strategy for capture and detection of O-GlcNAcylated proteins. (A) Schematic of metabolic labeling. Unnatural monosaccharides
enter cells and are metabolically converted to UDP-GlcNAc analogs which serve as donors for O-GlcNAcylation by OGT. The labeled O-GlcNAcylated proteins are
enriched through bioorthogonal reactions and analyzed by LC-MS/MS or imaged in living cells. (B)Metabolic chemical reporters used for the labeling of O-GlcNAcylated
proteins in cells.
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since it was hard to metabolically convert to GlcNAlk in cells.
Unfortunately, GlcNAlk was also incorporated into N-linked
glycans, compromising the labeling specificity (Zaro et al., 2011).
Chuh et al. (2014) circumvented this limitation by using 1,3,5-tri-O-
acetyl-6-azido-6-deoxy-N-acetyl-glucosamine (Ac36AzGlcNAc, 5)
(Chuh et al., 2014). Unlike the other MCRs mentioned above,
6AzGlcNAc could be directly phosphorylated at the 1-hydroxyl to
bypass the canonical GlcNAc salvage pathway, which endowed it
with a higher degree of selectivity for O-GlcNAcylated proteins
(Chuh et al., 2014). However, 6AzGlcNAc showed a lower
conversion efficiency to UDP-GlcNAc as compared to GlcNAz,
emphasizing the potential balance between labeling efficiency and
selectivity. Notably, O-GlcNAcylation is a dynamic process, in
which the endogenous OGA can rapidly remove metabolic labels
on proteins to decrease the labeling signal. Recently, hydrolysis-
resistant MCRs such as 1, 3, 6-tri-O-acetyl-4-deoxy- N-azidoacetyl-
glucosamine (Ac34dGlcNAz, 6) and 1,3,5,6-tetra-O-acetyl-2-azido-
2-deoxy-glucose (Ac42AzGlc, 7) have exhibited higher labeling
efficiency and specificity for O-GlcNAc-modified proteins (Li
et al., 2016; Zaro et al., 2017). Metabolic incorporation of
Ac42AzGlc is resistant to hydrolysis due to the lack of
anchimeric assistance of the N-acetyl group (Macauley et al.,
2005). Differently, Ac34dGlcNAz reduces nonspecific
incorporation into extracellular glycans and increases resistance
to OGA hydrolysis due to the absence of the 4′-OH group. (Cecioni
and Vocadlo, 2013). Despite the enhancement ofMCR permeability
into cells by acetyl protecting groups, a recent study showed that
per-O-acetylated azido and alkynyl sugars may spontaneously react
with the cysteine side chains to generate S-glycosylation through a
nonenzymatic mechanism (Qin et al., 2017). Therefore, per-O-
acetylated sugar MCRs likely cause some false positives during the
profiling of O-GlcNAcylation (Hao et al., 2019). On the other hand,
the non-O-acetylated sugars are hard to cross the cell membrane for
efficient labeling. To address this issue, 1,3-di-O-propionyl-N-
azidoacetylgalactosamine (1,3-Pr2GalNAz, 8) was developed as a
novel metabolic probe for O-GlcNAc labeling which could be

readily incorporated into O-GlcNAcylated proteins without
introducing artificial S-glycosylation (Hao et al., 2019).
Collectively, MCRs are robust and powerful tools to label and
profile O-GlcNAcylated proteins in living cells.

Chemoenzymatic Labeling of O-GlcNAc
Proteins
As a complementary approach to the metabolic labeling, a
chemoenzymatic labeling strategy has also been widely used in
the capture and profiling of O-GlcNAcylated proteins (Figure 3).
The Hart lab first developed a radioassay using a radiolabeled
UDP-Gal and the enzyme β-1, 4-galactosyltransferase 1 (GalT1),
which specifically transfers Gal to terminal GlcNAc moieties
(Hayes et al., 1995; Torres and Hart, 1984). To extend the
application of this method, a GalT1 mutant (Y289L) was
generated to expand the substrate binding pocket, which
allowed for the transfer of UDP-Gal analogues appended with
chemical tags including azide, followed by bioorthogonal
reactions, O-GlcNAc-modified peptides were biotinylated and
subsequently were captured with avidin beads, eluted with free
biotin, and sequenced by ETD mass spectrometry. (Figure 3)
(Khidekel et al., 2003; Clark et al., 2008). Using this
chemoenzymatic labeling strategy, the Hsieh-Wilson group
carried out the first glycoproteomic study of O-GlcNAcylated
proteins in the rat brain, in which some O-GlcNAc sites on
25 O-GlcNAcylated proteins were mapped (Khidekel et al., 2004).
The bulky biotin group compromised the glycopeptide recovery
efficiency. In the follow-up studies, a few cleavable enrichment
probes were employed to improve the recovery of enriched
glycopeptides and increase the rate of true assignment. The
Hart group used a photocleavable biotin-alkyne probe to
capture GalNAz-tagged O-GlcNAcylated peptides. When
exposed to UV light (365 nm), O-GlcNAcylated peptides were
released from the avidin chromatography column, followed by
protein identification and site mapping by mass spectrometry

FIGURE3 | Schematic of chemoenzymatic labeling strategy for enrichment and detection of O-GlcNAc proteins. O-GlcNAcylated proteins in cell lysates are labeled
with azide group using β-1,4-galactosyltransferase GalT (Y289L). The biotin with the alkyne group is added to O-GlcNAcylated proteins by copper(I)-catalyzed azide-
alkyne cycloaddition (CuAAC) chemistry. Following labeling with biotin, O-GlcNAcylated proteins can be captured using streptavidin resin and then simultaneously
proteins are digested and analyzed by LC-MS/MS.
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(Wang et al., 2010a). Alfaro et al. used a photocleavable biotin
probe to enrich and identify 274 O-GlcNAcylated proteins in
mouse cerebral tissues (Alfaro et al., 2012). Tsumoto et al. used a
novel alkyne probe containing thiol-alkyne to capture
O-GlcNAcylated peptides. Glycopeptides were released by the
reversible disulfide formation with a thiol-reactive resin
(Tsumoto et al., 2015). Griffin et al. developed a probe that
would be positively charged when it was cleaved to facilitate ETD-
MS detection. An alkyne- 1-(4, 4-dimethyl-2, 6-dioxocyclohex-1-
ylidene)ethyl (Dde)-biotin linker was used to label
O-GlcNAcylated proteins. The Dde moiety can be
quantitatively removed by hydrazine and showed higher
labeling efficiency than PC-biotin-alkyne (Griffin et al., 2016).
On the other hand, 3-ethynylbenzaldehyde probe was used to
react with GalNAz via the copper-catalyzed Huisgen 1, 3-
cycloaddition to form aromatic aldehyde-derivatized
glycopeptides which were enriched by reversible hydrazone
formation with hydrazide resins. Subsequently, glycopeptides
could be eluted using hydroxylamine (Nishikaze et al., 2013).

In addition to capturing O-GlcNAcylated proteins, this
strategy can be applied in live cell imaging, histological
detection and modification stoichiometry quantification. Clark
el at. labeled O-GlcNAcylated proteins selectively with a
fluorescent reporter group to detect and image cellular
O-GlcNAcylated proteins in living cells. (Clark et al., 2008).
The Wu group applied this strategy to label histological
specimens and demonstrated the change of O-GlcNAc levels
during tumor development (Aguilar et al., 2017). To quantify
O-GlcNAc stoichiometries on specific proteins, the Hsieh-Wilson
group conjugated O-GlcNAcylated proteins with PEG mass tags.
Compared to the nonglycosylated proteins, O-GlcNAcylated
proteins showed the mass-shifted bands detected by
immunoblotting with indicated antibodies. The occupancy
levels of O-GlcNAcylation were determined by the intensity
ratio of the glycosylated and nonglycosylated bands (Rexach
et al., 2010). The Pratt group employed a semisynthetic
O-GlcNAcylated protein standard combined with Strain-
Promoted Cycloaddition (SPAAC) chemoenzymatic mass
tagging protocol to improve the accuracy of O-GlcNAc
stoichiometries analysis (Darabedian et al., 2018).

In summary, the biochemical tools and methods such as
antibodies, lectins, metabolic, or chemoenzymatic labeling have
different specificity and sensitivity in terms of enrichment and
detection of O-GlcNAcylated proteins (Table 1). These strategies
exhibit a broad range of applications including immunoblotting,
proteomics, cellular and histological imaging (Table 1).

QUANTITATIVE PROTEOMICS FOR
O-GLCNACYLATION

O-GlcNAcylation is highly dynamic in response to various
environmental stimuli. Quantifying its dynamics is key to
elucidating the roles of O-GlcNAcylation in biological
processes. Mass spectrometry-based quantitative proteomics, in
combination with the aforementioned O-GlcNAcylated peptide
enrichment methods, have recently emerged as a powerful tool to
quantify protein O-GlcNAcylation in various biological settings.

Stable Isotope LabelingWith Amino Acids in
Cell Culture-Based Quantitative Proteomics
SILAC (Stable Isotope Labeling with AminoAcids in Cell Culture)
is one of the most widely used quantitative proteomic techniques
(Chen et al., 2015). Cells treated under different conditions are
grown in the presence of normal (light) or isotopically enriched
(heavy) versions of a specific label (amino acid, carbon, nitrogen)
to produce unlabeled and fully labeled proteins. The glycosylated
proteins are enriched, combined, followed by proteolysis and
quantification by MS/MS. The mass shift due to the addition
of isotope labeling in mass spectrometry can be used to quantify
the difference in protein glycosylation abundance (Figure 4).
Using SILAC-based quantitative proteomics, Zachara et al.
identified 15 proteins that were dynamically modified by
O-GlcNAc in response to heat stress (Zachara et al., 2011).
Myers et al. found that occupancies of O-GlcNAc on different
sites within the same protein were affected by polycombrepressive
complex 2 (PRC2) in mouse embryonic stem cells, emphasizing
the site-specific regulation of O-GlcNAcylation (Myers et al.,
2011). The Hart group found that 10 proteins had an apparent
increase of O-GlcNAcylation and 19 proteins showed a reduction
of O-GlcNAcylation upon GSK-3 inhibition, indicating a complex
interaction between phosphorylation and O-GlcNAcylation
(Wang et al., 2007). Using SILAC combined with the
chemoenzymatic labeling with a PC-biotin-alkyne tag, Wang
et al. monitored the changes in the abundance of proteins and
their O-GlcNAcylation during cytokinesis (Wang et al., 2010a).
Recently, Qin et al. combined SILAC-based quantitative
chemoproteomics with metabolic labeling using
Ac36AzGlcNAc to analyze the turnover dynamics of
O-GlcNAcylated proteins. Eventually, they identified
896 O-GlcNAcylated proteins, 86% of which showed a
dynamic turnover in 12 h in the experiments (Qin et al., 2017).

TABLE 1 | The comparison of different detection methods for O-GlcNAcylation.

Detection methods Specifficity Sensitivity Applications References

Lectin Low Low Western blot, proteomics Vosseller et al. (2006), Chalkley et al. (2009)
Antibody Moderate Moderate Western blot, proteomics Snow et al. (1987), Teo et al. (2010), Comer et al. (2001)
Metabolic labeling Moderate High Western blot, proteomics, live cell imaging, flow

cytometry, in-gel fluorescence
Tan et al. (2018), Zaro et al. (2017), Qin W. et al. (2018), Li
et al. (2016), Clark et al. (2008)

Chemoenzymatic
labeling

High High Western blot, proteomics, in-gel fluorescence,
histology, in vivo imaging

Rouhanifard et al. (2014), Aguilar et al. (2017), Li et al. (2019),
Clark et al. (2008)
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β-Elimination Followed by Michael Addition
With Dithiothreitol-Based Quantitative
Strategy
Mapping O-GlcNAcylation sites is vital for elucidating the functional
role of O-GlcNAcylation in specific biological environment.
However, this can be very challenging because there is no known
consensus sequence of O-GlcNAcylation on proteins, and that
O-GlcNAc occurs in substoichiometry on many proteins. In
addition, the O-glycosidic bond is labile, easily lost in collision-
induced dissociation (CID) mass spectrometry (Greis et al., 1996;
Whelan and Hart, 2006). To address these challenges, Hart and his
colleagues developed the BEMAD method (β-elimination followed
by Michael addition with dithiothreitol), which chemically converts
O-GlcNAcylated serine and threonine residues into stable thiol
derivatives (Figure 5) (Wells et al., 2002). Using the isotope-
labeled dithiothreitol, BEMAD had been applied to quantify and
map O-GlcNAcylation sites after chemoenzymatic labeling (Zachara
et al., 2011; Tsumoto et al., 2017). The replacement of labile
glycosylation with a more stable dithiothreitol modification
significantly improved the efficiency of site-identification (Wells
et al., 2002). The Hart group further employed isobaric tags for
relative and absolute quantification (iTRAQ) and BEMAD coupled
with the chemoenzymatic labeling to compare the site-specific
O-GlcNAc occupancy on proteins obtained from normal and
diabetic erythrocytes, highlighting the differentially regulated
O-GlcNAcylation in diabetic erythrocytes (Wang et al., 2009).
Sakabe et al. used the chemoenzymatic labeling and BEMAD

method to identify various O-GlcNAc sites on histones H2A,
H2B, and H4, elucidating that dynamic O-GlcNAcylation is a
critical part of the histone code (Sakabe et al., 2009). Morover,
Lund et al. employed a similar strategy to detect O-GlcNAc
dynamics in response to T cell activation. More than
200 O-GlcNAcylated proteins were identified, among which are a
number of proteins functionally related to RNA metabolism in
human T cells, implying the functional importance of
O-GlcNAcylation in T cell biology (Lund et al., 2016).

QUIC and TMT Tag Strategies for Profiling
O-GlcNAcylation
Another approach couples O-GlcNAcylated peptide labeling/
enrichment methods with tandem mass tagging for quantitative
profiling of O-GlcNAcylation. The Hsieh-Wilson group developed
a quantitative isotopic and chemoenzymatic tag (QUIC-Tag) strategy
to identify and quantify O-GlcNAcylation in mouse brains in
response to cellular stimulation. O-GlcNAcylated proteins were
labeled selectively with a ketone-containing galactose analog via
the chemoenzymatic strategy. The ketone functionality was
reacted with an aminooxy biotin derivative, which can be
captured by avidin chromatography. Subsequently, the proteins
were digested and labeled with formaldehyde/NaCNBH3 or
deuterated formaldehyde/NaCNBD3 by a modified dimethyl
labeling strategy (Figure 6A). Coupled with tandem mass
spectrometry, they demonstrated the dynamic O-GlcNAcylation

FIGURE 5 | Schematic of BEMAD-based Quantitative strategy. O-GlcNAcylated serine and threonine residues can be converted to dehydroalanine by
β-elimination reaction. Subsequently, isotope-labeled light DTT (DTTd0) or heavy DTT (DTT-d6) is added to O-GlcNAcylated peptides by Michael addition. The peptides
are mixed and analyzed by LC-MS/MS. The red balls and blue balls represent heavy or light labeling sites, respectively.

FIGURE 4 | Schematic of SILAC-based Quantitative proteomics for profiling O-GlcNAcylation.
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in mediating neuronal communication (Khidekel et al., 2007). The
tandem mass tag (TMT) probes containing an amine-reactive NHS-
ester group, a spacer arm and an MS/MS reporter, are commonly
used to label two to six peptide samples and measure relative protein
expression levels with MS/MS (Thompson et al., 2003). Wang et al.
integrated isobaric TMT labeling with chemoenzymatic enrichment
to quantify O-GlcNAcylation between Alzheimer’s diseased brain
and normal brain tissues. They identified 530 O-GlcNAcylated
proteins covering 1,094 O-GlcNAcylation sites in the brain. The
O-GlcNAcylation levels of 81 proteins in the Alzheimer’s patients
brain were changed, indicating that dysregulation of
O-GlcNAcylation may play an important role in the development
of Alzheimer’s disease (Wang et al., 2017).

IsoTaG-Based Quantitative Proteomics
Recently, an approach termed Isotope Targeted Glycoproteomics
(IsoTaG) was developed by the Bertozzi group to enrich labeled
glycopeptides and confidently profile the intact glycoproteome by
MS (Woo et al., 2015). Specifically, glycoproteins were labeled
metabolically with the azido functionality. Then, the soTaG silane
Probe 1, composed of an acid-cleavable biotin reagent containing
an isotopic label and a terminal alkyne, was conjugated with the
labeled glycoproteins. After capturing by streptavidin-agarose
beads, and on-bead proteolytic digestion, the bound
glycopeptides were released from the biotin tag and further
sequenced by MS (Figure 7B). The quantification of the
glycopeptides was achieved by using the pattern-searching
algorithm mediated MS analysis to isotopically recoded
species. IsoTaG shows a high sensitivity and repeatability
when applied to low-abundance glycopeptides. Another
strength of this method is that it promotes mass-independent

targeted database searching for high-confidence distribution.
With this strategy, Woo et al. metabolically labeled
O-GlcNAcylated proteins with Ac4GalNAz to explore
O-GlcNAcylation alterations in response to T-cell activation.
They found that more than 500 glycopeptides underwent
significant changes during T cell activation, facilitating the
functional understanding of O-GlcNAcylation in resting and
activated primary human T cells (Woo et al., 2018). Inspired
by the IsoTaG strategy, Qin et al. developed an acid-cleavable
dialkoxydiphenylsilane (DADPS) linker (Probe 2) to quantify
O-GlcNAcylation. The isotopically labeled DADPS probe could
be used to capture glycopeptides, which were then released after
cleavage with mild acid and quantified by comparing the isotopic
ratios using ETD-based tandem mass spectroscopy (Qin K. et al.,
2018). Similarly, Li et al. designed an isotope-coded
photocleavable probe for quantifying O-GlcNAcylation.
O-GlcNAcylated proteins from two different cell states were
chemoenzymatically captured by the Probe 3. The linker was
cleaved when exposed to ultraviolet light (365 nm). The released
glycopeptides were further analyzed for sites mapping and
relative quantification (Li et al., 2019). They found that
compared with sorafenib-sensitive liver carcinoma cells, 55
glycopeptides in the sorafenib-resistant cells showed an
increase in O-GlcNAcylation stoichiometry, suggesting a role
of O-GlcNAcylation in regulating tumor chemoresistance. Taken
together, IsoTaG-based quantitative O-GlcNAcylation
proteomics strategy greatly facilitates the quantification of
glycoproteins by installing isotopic tags directly onto the
O-GlcNAc moiety. The isotopic labeling can be used as the
dual function to improve the reliability of glycopeptide
assignment.

FIGURE 6 | Schematic of QUIC and TMT Quantitative strategy for O-GlcNAcylation. (A) QUIC-Tag strategy. O-GlcNAcylated proteins first are chemoenzymatic
labeled with a tag containing cleavable group and biotin, followed by trypsin digestion. The peptides are labeled with NaCNBH3 or NaCNBD3 by a modified dimethyl
labeling strategy. Subsequently, O-GlcNAcylated peptides are enriched by streptavidin agarose and then released, mixed and analyzed by LC-MS/MS. (B) TMT
strategy. The proteins are digested, labeled with TMT. O-GlcNAcylated peptides are then enriched, released and subjected to LC-MS/MS analysis.
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SUMMARY AND OUTLOOK

O-GlcNAcylation of intracellular proteins plays a fundamental role in
health and disease. Effective ways to characterize the existence and
dynamics of this modification will greatly promote the study of its
functional significance. However, traditionalmethods, such as tritium
labeling and the use of pan-O-GlcNAc antibodies, lack sensitivity and
specificity. In addition, it is difficult to apply these methods to detect
the changes and stoichiometry of O-GlcNAcylation in a complex
system. The recent development of various chemical tools has
provided exciting solutions to these problems. As stated above, a
number of metabolic probes have been applied to detect and enrich
O-GlcNAcylated proteins in living cells. A complementary
chemoenzymatic labeling approach is also widely used to detect
and profile O-GlcNAcylated proteins from cell lysates and tissues.
Beyond the enrichment strategies, improvements in mass
spectrometry technology have enabled quantifying and mapping
O-GlcNAc sites with unprecedented accuracy.

O-GlcNAcylation is highly dynamic in response to nutrient
availability and various environmental cues. With the variety of
tools available to researchers, it is logical to profile and quantify
O-GlcNAcylation under specific physiological contexts to reveal
context-dependent functions of O-GlcNAc. In addition, current

ways to modulate cellular O-GlcNAcylation rely on the use of
small-molecule inhibitors or genetic knockdown/knockout,
which lack the spatiotemporal resolution. Strategies that confer
spatiotemporal control of O-GlcNAcylation are much needed.
Moreover, O-GlcNAcylation on specific proteins has been shown
to govern the protein function. Although there are some advances
in developing strategies to manipulate protein-specific
O-GlcNAcylation in cells (Gorelik and van Aalten, 2020;
Ramirez et al., 2020; Ge et al., 2021), such studies are still in
the infancy. In addition, the quantitative proteomics technique
can’t necessarily distinguish between changes in O-GlcNAc
stoichiometry vs. changes in protein expression, which
remains to be addressed. Nevertheless, we anticipate that
further development of chemical tools will provide an
important foundation for uncovering the functional
importance of O-GlcNAcylation in the frontiers of biology
and human health.
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FIGURE 7 | IsoTaG-based quantitative proteomics for profiling of protein O-GlcNAc modification. (A) Structures of probes. R and red balls represent heavy or light
labeling sites. Black box represents cleavable groups (B)Workflow of differential labeling and quantitative analysis of O-GlcNAcylated proteins. O-GlcNAcylated proteins
first are labeled with azide group by Metabolic labeling or chemoenzymatic strategies. Isotope probes are added to O-GlcNAcylated proteins via CuAAC reaction,
followed by incubation with streptavidin beads. The proteins on the beads are digested with trypsin and O-GlcNAcylated peptides are released by cleavable sites
and analyzed by LC-MS/MS.
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