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Abstract: Since atomically thin two-dimensional (2D) graphene was successfully synthesized in 2004,
it has garnered considerable interest due to its advanced properties. However, the weak optical
absorption and zero bandgap strictly limit its further development in optoelectronic applications. In
this regard, other 2D materials, including black phosphorus (BP), transition metal dichalcogenides
(TMDCs), 2D Te nanoflakes, and so forth, possess advantage properties, such as tunable bandgap,
high carrier mobility, ultra-broadband optical absorption, and response, enable 2D materials to hold
great potential for next-generation optoelectronic devices, in particular, mid-infrared (MIR) band,
which has attracted much attention due to its intensive applications, such as target acquisition, remote
sensing, optical communication, and night vision. Motivated by this, this article will focus on the
recent progress of semiconducting 2D materials in MIR optoelectronic devices that present a suitable
category of 2D materials for light emission devices, modulators, and photodetectors in the MIR band.
The challenges encountered and prospects are summarized at the end. We believe that milestone
investigations of 2D materials beyond graphene-based MIR optoelectronic devices will emerge soon,
and their positive contribution to the nano device commercialization is highly expected.

Keywords: two-dimensional materials; mid-infrared; modulator; photodetectors

1. Introduction

Two-dimensional (2D) materials have shown intensive talent since the graphene nano
flake was synthesized in 2004 [1]. In sharp contrast to conventional semiconductor matters,
optoelectronic nanodevices on account of graphene demonstrate distinguished properties,
including fast photoresponse speed, nanoscale integrate degree, ultrahigh room tempera-
ture carrier mobility, large modulation band width, and so forth [2]. However, the weak
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light absorption and zero bandgap strictly restrict its further development in optoelectronic
applications. Fortunately, tremendous 2D materials have been intensively investigated,
such as transition metal dichalcogenides (TMDCs) [3–7], black phosphorus (BP) [8–10],
perovskite [11,12], and graphdiyne (GDY) [13–15], which possess comparable or superior
optical, electronic, and optoelectronic properties to graphene, such as tunable bandgaps,
high carrier mobility at room temperature, high optical response, ultra-broadband op-
tical absorption, excellent current saturation, high electrical and thermal conductivity,
strong luminescence emission, and strong luminescence emission [5,7,8,15], and is widely
employed for electronic and optoelectronic applications [16–18], including field effect
transistors [19–21], photodetectors (PD) [22–24], modulators [25,26], sensor [27–29], logic
circuits [19,30,31], and so forth [32–34]. Additionally, in sharp contrast to those elec-
tronic and optoelectronic devices based on conventional bulk materials, 2D materials
based these devices, in particular, whose working wavelength concentrated in the infrared
region [35,36], are highly integrated [37–39], operated at room temperature, had higher
signal-to-noise ratio, had faster response speed [40], etc.

Compared to visible band, infrared light is more important in both civilian and mil-
itary applications, such as night vision [41–47], optical communication [48–55], remote
sensing [56–62], target acquisition [63–69], and so forth. However, infrared light, in particu-
lar, mid-infrared (MIR) light, is less investigated compared to visible light. Fortunately, 2D
materials can be employed to fabricate high performance MIR optoelectronic devices owing
to their superior properties, in particular suitable bandgap, strong light–matter interaction,
high on-chip integrate degree, and so forth [42,50,55]. However, more investigations are
needed to be carried out to get a better insight into the transport mechanisms, carrier
dynamics, and performance of 2D materials-based MIR optoelectronic devices [70–72]. In
this regard, a comprehensive and detailed understanding of 2D materials beyond graphene-
based MIR optoelectronic devices is necessary for the further development of MIR research
and technology. Inspired by this point, we summarized the recent development in the
field of 2D materials beyond graphene-based MIR optoelectronic devices. Firstly, we
briefly summarized the suitable 2D material candidates for MIR optoelectronic applications.
Then, we focused on the some recently demonstrated progress of 2D materials beyond
graphene-based MIR optoelectronic devices, including light emission devices, modulators,
and photodetectors, as summarized in Figure 1. At the end of this review, a perspective on
challenges and future development of these attractive materials is also presented.
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2. Materials and Methods 2D Material Candidates for MIR Applications

In line with density functional theory (DFT) simulations [73], there are almost
5619 compounds with layered structures, and among these layered materials,
1825 compounds can be easily or potentially synthesized [74]. For MIR applications,
whose wavelength range from 8 µm to 15 µm, the material shall possess stable absorption
and interaction with MIR electromagnetic wave, which means that the band gap of the 2D
material must be smaller than the photon energy of the incident light [75]. Consequently,
the available 2D materials are matching for MIR applications. Thus, it is meaningful to seek
novel 2D materials with excellent properties in the MIR band, in particular, extraordinary
optical absorption, long environmental stability, high responsivity, and other excellent opto-
electronic properties. In this section, we will summarize the suitable 2D material candidates
for MIR optoelectronic applications, including their electric and optical properties.

2.1. BP and Related Materials

Since BP flakes were successfully synthesized, it has shown tremendous effect by virtue
of its exceptional talent, such as high carrier mobility, excellent nonlinear optical response,
strong in-plane anisotropy [76], and thickness dependent bandgap [76–80]. Among these
advanced properties, the tunable bandgap is one of the most interesting properties [81,82].
Additionally, with the introduction of the extra modulation processes, such as quantum
confinement, high pressure, chemical doping, and high pressure, employing a new tuning
knob and mechanical strain means it can be further modified [83–91]. Remarkably, BP’s
bandgap could be further extended to zero eV via an applied perpendicular bias field, which
expands the optical absorption band of BP in MIR and even terahertz (THz) region [92].
The high room temperature carrier mobility and ON/OFF ratio enable BP to possess large
sensitivity, fast response speed, and advanced optical absorption efficiency with low dark
current, which are desirable for light detection, in particular, MIR detection. Thus, both the
widely tunable band gap and excellent electrical properties enable BP as an MIR promising
material with high performance. However, the instability issues of BP flakes, caused by
oxygen-, water-, and light-induced oxidation, are more and more serious, which severely
hinders its further development in both academic and practical applications. To solve this
issue, tremendous efforts have been employed to enhance the environmental stability of
BP flakes, such as encapsulation, covalent/noncovalent functionalization, and metal/non-
metal modification. Recently, BP based composite materials prepared for MIR applications.
In a typical synthesis, BP alloyed with As and C, forming b-AsP and b-PC, whose bandgaps
were predicted to be 0.15 and 0.59 eV at an optimized composition concentration of b-AsP
and monolayer b-PC, respectively [93–96]. Furthermore, for b-PC condition, the room
temperature carrier mobility and the maximum absorbance spectra can be applicable for
MIR photoelectric area. For b-AsP condition, even though the room temperature hole
mobility was suppressed after the alloying process, it is high than that of TMDCs. However,
its easily oxidized properties seriously hinder the following progress in academic and
industrial applications [97,98].

2.2. TMDCs

The TMDCs have also triggered intensive investigations in MIR band due to their su-
perior photoelectric properties [99,100]. TMDCs stack in X-M-X order, and feature layered
hexagonal configurations [101,102]. Interestingly, as the thickness is thinned from bulk
down to monolayer, the indirect bandgap turned into direct bandgap, which ensures a
stronger photoluminescence effect than that of its bulk counterparts [103]. Moreover, since
the excitonic transitions and Van Hoof’s singularity, the optical absorption and light–matter
interaction are apparently increased. An optical absorption larger than 10% of monolayer
TMDCs was observed at resonance exciton wavelengths [104]. Similar to BP, the bandgap
of TMDCs can be effectively adjusted by introducing external modulation processes, such
as electrical field modulation and defect engineering. Consequently, TMDCs are considered
as promising candidates for MIR photoelectric applications [105,106]. Additionally, most
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TMDCs possess stable 1 T phase, which enables TMDCs to possess excellent environ-
ment stability, which is much better than that of BP flakes and comparable to that of 2D
tellurium (Te).

Apart from the TMDCs mentioned above, recently, some noble TMDCs, includ-
ing ReSe2 [107–110], PtS2 [111–115], PtSe2 [21,116], PdS2 [117,118], PdSe2 [118–122], and
SrTiO3/MoS2 [123,124], have attracted much attention due to their excellent environmental
stability and suitable MIR bandgaps. Mid-infrared 2D Photodetector based on bilayer
PtSe2 [125]. Remarkably, the excellent environmental stability (longer than one year) en-
ables PtSe2 to hold great potential for practical application in the industry field. For PdSe2
semiconductor condition, the bandgap can be altered from 0 to 1.3 eV, which is compa-
rable to that of BP. Furthermore, by lowering the atmospheric pressure, the conductivity
type could be altered from p- to n-type of PdSe2 [126]. All this outstanding performance
indicates that TMDCs are suitable for high performance MIR optoelectronic applications.

2.3. Perovskite

Organic–inorganic hybrid perovskite, CH3NH3PbX3 or inorganic perovskite AMX3,
as emerging novel 2D materials, have attracted intensive attention for ultra-broad band
optical equipment owing to the superior optical and electrical performance, such as tun-
able optoelectronic property, great carrier mobility, and large fluorescence generating
efficiency [127–129]. Moreover, perovskite meet the demands of the high performance of
MIR nonlinear optical applications, including immense nonlinear refractive index [130,131],
extraordinary long-term stability [132,133], and high Kerr nonlinearity [134] in MIR band.
All these outstanding findings enable perovskite suitable for MIR optoelectronic
applications [135–138].

2.4. GDY

As innovative 2D all-carbon materials, large scale GDY flakes were successfully syn-
thesized on the surface of copper in 2010 with a special sp–sp2 hybrid structure; they
have been intensively explored in various fields due to their outstanding electronic per-
formance, such as the intrinsic bandgap and great carrier mobility [139–141]. Accord-
ing to various simulations, GDY possesses a direct bandgap range, which presents an
advantage to the zero bandgap of graphene [142–144]. The nonlinear absorption coef-
ficients range from visible to MIR band of GDY and were measured to be larger than
10−1 cm GW−1 [145], which was stronger than that of acknowledged 2D materials, including
graphene (−0.66 cm GW−1) [146], BP (−6.17 cm GW−1) [147], MoS2 (−4.6 cm GW−1) [148],
and MXene (−0.297 cm GW−1) [149], indicating that GDY is suitable for MIR ultrafast
photonic applications [150]. Noticeably, thanks to the great flexibility of the GDY structure
and excellent environmental stability, it can be employed to fabricate high performance
and long-term stability of MIR flexible photodetectors [151,152].

2.5. Other Candidates

Since then, the 2D Te nanoflakes were successfully synthesized; its alluring perfor-
mance includes excellent environmental stability, tunable bandgap (0.35 to 1.265 eV), great
room temperature carrier mobility, and large photoresponse demonstrate great potential
for either academic or industrial applications [153]. Compared with other frequently used
2D materials, 2D Te nanoflakes have an excellent spiral chain shape, which makes them
have stable plane anisotropy and great carrier mobility [154–156]. Among these fascinating
properties, the wide wavelength response, absorption, and steady light–material interac-
tion means 2D Te holds huge potential for MIR optoelectronic applications, including MIR
modulator [157], photodetector [158,159], and MIR imaging [160].

Topological insulators (TIs), in particular, Bismuth telluride (Bi2Te3) [161,162] and
Antimony telluride (Sb2Te3) [163–165], have exhibited perfect advantages for MIR appli-
cations to its advanced properties, such as, for Bi2Te3 condition, spectra absorption in a
broadband regime convinced by the gapless of Bi2Te3, strong carrier mobility, excellent
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signal-to-noise ratio, high light–matter interaction comparable with graphene, and the
2D electron gas enable collective excitation in MIR band [166,167]. For Sb2Te3 condition,
possessing graphene-like electronic-band structure, the linear absorption was higher than
that of Bi2Te3 and Bi2Se3, indicating the great potential for MIR saturable absorber applica-
tion [168,169]. Other materials, such as MXenes, can be applied to photoelectrochemical
(PEC) and photoelectric sensors, as well as medical equipment [170–172]. In addition,
Bi-based materials are also commonly used in optoelectronic devices, photodetectors,
and lasers [173–175]. Phosphate and antimony-based materials are also often used in
modulators and sensors [176–180].

To facilitate a better understanding of the spectral range of some representative mate-
rials, a comparison of the operation spectra range of materials is listed in Table 1.

3. Light Emission Devices

Recently, the property of 2D layered compounds in disparate photoelectric devices
attracted the extensive attention of researchers [181]. Carrier concentration and photo-
electric characteristics can be adequately handled by adjusting the voltage attribute to the
atomic thickness of 2D materials. The 2D materials with a band gap between 0 and 6 eV,
such as insulators, semiconductors, semi-metal, topological insulators, and metals, have
good electromagnetic spectral response. The electronic band structure of 2D material with
layer number dependence, such as the block and monolayer states of BP material, have
direct bandgap widths of ~0.3 eV and ~2 eV, respectively. The van der Waals force is weak
among 2D material structures. Various van der Waals heterostructures are prepared to
meet different requirements and device applications.

3.1. Spontaneous Emission

The tiny van der Waals forces between layers allow researchers to stack 2D materials
vertically arbitrarily without lattice mismatch and offer great promise in the development
of photoelectron detectors and devices [182–184]. Among these materials, the tunable direct
band gap property between BP layers is recognized to develop an emission candidate in
near-infrared and MIR. Yang et al. [185] conducted a comprehensive study about the BP
layer amount correlation fluorescence spectrum, and the fluorescence emission showed
noticeable layer number correlation characteristics (Figure 2a). The BP layers that range
from 1 to 5 have a peak energy range from 0.8 eV to 1.75 eV. BP exciton binding energy
band gap is different between the electronic and optical energy band gaps (Figure 2b). The
band gap of body blood pressure can be estimated at 0.295 eV by power law fitting. As we
know the photoluminescence intensity varies with the number of layers. Zhang et al. [186],
confirmed that the peak intensity of photoluminescence increases significantly by reducing
layers, as shown in Figure 2c. These results show the number of layers in the BP layer
largely determines the quantum efficiency of intrinsic luminescence. The multilayer BP
valence band and conduction band valleys’ energy increases the band maximum, resulting
in the reduction in the internal quantum efficiency. Finally, the BP photoluminescence
intensity is reduced. Sun et al. [187], reported the spontaneous emissivity (SER) of the
quantum emitter was significantly improved near the single-layer or double-layer BP. The
maximum improvement element for BP is three times that of graphene due to the high
photon density nearby. A three-dimensional (3D) figure of the quantum emitter joined
to a single layer (Figure 2d) and a double layer BP (Figure 2e) as well as an X–Z plane is
shown. In addition, Zhang et al. [188], developed a MIR laser combining a single crystal
nanosheet and a segregated Bragg reflection cavity, as shown in Figure 2f–i. The excitation
of the MIR at 3611 nm by near uniform linear polarization shows strong thermal stability
at temperatures up to 360 K. Furthermore, the cavity length of BP could be changed
with modifying the thickness, and the laser wavelength can be increased from 3425 nm
to 4068 nm.
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Table 1. The spectral range of operation of some representative materials.

2D Materials Bandgap (eV) The Spectral Range of Operation (µm) Ref.

BP 0.3~1.5 0.83~4.13 [185]
b-AsP 0.15 8.27 [94]
b-PC 0.59 2.10 [95]
ReSe2 1.1~1.58 0.78~1.12 [110]
PdSe2 1.3 0.95 [121]
PtSe2 0.3 4.13 [116]
GDY 0.46~1.10 1.12~2.69 [141]
2D Te 0.35~1.265 0.98~3.54 [154]
Bi2Te3 0.21 5.90 [161]
Sb2Te3 0.45 2.75 [164]

Albert et al. [189], presented research into the electrical characteristics, electrolumi-
nescence (EL), and degradation behavior of laser diodes growing on Te-terminated GaAs.
Lasers germinated at Te: GaAs had a similar stacking fault density compared to those grown
on Zn-treated GaAs but with higher spontaneous emission and a lower threshold of current
density. Some of the characteristics of the laser diodes germinated at Te: GaAs are shown in
Figure 3a,b. Vu et al. [190] reported a 5 cm ribbed waveguide made by co-sputtering Te and
Er and reactive ion etching in an oxygen environment with a peak internal gain of up to 14
dB. The etching technique is an important step in the realization of tellurite waveguide. In
previous work, plasma corrosion telluride was used to physically corrode argon causing a
propagation loss of 6 dB/cm [191]. Later, excellent tellurite waveguides prepared by RIE
were used to reduce the transmission loss below 0.1 dB/cm [192]. Figure 3c,d show the
etching of pure TeO2 waveguides and Er doped waveguides using this method. In addition,
the lifetime data of erbium-doped tellurite films were measured, as shown in Figure 3e.
The minimum and maximum pump power of 1.3% Er/Te are expressed (curves (a) and
linear (b)). Te has important implications for physics, chemistry, materials science, and,
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more recently, nanoscience [193–196]. Choi et al. [197], first disclosed photoluminescence
information about Te crystals, as shown in Figure 3f. The photoluminescence and laser
emission of Te block crystals and microcrystals were introduced. The photoluminescence
of Te block crystals was observed in the medium wave infrared (MWIR) region with a
wavelength of 3.75 µm. As the intensity of light excitation increases or the temperature
decreases, the MWIR random maser of Te crystal appears at 3.62 µm, as shown in Figure 3f.
In addition, the rod-shaped Te microcrystals have secondary and tertiary harmonic lasers
in the MWIR and infrared band, respectively.
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Li et al. [198], revealed that the self-assembled 2D Ruddlesden–Popper perovskites
(RPP) thin films based on methyl ether (FA) and Nai methylamine (NMA) have good optical
gain characteristics. They represent a novel solvable material with low threshold, advancing
optical stability and multi-wavelength compatibility. Widely studied 3D perovskites exist as
free carriers. However, 2D-RPPS show strong bound electron-hole pairs and form a natural
energy level gradient. It can realize the ultra-fast energy transfer process from a high energy
band gap quantum well to a low energy band gap quantum well, condensing excitons at a
lower band gap for easy emission. Therefore, at room temperature, the prepared 2D-RPP
films show high optical gain and ultra-low threshold (<20.0 ± 2 µJ/cm2) and stoichiometric
compatible ASE wavelength, from visible to near infrared (530–810 nm). The optical gains
of 2D-RPP thin film (NMA)2(FA)Pb2Br7 and (NMA)2(FA)Pb2Br1I6 were up to 330 cm−1 and
316 cm−1, respectively. In addition, optical tests showed that 2D-RPP thin film (NMA)2(FA)
PB2BryI7−y exhibited good optical stability, with the duration of illumination exceeding
1.2 × 108 laser pulses. Combined with the high electroluminescence efficiency of 2D-RPP
films in light-emitting diodes, those solution-treatable 2D-RPP films are expected to realize
electric pump spectrum laser.
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The GDY is a new type of 2D material, which has had the appreciation of a large
number of researchers since it was discovered in 2010. Due to the unique original band
gap framework of GDY, its application prospects in optoelectronic devices are better than
graphene. GDY has a certain degree of fluorescence, and for the purpose of exploring the
photoluminescence properties of GDY, W. Xiao et al., synthesized a GDY hybrid material
(FGDY) [199]. In a typical synthesis, xenon difluoride and GDY are heated to obtain
FGDY materials and F atoms are doped into the triple bond of GDY, which makes the
photoluminescence of FGDY enhanced. According to the different content of the C–F bond
in the substance, FGDY can be divided into FGDY-1, FGDY-2 and FGDY-3. Regarding
LEDs applications, 2D materials can be introduced as interlayers in LEDs, including anode,
HTL (hole transport layer), HIL (hole injection layer), and EIL (electron transport layer),
and the performance of the device can be significantly enhanced due to the improved
work function, effective electron blocking, and the increased hole injection from anode into
the organic layer, which enable more holes and electrons recombining in emission layers.
Moreover, the electron injection can be enhanced as well when 2D materials are employed
as dopant in EIL. The proposed photoluminescence of FGDY has application prospects for
GDY in the field of LEDs or sensors. After that, in order to study the application of GDY in
MIR optics.

Recently, 2D TMDCs, including MoSe2, MoS2 and WSe2, due to their sharp linewidth
emissions on the lower energy side of the delocalized exciton emission, neutral excitons
trapped at anisotropic confining potentials from defects are suitable for single photon
emitter applications [200]. Meanwhile, combined with the plasmonic effect and the strain
engineering, the single photon emitter performance can be further enhanced. The single
photon emission was verified to originate from spatially localized regions of the TMDCs
samples. These results suggest that single photon infrared emitters can be realized in 2D
materials and have promising applications in quantum devices.

To facilitate a better understanding of the 2D materials for LEDs operation, potential
2D material candidates are listed in Table 2.

Table 2. The 2D material candidates for LEDs operation.

2D Materials Bandgap (eV) Wavelength (µm) Luminous Mode Ref.

BP 0.3~1.5 0.83~4.13 photoluminescence [185]
2D Ruddlesden–Popper perovskites 1.53 0.81 photoluminescence [198]

GDY 0.46~1.10 1.12~2.69 photoluminescence [141]
Er-doped MoS2 0.8 1.55 electroluminescence [190]

WSe2 1.0~2.4 0.51~1.24 electroluminescence [201]

3.2. Laser

In recent years, while the graphene industry is booming, another new single-element
2D atomic crystal material, BP, has been discovered. Similar to graphene, BP has many
excellent properties, so it is called a “dream material” compared to graphene. The research
and application of BP has just begun, and its nonlinear optical properties have been
confirmed by many domestic and foreign units and applied to the production of ultra-fast
lasers. In the foreseeable future, it will be the “second graphene”. Mu et al. [202] found
that BP has the characteristics of wide-band saturable light absorption and the wavelength
range can cover the visible light to the MIR band. In laser field, components possess
high saturable absorption, which is suitable for constructing ultrashort pulses [203–205].
The discovery of BP provides a possibility for the development of mid-infrared ultra-fast
devices. The most important feature of BP is that it has a direct band gap varying with the
layer number, which solves the problem of graphene.

Li et al. [205], prepared BP 2D materials using an economical and effective liquid phase
exfoliation (LPE) method. BP saturated absorber (SA) was applied to two novel medium
infrared rare earth fluoride fiber lasers. At the same time, its saturation absorption was
studied in the 2 µm spectrum. The Q switch and mode locking were obtained by specially
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designing the cavity structures of two fluoride fiber lasers based on the same BP, which
firstly extended the feasible operating wavelength to 3 µm. In addition, for the generated
pulses, the functional wavelength at about 2970 nm is the maximum wavelength of the
fiber laser using BP SA. In Figure 4, the continuous wave (CW) laser can be generated
by increasing the transmitter pump power to 302.6 mW. An increase in pump power to
489.3 produced a repetition frequency of 12.43 kHz, as can be seen from Figure 4a. It is
manifested in Figure 4b that the laser remains in a stable operation of Q-switching and
there is change at the maximum transmitter pump power of 2.99 W. Figure 4c displays
the test spectrum of pulse, and the spectrum of CW laser is also observed. The central
wavelength is red shifted to 2972.8 nm, which is due to the reduction in the initial Stark
manifold at the 5I6 level as the reduction in the loss in the cavity. According to Figure 4d,
the radio frequency (RF) spectrum was also measured at a 45 kHz sweep span and a
100 Hz resolution bandwidth at 2.99 W of transmitted pump power. In this wavelength
range, the signal-to-noise ratio of 37.7 dB is at the average of passive Q-switched fiber
lasers [206–210]. Figure 4e reveals the functional relationship between tested repetition
frequency and pulse duration and starting pump power. Figure 4f shows the tested output
power and the theoretical monopulse energy. Huang et al. [211], developed a compact
economic surface-emitting laser in the 3–5 µm MIR range. The manufacturing process
of the schematic diagram and the BP surface-emitting laser of the microscopic image are
shown in Figure 5a–c. MIR surface-emitting laser with BP based was demonstrated firstly
at room temperature, using BP as the gain material inserted in SiO2/Si3N4 to create an
open microcavity on silicon. By significantly increasing the luminous efficiency of BP layers
and solving the common issue of processing BP and other 2D materials into gain media.
Based on the special design of open cavity, an optically pumped laser of about 3765 nm
is achieved. This research has significant implications for gas detection, non-invasive
medical detection, and infrared band projection applications. Similarly, Qin et al. [212],
successfully made the medium infrared saturable absorption mirror. A 2.8 µm Er: ZBLAN
fiber laser at 613 mW maximum average output power 24 MHz repetition frequency, and
42 ps pulse duration of were demonstrated using a BP saturable absorption mirror. A BP
based mode-locked laser at 2.8 µm has been proposed for the first time, and the feasibility
of using BP thin slices as a new 2D material in MIR ultra-fast photonics has been proved.
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tion curve of the experiment is shown in Figure 6a. Among them, MoS2 is prepared by 
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power is 430 mW. The output power of the laser is positively related to the pump power. 
The output of the laser can reach 150 mW at the pump power reach to 700 mW. Figure 6c 
shows the laser pulse sequence diagram of the laser. Therefore, MoS2 is a potential mate-
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MoS2 and applied it to 2.8 μm fiber laser [213]. In the experiment, multilayer MoS2 films 
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surface. The saturated absorption performance of the MoS2 film was measured by reflec-
tion method and it was 2.8 μm, and the results of the saturated absorption measurement 
data are shown in Figure 6d. This shows that MoS2 can be used as a Q-switch for Er3+-
doped fiber lasers, and the researchers have conducted experiments on this. The output 
power is positively related to the pump power, and the experimental data are demon-
strated in Figure 6e. The output power can reach 140 mW, and the radio frequency spec-
trum measurement as the maximum output power is demonstrated in Figure 6f, and it 
shows that MoS2 can work stably as a saturable absorber with a 2.8 μm fiber laser. In order 
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Figure 5. (a) Manufacturing process of BP laser is designed with an open cavity surface emitting
laser device. Using sapphire as the substrate, DBR is deposited in the cubic step hole, bonding the
substrate reverse. After preparing the steps for DBR deposition on the silicon substrate and bottom
assembly, transfer the Nitto tape with blue Nitto tape, and finally combine them to obtain the laser
device. (b) Schematic diagram of the completed laser device. (c) The image on the left shows the BP
film covering the waveguide and the optical micrograph, while the image on the right shows the final
image and the optical micrograph of the device [211]. Copyright 2019 American Chemical Society.

As one of 2D materials, TMDCs can be applied to optoelectronic equipment. Because
of the special electrical properties of TMDCs, it has greater application prospects in the
realm of optoelectronics. For example, to explore the potential of MoS2 in lasers, Tian
et al. placed a 2D multilayer MoS2 on a mirror for experiments [182]. The nonlinear
absorption curve of the experiment is shown in Figure 6a. Among them, MoS2 is prepared
by LPE, and the material of the mirror is gold. In this experiment, the phenomenon of
saturated absorption is observed. Multilayer MoS2 with a thickness of 2 µm is used as
the model-locking function of Tm3+-doped fiber lasers. Figure 6b presents that the pump
power is 430 mW. The output power of the laser is positively related to the pump power.
The output of the laser can reach 150 mW at the pump power reach to 700 mW. Figure 6c
shows the laser pulse sequence diagram of the laser. Therefore, MoS2 is a potential material
for broadband mode-locked laser. Wang et al., studied the saturation absorption of MoS2
and applied it to 2.8 µm fiber laser [213]. In the experiment, multilayer MoS2 films were
obtained by ultrasonic treatment. After that, MoS2 was painted on the Au mirror surface.
The saturated absorption performance of the MoS2 film was measured by reflection method
and it was 2.8 µm, and the results of the saturated absorption measurement data are shown
in Figure 6d. This shows that MoS2 can be used as a Q-switch for Er3+-doped fiber lasers,
and the researchers have conducted experiments on this. The output power is positively
related to the pump power, and the experimental data are demonstrated in Figure 6e. The
output power can reach 140 mW, and the radio frequency spectrum measurement as the
maximum output power is demonstrated in Figure 6f, and it shows that MoS2 can work
stably as a saturable absorber with a 2.8 µm fiber laser. In order to compare the property of
several TMDCs used in saturable absorbers, Chen et al., compared MoS2, MoSe2, WS2, and
WSe2 [214]. These four substances are used in saturable absorbers with the same structure,
and these materials are combined with polyvinyl alcohol materials (PVA). Figure 6g shows
the preparation process of the TMDCs–PVA materials, and Figure 6h shows the images
of different TMDCs–PVA materials. The structure of a fiber laser with TMDCs–PVA as a
saturable absorber is shown in Figure 6i. The outcome demonstrates that the results show
that MoS2 has the best modulation depth, and the pulse sequence of WS2 is the most stable.
This work proves the application potential of TMDCs as saturable absorbers for fiber lasers.
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power and output power. (c) Pulse train diagram of the fiber laser [182]. Copyright2015 IOP
Publishing LTD. (d) Measurement data of MoS2 as a saturable absorber. (e) Trend chart of output
power, pulse power, and pump power. (f) Change of radio frequency spectrum with different pump
power [213]. Copyright 2019 Institute of Physics Publishing. (g) Preparation method of MoS2-PVA
film. (h) Four images of TMDCs–PVA. (i) Schematic diagram of the experimental structure with
TMDCs–PVA as saturable absorber [214]. Copyright 2015 Optical Society of America.

TIs is a kind of insulating material, and its interior is insulating, and its surface
is conductive, ascribed to the existence of its special quantum states. Band gap of 2D
TIs is relatively narrow, so TIs have better optical absorption in the MIR range, which
allows TIs to be used as saturable absorbers with better performance. Tang et al. [215],
used Bi2Te3 in the saturated absorption part of the Er3+ fiber laser, and the performance
of the laser was measured. In the experiment, Bi2Te3nanosheet was used as the center
material, and polymethyl methacrylate (PMMA) was used as the outer layer material. In
this way, a PMMA sandwiched TI: Bi2Te3 material is obtained. Figure 7a demonstrates the
transmission spectrum of Bi2Te3 material in the range of 2000–3000 nm. Figure 7b exhibits
the trend of the output and pulse power with the input pump power. Once the pump
power increases to 5.9 W, the output power can reach 856 mW. These data are thirteen times
more than that of graphene as the saturable absorber of the traditional device. Figure 7c
demonstrates the output spectrum of PMMA sandwiched TI: Bi2Te3 as a saturable absorber
when the pump power is 5.9 W. At the same time, the SNR of fiber laser is low, which
can indicate that Bi2Te3 has better working stability for lasers. These findings confirm
the application potential of Bi2Te3 in the area of 2.8 µm lasers. In addition, in the field
of 3.0 µm laser, Li et al., used Bi2Te3 as the saturable absorber of the laser [210]. In this
experiment, calcium fluoride was used as the substrate, and the Bi2Te3 nanosheet was
prepared by the intercalation/stripping method. After that Bi2Te3 nanosheet was mixed
with ethanol solution, and the solution was coated on calcium fluoride. This material is
used as a saturable absorber for the laser. The structure of the experiment platform is
shown in Figure 7d, where LD represents a laser diode and PBS is a beam splitter. The
repetition frequency and pulse duration varied with pump power is obtained in Figure 7e,
and the relationship of the average power of the output, pulse energy, and pump power
are demonstrated in Figure 7f. In the input pump power range 3.0–3.5 W, the output power
is around 327.38 mW, and the maximum pulse energy is 3.99 µJ. This work demonstrates
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the application capability of Bi2Te3 as a saturable absorber in the 2979.9 nm band. In
order to reduce the optical components required for q-switched lasers, Li et al., applied
Bi2Se3 to small fiber lasers [216]. The few-layer Bi2Se3 manufactured by exfoliation is
used as a saturable absorber. The structure of the 3 µm laser is shown in Figure 7g. The
two illustrations are the images of the fiber end mirror M1 and M2. In the experiment, a
pump laser of 1153 nm was served as the light source. The MIR pulse appeared when
the pump power was 48 mW, and the critical value of 70 mW could obtain a stable pulse.
When the pump power reaches 194 mW, the output spectrum curve is demonstrated in
Figure 7h. The relationship of pulse time, repetition rate and pump power are exhibited
in Figure 7i. Since the pump power is increased to 230 mW, pulse duration will reduce to
1.5 µs, and the pulse repetition rate increase by 55.1 KHz. The method proposed in this
work can effectively reduce the size fiber laser.
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(b) The relation curve of output power, pulse energy change curve, and pump power. (c) Laser
spectrum when the pump power is at the peak value [215]. Copyright 2016 Institute of Electrical and
Electronics Engineers Inc. (d) Structure diagram of experimental platform of fiber laser. (e) When
Bi2Te3 is used as a saturable absorber, the relationship between repetition frequency and pulse
duration and pump power. (f) The relationship of pulse power, output power, and pump power [210].
Copyright 2015 Optical Society of America. (g) Structure diagram of experimental platform of Bi2Se3

fiber laser. (h) Output spectrum curve of the fiber laser. (i) The variation curve of pulse duration,
repetition rate, and pump power [216]. Copyright 2018 IEEE.

Te is the attractive material used to detect and monitor the CO2 laser radiation [217,218].
Ribakovset et al. [219], used a sub nanosecond detector and beam monitor for pulsed CO2
laser radiation using photonic resistance and optical rectification effects in Te. Although
the photon dragging effect in Te is strong enough to act as an electromotive force source for
high power pulsed carbon dioxide laser radiation. However, mechanisms characterized by
third-order tensor coefficients lead to greater electromotive force. In recent years, Bi2Te3,
Sb2Te3, and other fiber lasers used for Q tuning or mode-locking have been widely reported
in 1.2 µm [220–225]. Similar to graphene, perovskite materials have ultra-wide saturation
absorption bands and are used in ultrashort pulse lasers due to their high modulation depth
and damage threshold [226–228]. Li et al. [210], first reported that the 3 µm band is based
on Bi2Te3 passive Q-switched fiber laser, as shown in Figure 8. Bi2Te3 nanosheets were
prepared by hydrothermal method and deposited on the CaF2 substrate to form free space
SA. The modulation depth (MD) and saturation intensity were 51.3% and 2.12 mW·cm−2,
respectively. Two 1150 nm laser diodes were coupled to a 5.2 m Ho3+: ZBLAN gain fiber
through a polarization divider to obtain a pulse output at central wavelength of 2979.9 nm.
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The maximum repetition frequency and the minimum pulse width were 81.96 kHz and
1.37 µs, respectively. The average output power was 327.38 mW with monopulse energy
was 3.99 µJ in maximum. The Q pulse width and repetition frequency can be narrowed by
selecting Bi2Te3 with a certain modulation depth and an appropriate cavity length. In the
experiment, due to the large modulation depth and unsaturated loss, the pulse energy in
the cavity is low, and it is difficult to achieve the continuous mode-locking condition, so
the mode-locking state does not appear in the experiment. Sotor et al. [225], proposed the
effective mode-locking erbium-doped fiber laser based on a special saturable absorbent
material, antimony telluride. Sb2Te3 layers were obtained by mechanical spalling method
15–17 commonly used for graphene. A view of the surface of antimony telluride under
an atomic force microscope is shown in Figure 8d. The core surface is almost completely
covered by the Sb2Te3 layer. The composition of the sediments was confirmed by the energy
spectrum obtained by Hitachi SU 6600 scanning electron microscope. It is then transferred
to the fiber connector tip by adjusting the appropriate Sb2Te3 layer thickness. The all-fiber
laser can generate solitons with a half-peak width of 1.8 nm (Figure 8e,f).

High power medium infrared fiber laser has important applications in frontier sci-
entific research, biomedical, environmental monitoring, infrared remote sensing, infrared
imaging, atmospheric communication, photoelectric countermeasures, and many other
fields [229–235]. The medium infrared fiber laser material is the core component of the
medium infrared fiber laser. The medium infrared fiber laser can be built by using the rare
earth ion-doped medium infrared fiber as the gain medium, and the wide band medium
infrared laser can be output by further utilizing the nonlinear optical effect in the medium
infrared fiber. After decades of development, only zirconium fluoride glass (ZrF4-BaF2-Laf3-
AIF3-NaF, ZBLAN) can be used as the high-power medium infrared fiber laser material at
the average power of 10 W and a working central wavelength greater than 2.5 µm laser
output. However, the researchers later found that the end face of ZBLAN optical fiber
is easy to react with water in the air due to its poor anti-tidal ability. This will result in
optical fiber end face damage, which will affect the practical application of ZBLAN fiber
based high power MIR laser. In addition, the conversion temperature of ZBLAN glass is
only 252 ◦C, and its thermo-mechanical quality factor is low, which affects the increase
in the power of the medium-infrared ZBLAN fiber laser. To solve the listed problems,
Yao et al. [236], screened a new generation of high-power medium infrared fiber laser
material fluorotellurate glass through component optimization. The main group is divided
into TeO2-BaF2-Y2O3 (TBY). TBY glass not only has a wide optical transmittance window
(covering 0.4~6 µm band), but also has strong moisture resistance, high glass transition
temperature (~424 ◦C), and high thermal mechanical quality factor. The glass transition
temperature is 172 ◦C higher than ZBLAN glass, and the thermal mechanical quality factor
is 1.5 times higher than ZBLAN glass. Further, the screening results showed that the low
refractive index glass AIF3-BaF2-CaF2-YF3-SrF2-MgF2-TeO2 (ABCYSMT) was well matched
with the thermal properties of TBY glass. TBY and ABCYSMT glass were selected as fiber
core and cladding materials respectively, and high-quality fiber prefabrication rod was
prepared by inhalation method. Low-loss fluorotellurite glass fibers (Figure 8g,h) with
dispersion, nonlinearity, and numerical aperture adjustable in a wide range were prepared
by optimizing the wire drawing process. For the purpose of verifying the performance of
the high-power medium-infrared laser based on this kind of fiber, the all-fiber medium-
infrared supercontinuum laser was designed and built, in which the pump source was 2 m
high-power fs fiber laser and the nonlinear medium was fluorotellurate glass fiber with core
diameter of 6.8 m. When the pump power was 15.9 W, an all-fiber super-continuous spec-
trum laser output at the average power of 10 W and a working wavelength of 0.95~3.9 m
was obtained, which could operate stably for a long time. The experimental results of
high power 2 m laser transmission show that the use of fluorotellurate glass fiber as a
nonlinear medium is expected to achieve tens or even hundreds of watts of magnitude,
long time stable operation of the medium infrared supercontinuum laser, which provides
an opportunity for the high-power all-fiber MIR supercontinuum laser.
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Figure 8. (a) Lower and (b) higher magnification SEM images of Bi2Te3 samples. (c) The device
of passive Q-switched Ho3+-doped fiber laser based on the TI: Bi2Te3SA [210]. Copyright 2015
The Optical Society. (d) Morphology of Sb2Te3 layers under atomic force microscope. The central
wavelength of the emitted solitary light is 1558.6 nm. (e) Spectrum with indication of 3 dB bandwidth.
Illustration: spectral record of the 30 nm span, (f) 1.8 ps pulse Autocorrelation [225]. Copyright 2014
American Institute of Physics. (g) Dispersion curve of the fluortellurate glass fiber, inset: photo of the
end face of the fluortellurate glass fiber. (h) Loss curve of fluortellurate glass fiber. (i) Evolution trend
of supercontinuum laser output spectrum with pumping laser power. (j) Curve of output power of
supercontinuum laser with pump laser power [236]. Copyright 2018 OSA Publishing.

To facilitate a better understanding of the laser operation based on 2D materials, a
comparison of the pulse duration of the several lasers and their threshold is listed in Table 3.

Table 3. The laser operation based on 2D materials.

2D Materials Wavelength (µm) Pulse Duration Threshold Frequency Ref.

BP 2.97~3 CW 302.6 mW 12.43 KHz [205]
BP 3~5 42 ps 613 mW 24 MHz [212]

Bi2Te3 deposited on CaF2 2.979 1.37 µs 3.39 µJ 81.96 KHz [210]
MoS2 2.8 ND 430 mW 62.42 KHz [213]
Bi2Te3 2.8~3.0 ND 3.0~3.5 W ND [210]
Bi2Se3 3.0 1.5µs 48 mW 55.1 KHz [216]

4. Modulator

Light modulation is a crucial step in optics. It is widely used in optical communication,
pollution monitoring, biological research, medical, and safety applications. In an era of con-
tinuous and rapid development of information and internet applications, such as streaming
media and cloud computing, and connections between network data, including those
between traditional data networks, as well as internal chips, are growing exponentially.
The main cable connection (such as copper cable) has different performance limitation in
all aspects, and there is an urgent need for better connectivity methods. Therefore, the
research of optical modulator is more and more important. The need for high performance,
compact, low cost, efficient, fast, and high bandwidth optical modulators [237] is becoming
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more and more urgent, especially in light transmission [238], lasers [239], biology [240],
and medical treatment [241].

2D layered materials possessing modulation impact is one of the hot topics in the
last decade. Lots of reports demonstrated that 2D modulators can generated varying
modulation mechanisms (such as all-optical, electro-optical, and thermotical modulation),
making the 2D layered materials highly competitive. For example, graphene optical modu-
lators have extremely wide operating bandwidth (ranging from visible light to microwave
region [242,243]). The 2D materials, such as graphene and their isomorphic saturated ab-
sorbers, have been used to generate ultra-high-speed pulses in a variety of lasers and have
shown excellent performance. There is growing interest in the commercialization of various
laser applications, particularly in ultra-fast laser sources with high repetition rates for
optical interconnections [244,245]. Nonlinear wavelength modulators and electro-optical
amplitude modulators based on 2D materials have also been used for high-speed data
transmission, and high-speed optical modulation technology in optical interconnection has
been further improved.

4.1. All Optical Approach

All-optical modulation techniques for 2D layered materials have been developed
rapidly and signal processing in the photonic domain has become more accurate. Optical
modulation can be performed in optical fiber systems (such as silicon waveguides) and
enables ultra-fast, low-loss, and wide-band optical signal. All-optical modulator-based
2D materials, include saturable absorber [246–248], wavelength converter [249], optical
limiter [250], and polarization controller [251], etc. These devices take advantage of 2D
materials’ nonlinear optical properties (primarily third-order susceptibility), such as wide
band, fast response, small size, compact, and integrated full optical operating character-
istics. At present, there is a growing demand for ultrafast lasers. The 2D material-based
saturable absorber is one of the commonly used optical devices. The 2D material-based
non-originating amplitude modulator can generate ultra-fast pulses [252,253]. The band
structure of graphene ensures that the electron-hole excitation is present in any incident
photon. In the ultra-fast time scale, the interaction between carriers and ultrafast optical
pulses produces unbalanced carrier groups in the baseband and the guide bands [254].
This result ensures Pauli-blocking broadband and ultra-fast saturation absorption. How-
ever, when the wavelength is smaller than the NIR region, the saturated energy density
is relatively large, which prevents the application of graphene at the end of the spectrum.
Unlike graphene, TMDs [255,256] and BP have a band gap for resonant light absorption.
TMDs [257] usually have resonance absorption in visible light, while BPus [258] shows
resonance absorption in near-infrared and MIR regions. Thus, within this wavelength
range, graphene saturable absorbents have suitable substitutes.

TMDCs materials, such as MoS2, WS2 and MoTe2, can be used in the all-optical
modulation method of the modulator. For example, Ahmad et al., applied MoS2 film to
the polarization modulation system [259]. In this experiment, the refractive index and
thickness of MoS2 can be adjusted by changes in temperature. The Raman spectroscopic
characterization of the prepared MoS2 film is demonstrated in Figure 9a. The azimuth and
ellipticity will change with the thickness of the MoS2 film when the pump power increases,
as shown in Figure 9b. As the pump power changes, the azimuth and ellipticity change
values are relatively small, which shows that the modulator can work stably. Figure 9c
demonstrates the change curve of output power and ellipticity in the range of pump power
from 0–550 mW. This work effectively reduces the design complexity of the laser cavity,
and it can be applied to all-optical system. Yang et al., integrated the 2D TMDCs material
WS2 and silicon nitride as the all-optical modular of the pump light source and conducted
experiments [260]. Compared with BP and MoTe2, the chemical properties of the WS2
material are more stable, and compared with MoS2, its luminous efficiency is higher. In this
experiment, the oxidized silicon plate is used as the substrate, and WS2 and silicon nitride
are integrated on the substrate. This modulator material is named Si3N4-WS2-Al2O3, and
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Figure 9d shows the microscopic image of Si3N4-WS2-Al2O3 illuminated by 532 nm light
source. The researchers chose a 532 nm laser as the pumping source, and the light across
the band pass filter and the acousto-optic modular to the beam splitter. The modulation
signal is sent out by a 640 nm laser and merges with 532 nm light through the beam splitter.
After that, the light pass through the modulator and reaches different receivers through
the beam splitter, and the structure of the test platform is demonstrated in Figure 9e.
Figure 9f demonstrates the change in the emission spectrum when the modulator material
is changed. The volume of the modulator is small, and the optical structure can be changed
to improve the modulation effect, so its application potential in the field of integration is
better. In addition, in order to study the application potential of TMDCs in THz modulators,
Qiao et al., combined MoTe2 with silicon as an all-optical THz modulator [261]. In the
experiment, the co-solvent method and the liquid phase peeling method were used to
prepare MoTe2 flakes, and the MoTe2 solution was coated on the Si substrate. After heating
and baking the silicon substrate, the MoTe2/Si heterostructure is obtained. The comparison
image of silicon substrate and MoTe2/Si is shown in Figure 9g. The THz signal with the
different power of 1064 nm laser irradiation is shown in Figure 9h. When MoTe2/Si is used
as a modulator under the power of less than 300 mW, the modulation depth can reach
99.9%, as shown in Figure 9i. In addition, the MoTe2/Si heterostructure modulator can
perform normal modulation work within 0.3–2.0 THz. The manufacturing method of this
all-optical THz modular is simple and has high practicability.
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with different laser power in 0.3–2.0 THz [261]. Copyright 2020 John Wiley and Sons Inc.

Although BP is widely used as a promising nanomaterial, the practical application
of BP with large area and few uniform layers is severely limited by its inherent defects
and irreversible oxidation in the synthesis process. Aiming at the above problems, Zheng
et al. [262], successfully prepared large area and few layers of BP by using electrochemical
cathode stripping method combined with centrifugal technology. The composite structure
of BP-micro-nano fiber is constructed and applied to all optical signal processing success-
fully. The team successfully prepared large area and few layers (mainly 4 layers) of BP using
an electrochemical cathode stripping method combined with centrifugal technology. Then,
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a small amount of BP material was deposited in the pull-cone region of the micro-nano
fiber. The taper fiber is used as an optical waveguide to realize the stable transmission
of light in the micro-nano optical fiber. With the interaction of evanescent field on the
surface of micro-nano fiber and low layer BP material, the BP carrier will have interred
band transition under high power laser pumping. During the relaxation time of the carrier,
the system no longer absorbs the other light, thus realizing the saturated absorption charac-
teristic of BP, as shown in Figure 10a–c. Therefore, for the first time, an all-optical threshold
device that can suppress noise and improve the signal-to-noise ratio of optical pulses is
realized. The experimental results show that the SNR increases from 3.54 to 17.5, as shown
in Figure 10d. BP has poor environmental stability and is easy to oxidize in air and water, so
it usually needs more complex protection measures. By means of synchronous fluorination
electrochemical dissection, Wang et al. [263], successfully prepared a 2D material with a low
layer of BP with high stability, as shown in Figure 10e. An all-optical modulator consisting
of a Mach–Zehnder interferometer was successfully constructed by using the photothermal
effect of BP, and the phase modulation and intensity modulation characteristics from an
all-optical modulator were systematically studied. Finally, a list of ASCII code signals is
loaded from the pump light to the signal light in the all-optical domain, as shown Figure 10f.
The prepared BP layer is between three and eight, and it has obvious photothermal effect
under the pump light irradiation. The phase shift and conversion efficiency of all-optical
modulator are up to 8 and 0.029 π/mW respectively, and an intensity modulation depth of
up to 17 dB. In addition, the rise and fall time constants were 2.5 ms/2.1 ms, respectively,
and the system still had good performance after two weeks in the laboratory environment.
Similarly, Zhang et al. [264], experimentally constructed a BP wide-band light modulator
and used BP optical modulator as a saturated absorber to achieve passive modulated bulk
lasers of 639 nm (red), 1.06 m (NIR), and 2.1 m (MIR), as shown in Figure 10g–i. In addition,
by optimizing sampling and designing the laser cavity, the performance of pulsed lasers
can be improved. This opens a new path for universal optical modulators that will facilitate
BP’s further application beyond existing optoelectronic devices.

The 2D Te material is a kind of graphene, composed of a single atom layered structure
material. In the past two years, it has been predicted and successfully prepared. With its
excellent photoelectric properties, it has rapidly attracted extensive attention and research
in the academic circle. At present, the research and application of 2D Te material properties
are still in its infancy, although it provides a wide development future in catalytic, sensing,
optical components, and other aspects. Firstly, the nonlinear optical parameters of the
2D Te material were measured, and it was found that the 2D Te material had a very
strong nonlinear optical response. By using this property, Wu et al., further studied the
important application of 2D Te in nonlinear optical devices. They cleverly combined this
2D Te material with a strong nonlinear effect with another 2D material, such as SnS2,
with the characteristics of trans-saturation. After combining these 2D materials, they
realized the non-reciprocal propagation of light, which opened up a new idea for the
application of photonic diodes (Figure 11a–c). Secondly, they also explored the important
application of 2D Te material in all-optical modulation/switch and found that 2D Te
could be used as the carrier of information transformation to realize the modulation of
the pump light to detect light, thus realizing the conversion between “on” and “off” in
the optical switch (Figure 11d–f). The 2D Te has wide band response, absorption, strong
light and material interaction effects, and contact environmental stability, which ensures
that 2D Te can be used to prepare high-performance light modulators. Guo et al. [265],
introduced a saturated absorber based on 2D Te (Figure 11f), with the frequency and peak-
background ratio of 15.45 mhz and 53 dB, respectively (Figure 11g). In addition, the pulse
train produced has no obvious fluctuation, demonstrating its excellent stability during the
laser mode-locking process.
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Copyright 2015 John Wiley and Sons Inc.
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Figure 11. (a) The forward and reverse nonlinear responses of 2D Te/SnS2 nanocrystalline photonic
diodes. (b) Results of non-reciprocal propagation of light. (c) Schematic diagram of all-optical
modulation structure. (d) Modulation of pump light (red light) to detect light (green light). (e) With
the change of the light intensity of the pump, the change of the number of optical diffraction rings
is detected [266]. Copyright 2019 Wiley-VCH Verlag. (f) Schematic of the mode-locking fiber laser.
(g) Radio spectrum [265]. Copyright 2019 The Royal Society of Chemistry.

Halide perovskite exhibits outstanding photoelectric characteristics and is used in
photoelectric detector and luminescent display field [267,268]. Most of the above research
focuses on single crystal and polycrystalline thin film materials of perovskite. With fur-
ther research, researchers began to pay attention to the luminescence characteristics of
perovskite nanomaterials. In 2014, Schmidt et al. [269], from the University of Valencia in
Spain reported the synthesis and fluorescence enhancement of perovskite nanoparticles.
The research on luminescence application of perovskite nanomaterials has been developed
rapidly. It has been possible to accurately control the morphology from zero win Amite
crystal and one win Amite wire to a 2D nanometer sheet [270], and the understanding of
its size and dimensionally dependent optical properties has also been further developed.
On the other hand, the luminescence and device application technologies of perovskite
nanomaterials have also been developed rapidly, among which the photoluminescence and
electroluminescence technologies based on perovskite quantum dots have attracted the
most attention. Metal halide perovskite materials have excellent photoelectric properties.
However, the luminous efficiency of the bulk perovskite materials is very low, which
cannot meet the application requirements of electroluminescence and laser. Compared with
block materials, perovskite nanomaterials have higher quantum yield, narrow half-peak
width, and wide spectrum control range and have shown great potential in future display
technology applications. Compared with ordinary zero win Amite crystals, nanocrystals
provide 2D exciton luminescence characteristics. In addition to high quantum yield, nar-
row half-peak width, and polarization luminescence characteristics [271], the fluorescence
spectra of 2D perovskite materials can be adjusted by layer number and halogen type [272].
Figure 12a,b shows the emission spectra of 2D perovskite nanomaterials of different halo-
gen elements [272,273]. As nanosheets thickness is more than three, photoluminescence
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quantum yield (PLQY) > 70%. PLQY for n = 2 and n = 3 is only about 5~20%. When the
number of nanosheets n = 1, PLQY < 1%. This could be because of the weak dielectric
shielding effect, which makes it difficult for polarized photons to scatter at the defect to be
shielded. On the other hand, when the number of layers n = 1, 2, the blue light emission of
br-based perovskite can be realized by using the 2D perovskite quantum confinement effect,
which indicates that the quantum confinement effect of 2D perovskite is more obvious
than that of quantum dots. The 2D perovskite surrounded by organic media has a smaller
dielectric constant, making it more difficult to screen out coulombic interactions between
electron holes. As a result, the binding energy between excitons will far exceed that of bulk
materials. Although the exciton binding energy of block materials is generally 5~60 meV,
theory predicts that the exciton binding energy of 2D lamellar perovskite materials may
reach 200~500 meV [272]. In terms of photoluminescence, Zhang et al. [274], invented
ligand-assisted reprecipitation technology for perovskite quantum dots and in-situ prepa-
ration technology for optical film of perovskite quantum dots (Figure 12c,d). The colloidal
CH3NH3PbX3 (X = Br, I, Cl) quantum dots with bright luminescence and adjustable color
were achieved with ligand-assisted reprecipitation. The absolute quantum yield was as
high as 70% at room temperature with low excitation flux. A comprehensive composition
and surface characterization was performed to explain the photoluminescence intensifica-
tion in these quantum dots, and the photoluminescence spectra associated with time and
temperature were determined. Further, a wide-color domain white light emitting diode
based on green CH3NH3PbBr3 quantum dots and red K2SiF6: Mn4+ as color converters
has been shown to enhance the color quality of the display technology (Figure 12e–g). Li
et al. [275] made important progress in the covering of perovskite quantum dots, which
promoted the progress of chip-encapsulated LED backlight. QD mixed with silica/alumina
(QDS-SAM) was successfully prepared by a simple sol–gel reaction of Al–SI single precur-
sor with CsPbBr3 QD mixed in toluene solution (Figure 12h). The obtained transparent
aggregates exhibit a 90% PLQY and a significant degree of optical stability under intense
blue light illumination for 300 h. Qds-SAM in the form of CsPbBr3 powder can be eas-
ily blended into the resin and used as a color conversion layer and cured on blue LEDs.
The material shows good luminous efficiency and narrow emission of 80 lm W−1 with a
half-peak full width (FWHM) of 25 nm (Figure 12i).

4.2. Electro-Optic Approach

Many compact systems that use MIR technology still face compatibility problems when
integrated with conventional electronics. Because of its various uses in photonic circuits, BP
has gained attention for overcoming these challenges. Lin et al. [276], designed an electro-
optical modulator based on BP in the MIR band (Figure 13a,b). The BP is coated on the
silicon waveguide, and the two electrodes contact the silicon waveguide, respectively, so as to
change the electrical interference of BP. The BP is coated with Al2O3 to prevent it from being
oxidized. The silicon waveguide thickness is 50 nm, and the BP thickness is 0.7 nm. Under
the action of bias voltage, the absorption of BP will be red shifted, blue shifted or bidirectional
shifted. The absorption of light is related to the thickness, doping, and working band of BPus.
However, MIR electro-optical modulation relies on narrow-band compound semiconductors
and is difficult to integrate with uneconomical silicon photons. BP has been shown to be
a promising 2D material for medium infrared light detection. Peng et al. [277] tested the
electro-optical modulation of MIR absorption in several layers of BP, as shown in Figure 13c.
The experimental results show that the quantum-limited Franz–Keldysh effect is the key
mechanism of electro-optical modulation in the available doping range. The spectral analysis
of samples with different thickness shows that certain sub-bands have strong interlayer
dependence on inter-band transitions. Figure 13d,e are optical microscope images and atomic
force microscope images of the BP modulator. In order to effectively adjust the band gap,
Deng et al. [278], demonstrated the unique band gap tuning characteristics caused by strong
interlayer electron state coupling in the inherent BPus in Figure 13f. In addition, a 10 nm
thick BP was used to optimize the band gap from 300 to 50 mev, and a 1.1 v nm−1 dielectric
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displacement field was used (Figure 13g). The thickness of BP can be measured by atomic
force microscope (AFM), as shown in Figure 13h. The dynamic tuning of the bandgap extends
the working wavelength range of tunable BP sub-devices and provides a direction for the
research of tunable topological insulators and semi-metals.

Nanomaterials 2022, 12, x FOR PEER REVIEW 21 of 53 
 

 

 
Figure 12. (a) When n = 1, n = 2 nanoplatelets were absorbed by solution phase and photolumines-
cence spectra. (b) The emission spectrum of 2D perovskite nanomaterials when n = 1 [273]. (c) TEM 
image of colloidal CH3NH3PbBr3 QDs. (d) The size distribution diagram of samples in figure (a). (e) 
PL emission spectra of CH3NH3PbBr3 QDs. (f) Schematic diagram and (g) EL spectra of pc-WLED 
devices based on green emissive CH3NH3PbBr3 QDs and red emissive rare-earth phosphor KSF 
[274]. Copyright 2015 American Chemical Society. (h) Optical images and (i) PL spectra of 
Sr2SiO4:Eu2+ green phosphor and CsPbBr3 QDs-SAM powder [275]. 

4.2. Electro-Optic Approach 
Many compact systems that use MIR technology still face compatibility problems 

when integrated with conventional electronics. Because of its various uses in photonic 
circuits, BP has gained attention for overcoming these challenges. Lin et al. [276], designed 
an electro-optical modulator based on BP in the MIR band (Figure 13a,b). The BP is coated 
on the silicon waveguide, and the two electrodes contact the silicon waveguide, respec-
tively, so as to change the electrical interference of BP. The BP is coated with Al2O3 to 
prevent it from being oxidized. The silicon waveguide thickness is 50 nm, and the BP 
thickness is 0.7 nm. Under the action of bias voltage, the absorption of BP will be red 
shifted, blue shifted or bidirectional shifted. The absorption of light is related to the thick-
ness, doping, and working band of BPus. However, MIR electro-optical modulation relies 
on narrow-band compound semiconductors and is difficult to integrate with uneconomi-
cal silicon photons. BP has been shown to be a promising 2D material for medium infrared 
light detection. Peng et al. [277] tested the electro-optical modulation of MIR absorption 
in several layers of BP, as shown in Figure 13c. The experimental results show that the 
quantum-limited Franz–Keldysh effect is the key mechanism of electro-optical modula-
tion in the available doping range. The spectral analysis of samples with different thick-

Figure 12. (a) When n = 1, n = 2 nanoplatelets were absorbed by solution phase and photolumines-
cence spectra. (b) The emission spectrum of 2D perovskite nanomaterials when n = 1 [273]. (c) TEM
image of colloidal CH3NH3PbBr3 QDs. (d) The size distribution diagram of samples in figure (a).
(e) PL emission spectra of CH3NH3PbBr3 QDs. (f) Schematic diagram and (g) EL spectra of pc-WLED
devices based on green emissive CH3NH3PbBr3 QDs and red emissive rare-earth phosphor KSF [274].
Copyright 2015 American Chemical Society. (h) Optical images and (i) PL spectra of Sr2SiO4:Eu2+

green phosphor and CsPbBr3 QDs-SAM powder [275].



Nanomaterials 2022, 12, 2260 22 of 53

Nanomaterials 2022, 12, x FOR PEER REVIEW 22 of 53 
 

 

ness shows that certain sub-bands have strong interlayer dependence on inter-band tran-
sitions. Figure 13d,e are optical microscope images and atomic force microscope images 
of the BP modulator. In order to effectively adjust the band gap, Deng et al. [278], demon-
strated the unique band gap tuning characteristics caused by strong interlayer electron 
state coupling in the inherent BPus in Figure 13f. In addition, a 10 nm thick BP was used 
to optimize the band gap from 300 to 50 mev, and a 1.1 v nm-1 dielectric displacement field 
was used (Figure 13g). The thickness of BP can be measured by atomic force microscope 
(AFM), as shown in Figure 13h. The dynamic tuning of the bandgap extends the working 
wavelength range of tunable BP sub-devices and provides a direction for the research of 
tunable topological insulators and semi-metals. 

 
Figure 13. (a) Schematic diagram, band diagram, and wave function of 5 nm thick BP QW. (b) Mod-
ulator schematic [276]. (c) Schematic diagram of multilayer BP modulator. (d) Optical microscope 
image of BP modulator. (e) Atomic force microscope image of BP modulator [277]. Copyright 2017 
American Chemical Society. (f) Test program for BP band gap tuning. (g) 4 nm thick BP film con-
ductance as a function of top gate zero bias voltage and back gate bias voltage. (h) BP under an 
atomic microscope [278]. Copyright 2017 Nature Publishing Group. 

For the purpose of reducing the volume of optoelectronic devices, Li et al., combined 
MoS2 and Au to obtain an electro-optical modulator (Au/MoS2) [279]. MoS2 is used as the 
substrate, and the dish-shaped Au material is installed on the MoS2, as shown in Figure 
14a. Among them, MoS2 is manufactured by vapor deposition method, meanwhile the Au 

Figure 13. (a) Schematic diagram, band diagram, and wave function of 5 nm thick BP QW.
(b) Modulator schematic [276]. (c) Schematic diagram of multilayer BP modulator. (d) Optical
microscope image of BP modulator. (e) Atomic force microscope image of BP modulator [277]. Copy-
right 2017 American Chemical Society. (f) Test program for BP band gap tuning. (g) 4 nm thick BP
film conductance as a function of top gate zero bias voltage and back gate bias voltage. (h) BP under
an atomic microscope [278]. Copyright 2017 Nature Publishing Group.

For the purpose of reducing the volume of optoelectronic devices, Li et al., combined
MoS2 and Au to obtain an electro-optical modulator (Au/MoS2) [279]. MoS2 is used as
the substrate, and the dish-shaped Au material is installed on the MoS2, as shown in
Figure 14a. Among them, MoS2 is manufactured by vapor deposition method, meanwhile
the Au dish is photoetched on MoS2. Figure 14b shows the scattering spectra of the Au
dish and Au/MoS2 and the absorption spectra of MoS2 films. Fano resonance is generated
by excitons and plasma as MoS2 and Au dish. The change of the applied voltage can tune
the Fano resonance phenomenon in the Au/ MoS2 modulator, as shown in Figure 14c. A
voltage with a period of 1 ms is applied to the Au/MoS2 modulator, and the switching
time of the modulator is less than 200 ms. This design can realize nano-level optically
sensitive display devices. WSe2 materials can be used in electrical switches and photonic
devices. Seyler et al., proposed a method to apply WSe2 to electro-optic modulators [280].
A single layer of WSe2 material is processed by photolithography on the nitrogen-doped
silicon oxide layer, as shown in Figure 14d. The exciton charging effect in the single-layer
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WSe2 is used to tune the oscillator strength. In the experiment, the second-harmonic-
generation (SHG) phenomenon was observed at an excitation voltage of 1.66 eV, as shown
in Figure 14e. Figure 14f shows the SHG spectra as different voltages. This work confirmed
the application potential of TMDCs in nonlinear optical devices. Similarly, Yu et al., used
double-layer WSe2 to obtain SHG, which is called charge-induced SHG (CHISHG) [281].
The double-layer WSe2 used in the experiment was made by a mechanical peeling method,
and WSe2 was used to make a FET for SHG observation, as shown in Figure 14g. Figure 14h
is a diagram of the relationship between excitation energy and CHISHG intensity, it can be
seen that the two are secondarily related. In addition, the SHG signal intensity of single-
layer WSe2 and double-layer WSe2 in the same experimental conditions are compared, as
shown in Figure 14i. The signal strength of the former is about 1000 times than that of the
latter as a gate voltage of −40 V. This work expands the potential applications of TMDCs
in electronic devices.
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Figure 14. (a) Structure schematic diagram of Au/MoS2. (b) The scattering spectrum curve of gold
dish and Au/ MoS2, and the absorption spectrum curve of MoS2. (c) Modulator switching time
under an applied voltage with a period of 1 ms [279]. (d) Schematic diagram of WSe2 used as an
electro-optic modulator. (e) The intensity curves of SGH and two-photo induced photoluminescence
at different emission energy. (f) SGH spectrum curve under different gate voltage [280]. (g) Schematic
diagram of double-layer WSe2 used in field effect transistors. (h) The relationship between incident
light power and CHISHG intensity. (i) In the same experimental environment, the SHG intensity
comparison chart of signal-layer WSe2 and double-layer WSe2 [281].

In recent years, the fluorescence quantum yield of 2D perovskite nanosheets can
exceed 80%. The high fluorescence quantum yield and the flexibility of the structure mean
2D perovskite materials have a broad prospect in light-emitting devices. In 2016, Kumar
et al. [282], of the Swiss Federal Institute of Technology, prepared 2D perovskite materials
with the number of layers of n = 7~10, n = 5, n = 3, n = 1 by precisely adjusting the number
of layers. Simultaneously, 2D perovskite electroluminescent devices with different layers
were prepared. Especially for devices with a layer number of n ≤ 3, blue light emission can
be realized, which fills the blank of 3D perovskite in blue light electroluminescent devices.
In addition to adjusting the number of layers to regulate the wavelength of light, the
regulation components can achieve a wider range of light wavelength regulation. Congreve
et al. [283] prepared a series of electroluminescent devices by adjusting the type of halogen
ions, and the emission wavelength can be adjusted between 440 and 650 nm. Recently,
Kumar et al. [284], of the Swiss Federal Institute of Technology, prepared a high-purity green
electroluminescent device based on perovskite nanocrystals. Its gamut can reach 97% of
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the Rec.2020 gamut, the current efficiency is 13.02 cd/A, and large area and flexible devices
are realized (Figure 15a,b). Hu et al. [285] deposited CsPbBr3 nanometer tablets on the
ITO surface by chemical vapor deposition and patterned the electrodes on the ITO surface,
as shown in Figure 15c. The CsPbBr3 nanometer sheet single particle electroluminescent
device was realized, with an opening voltage of 3 V and an external quantum efficiency of
0.2%. Figure 15d shows the diffusion of the transmitting point at a high bias voltage. The
high-quality optical cavity inside the nanoplate results in strong waveguide emission. Wu
et al. [286], introduced a novel perovskite sample, K3B6O10Cl, which showed a rapid second
harmonic response than that of KH2PO4 (KDP). The perovskite framework represented by
ABX3 is formed by the vertex connection between the hexaborate [286] group at site A and
the octahedron group centered on BX3Cl (Figure 15e,f).
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Figure 15. (a) Schematic architecture of vertical electroluminescent device. (b) PL spectrum of
colloidal 2D FAPbBr3perovskite [284]. Copyright 2017 American Chemical Society. (c) SEM images
of EL device showed that CsPbBr3 nanometer plates grown in gas phase were bribed on two ITO
electrodes. Azo tilt image of nanometer plate (upper left image). (d) Under the condition of positive
bias voltage V = +8 V, EL spectrogram of CsPbBr3 nanometer plate EL device of the upper electrode
was obtained [285]. Copyright 2017 World Scientific Publishing Co. Pte Ltd. (e) The 3D diagram of
KBOC with KO bonds. (f) KBOC crystal spectrum achieved from UV–vis–IR transmittance. The inset
exhibits the transmittance versus λ curve between 165 and 300 nm [286]. Copyright 2011 American
Chemical Society.

4.3. Other Approaches

Modulators that use magneto-optical effects for optical modulation have received less
attention than all-optical or electro-optical modulators. Although the operation of magneto-
optical modulation is relatively simple, the magneto-optical modulator has a unique non-
reciprocity that other modulators cannot achieve. Magneto-optical Faraday rotators and
Kerr rotators [287] can operate in the far infrared, terahertz, and microwave ranges. In 2D
materials, the properties are different because of the number of layers. In contrast to the
single-layer/three-layer CrI3, the double-layer CrI3 exhibits antiferromagnetic behavior
due to the lack of off-plane and in-plane magnetization [288]. This antiferromagnetic
behavior can also be tuned to ferromagnetic by applying a gate voltage. Huang et al. [289]
demonstrated the magneto-optic Kerr effect (MOKE) microscopic detection of double
layers with magnetic electrostatic door control in CrI3, as shown in Figure 16a,b. The
voltage control switch between antiferromagnetic and ferromagnetic states is realized at
the fixed magnetic field near the sub magnetic transition. The stratified antiferromagnetic
state of time reversal pair is verified under zero magnetic fields. The experimental results
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show that they appear to emanate from the spiral layer locking, and the Mok signal is
inverse-linearly dependent on the gate voltage. Figure 16c shows the RMCD signal of
the vertical magnetic field double-layer CrI3 device (device 1) at zero gate voltage. Li
et al. [290] demonstrated that the coupling of dark excitons and optically silencing chiral
phonons makes the intrinsic photoluminescence of dark exciton copies in monolayer WSe2
possible, as shown in Figure 16d. The effect of the top gate voltage and magnetic field on
the PL spectrum and excitation power of the device was investigated by encapsulating
a single layer of WSe2 with a top gate electrode in contact with graphene (Figure 16e,f).
Similarly, Xing et al. [291], reported the identification of Cr2Ge2Te6 ferromagnetic flakes
(CGT) of thickness as low as a few nanometers, and the single-layer CGT diagram is shown
in Figure 16g. In the magnetic field of 0.1 t along the ab surface of the crystal, when the
temperature drops below~61 k, the magnetization intensifies (Figure 16h). This further
demonstrates the enormous modulation of channel resistance of a 2D CGT device through
the electric field effect. The experimental data further show that the 2D lattice voltage is
adjustable and ferromagnetic 2D material CGT can be used as a new quantum functional
material. Figure 16i shows an optical image of an 8.5 nm CGT wafer. Further cognition of
magneto-optical mechanism and the design to control 2D material structure, 2D material-
based devices will show more extensive applications. Thermo-optic modulation is another
commonly used effective approach to realize high performance modulator devices, which
rely on temperature-dependent refractive index changes of a certain material. Generally, the
refractive index of materials is varied through the heating process. Then, the incident light
passed through the employed optical waveguide filled with 2D materials, and the phase
modulation via a resonant structure or interferometry can be achieved. As aforementioned,
2D materials possess superior properties, such as high electrical, thermal conductivity,
and wide optical absorption region, which enable 2D materials to hold great potential
for thermo-optic modulation applications. However, most reported investigations of
thermo-optic approach are concentrated on visible to NIR band. To meet the requirements
of different applications, it is of great significance to develop 2D materials-based MIR
thermo-optic modulators, such as BP, Te, novel TMDCs, and so forth.

Acousto-optic modulators use sound waves to change a material’s refractive index, so
that light diffraction and frequency variations are controlled. Acousto-optic modulators
based on various 2D materials have been extensively studied in optical communication,
display pulse generation (Q switch), and signal modulation. Lithium niobate has unique
piezoelectric and birefringent properties, but its application in the field of optoelectronics
is restricted by light activity and semiconductor transmission. Preciado et al. [292] man-
ufactured and characterized the hybrid MoS2/LiNbO3 acousto-electric device using an
extensible route and photolithographic definition of the FET structure using the millimeter
MoS2 at the top (Figure 17a). The prototype device represents a device on silicon that
competes with the electrical properties of MoS2. Surface acoustic waves excited on the sub-
strate can be operated and detected in a contactless manner in a single layer of equipment.
Figure 17b shows the FET emitted in the channel region by 400 m × 350 m spatial graph
PL of characteristic monolayer MoS2. Recently, the saturable absorber is introduced with
a new Tm:Ca (Gd, Lu) AlO4 dual Q-switched laser based on an acousto-optic modulator
(AOM) and WS2 [293]. Under these conditions, the modulation rate (MR) of Tm:Ca (Gd,
Lu) AlO4-based dual Q-switched laser has 1 kHz AOM, 91 ns pulse width, and 1.2 kW
maximum peak power.
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Figure 16. (a) Schematic diagram of a double-gated and double-decker CrI3 device assembled.
(b) False-color optical micrograph. (c) Variation curve of RMCD signal with zero grid voltage [289].
Copyright 2018 Nature Publishing Group. (d) BN encapsulated single-layer WSe2 with graphene
contact and top gate electrode. (e) The PL spectrum of the device at (c) 4.2 K. (f) Curve of integrated
intensity and excitation power [290]. Copyright 2019 Nature Publishing Group. (g) The stratified
crystal structure diagram of CGT along the direction of (0 0 0 1). (h) The magnetization of CGT
single crystal as a function of the temperature change at 0.1 T magnetic field. Relationship between
measured magnetization and magnetic field at 5 K (inset). (i) Classic 2D CGT chip optical image [291].
Copyright 2017 IOP Publishing Ltd.

Compared with WS2 or AOM, pulse width compression ratio can reach to 15.38,
corresponding to the maximum peak power of 511.30. The experimental data proves that
WS2 has a satisfactory saturation absorption, and the double-Q switching laser is desirable
to compress pulse width and increase peak power. Figure 17c–e show that the different
Q-switched laser pumps of typical pulse train and corresponding mono pulse is 7.2 W,
which confirms that the pulse amplitude of the double-Q switched laser is more stable
compared with the single passive Q-switched laser. Chizhikovet et al. [294], developed
an acousto-optic (AO) modulator made from bismuth sodium NaBi (MoO4)2 crystals.
Isotropic orthogonal interaction geometry is used, longitudinal piezoelectric plate is used
as piezoelectric transducer, and the sound wave is oriented along the crystal axis Z. The
modulator shows high diffraction efficiency (up to 87%), 2.5 W RF power. It is characterized
by manufacturability in terms of crystal growth, machining, and optical uniformity.
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Figure 17. (a) Schematic diagram of device based on MoS2/LiNbO3 combination. (b) PL map of the
active FET region [292]. Copyright 2015 Nature Publishing Group. (c) Pulse trains of lasers and single
pulses of WS2 Q-switched. (d) AOM&WS2 Q-switched at 1 kHz. (e) AOM&WS2 based Q-switching
at 1 kHz [293].

Huang et al. [295], proposed an electro-absorption modulator with indium phosphide.
Insulating silicon wafers used as the substrate of the proposed electro-absorption modulator,
as well as adhesives and indium phosphide installed on the insulating silicon wafers, as
demonstrated in Figure 18a. The performance of the electro-absorption modulator was
measured, as shown in Figure 18b. When the voltage is positive, the exciton transition
causes a large change in the absorption change. The spectrum measured in the same
condition is shown in Figure 18c. The figure shows that the driving voltage is relatively low
when the bias voltage is positive. The electro-absorption modulator achieves 1.25 Gbps
modulation with a driving voltage of 50 mV. This work confirmed that indium phosphide
can be used as a low voltage driving modulator material. For improving the photo response
liveness of lithium niobite materials, Preciado et al., combined MoS2 and lithium niobite
(MoS2/LiNbO3) for acousto-electric device [292]. LiNbO3 was used as the substrate, and
MoS2 was placed on the substrate. In addition, four metal electrodes are grown on the
device by chemical deposition, as shown in Figure 18d. The insets on the left and right
represent the measurement methods of four contacts and two contacts, respectively. When
the voltage between the drain and the source is zero, the device resistance and conductance
change with the voltage between the gate and the source, as is shown in Figure 18e.
Figure 18f demonstrates the reaction activity of the two channels with time. Among them,
red light and infrared laser are irradiated on the device at 6 s. It can be seen from the figure
that the response speed of the two methods are very fast when lasers start to work. These
findings confirmed the potential of MoS2/LiNbO3 as an infrared acousto-electric device.
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the bias voltage changes [295]. Copyright 2016 AIP Publishing LLC. (d) Experimental diagram of
MoS2/LiNbO3 acousto-electric device. (e) Resistance and conductance change curve with VGS.
(f) The response time of MoS2/LiNbO3 under two measurement methods [292]. Copyright 2015
American Publishers Limited.

5. Photodetectors

The development of new material synthesis technology, heterogeneous junction pro-
duction method and micro-nanometer scale device processing technology, with excellent
photoelectric properties has promoted the rapid development of 2D material photoelectric
detection research [296]. Amani et al., used a cavity substrate with Au/Al2O3 layers as
a back-reflector and λ/4 spacer, respectively, in combination with narrow gap Te (body
0.35 eV and 1 eV in 1 L) to enhance infrared light absorption, as shown in Figure 19a [156].
The cutoff wavelength is widened from 2.0 µm to 3.4 µm, as shown in Figure 19b,c. Mul-
tiple internal reflections of an incident laser in a plane cavity resulting in the fast rapid
response of 16 A W−1 at Vd = 5 V for the device on 150 nm Al2O3 at λ = 1.7 µm. Huo
et al. demonstrated a mixed sensitized mercury telluride/titanium dioxide/molybdenum
disulfide PD (Figure 19d) [297]. Titanium dioxide (3.2 eV) was selected as the electron
acceptor buffer layer to support charge transfer to the molybdenum disulfide channel, as
shown in Figure 19e. Figure 19f indicates the spectral coverage of the hybrid structure with
a detection wavelength of more than 2.0 µm. After optimizing the back-gate, the response
of the device at 2 µm is about 500 A W−1, and the high D* is 1012 Jones (0.35 µW cm2,
Vd = 1 V, Vg = −15 V). Unlike noble metal nanoparticles (typically gold or silver), semi-
conductor nanoparticles typically resonate in near-infrared or MIR [298–300]. Ni et al.,
demonstrated LSPR-based MIR hybrid PD coupled with graphene by borosilicate quantum
dots, as shown in Figure 19g [301]. The LSPR effect of quantum dots introduced a strong
local electric field to stimulate the absorption effect of graphene at a molecular resonance
region. Figure 19h shows the simulated distribution of the square electric field |E|2 at the
quantum dot/graphene, and it can be seen that LSPR is the strongest at 3µm. Through
a series of studies, it has been found that combining 2D infrared materials with optical
designs, such as quantum dots, can significantly improve performance and achieve high
stability and high sensitivity of broadband photodetectors at required wavelengths.
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Figure 19. (a) Schematic diagram of a 2D Te cavity enhanced photodetector. (b) The change of
absorption wavelength with the thickness of Al2O3. (c) Spectral response coefficients on Al2O3 with
different thickness [156]. (d) Experiment setup of MoS2/TiO2/HgTe-based hybrid photodetectors.
(e) Energy band diagrams of MoS2–TiO2–HgTe hybrid structure. (f) Spectral responsivities for HgTe,
TiO2/MoS2, and hybrid devices [297]. Copyright 2017 Wiley-VCH. (g) Schematic diagram of the B-
doped Si QDs/graphene-based hybrid phototransistor. (h) The simulated distribution of the squared
electric field |E|2 at quantum dots/graphene [301]. Copyright 2017 American Chemical Society.

5.1. Waveguide-Based Photodetectors

The BP band gap is narrow and limited, which is often used to improve dark cur-
rent excess in graphene photodetectors. A gated multilayer BP detector integrated in a
silicon photonic waveguide operating in the near-infrared telecommunication wavelength
is demonstrated [302], as shown in Figure 20a. The BP detector has shown excellent
performance and can work under small bias dark current. The intrinsic responsivity
reached 135 mAW−1 and 657 mAW−1 in devices 11.5 nm and 100 nm thick, respectively
(Figure 20b,c). Photovoltaic effect played a major role in photocurrent, whose response
bandwidth exceeded 3 GHz. In order to further develop the integrated waveguide sensing
system for MIR, Li et al. [303] realized the integration of silicon on insulator (SOI) waveg-
uide and BP PD, as shown in Figure 20d. When working near the BP cutoff wavelength
with weak absorption, the absorption length limitation of BP thickness limitation can be
overcome by using the optical limitation of Si waveguide and grating structure, and the
light–BP interaction can be enhanced. The response degree and noise equivalent power
(NEP) of devices with different BP crystal orientations and thicknesses were discussed.
In addition, the power-related responsivity and gate-adjustable photocurrent were also
investigated. Under the bias of 1 V, the response of BP PD was 23 A/W at 3.68 µm and
2 A/W at 4 µm (Figure 20e,f). By integrating passive silicon photonics with active BP
photodetectors, a new idea for MIR photodetectors is provided. In the same year, Deckoff-
Jones et al. [304] developed a halcogenide glass waveguide-integrated BP MIR PD and
manufactured devices along different crystal axes of BP for study. The influence of in-plane
anisotropy on the optical response of waveguide integrated components is investigated.
Devices A and B were made from 32.4 nm and 8.3 nm thick and thin sheets parallel to
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the armchairs, respectively. The response rate of the best equipment can be increased to
40 mA/W (Figure 20g,h), and the noise equivalent power at 2185 nm can be reduced to
30 pWHz−1/2 (Figure 20i). In addition, the responsivity of the PD changes by an order
of magnitude in different BP directions. Therefore, BP has been proved to be a feasible
medium infrared partial discharge material. Recently, Ma et al. [305], proposed a shared
BP photonic system to achieve high responsiveness in a miniaturized BP waveguide pho-
todetector. Near the edge of the band at about 3.8 µm, the responsiveness of the BP PD was
tenfold higher on 10 µm long PhCWG than on subwavelength grating waveguides. Under
the condition of the bias voltage of 0.5 V, BP PhCWG PD achieved 11.31 AW−1 response
degree and 0.012 nW Hz−1/2 noise equivalent power.
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Figure 20. (a) 3D demonstration of a BP electric detector with a graphene tip grid. Comparison of the
inherent responsivity and internal quantum efficiency (QE) of (b) 11.5 nm and (c) 100 nm thick BP
with application bias. tBP is the thickness of BP [302]. (d) An enlarged view of the device output of
the system on the waveguide integrated chip with a BP PD. (e) The power of both devices depends
on the response rate at (e) 3.68 µm and (f) 4 µm [303]. Copyright 2018 American Chemical Society.
(g) AFM and microscope images from Device A. (h) Measured (dots) and linear fit (lines) dark current
and resistance of Devices A. (i) The relation between the response rate of Device B and the incident
laser power [304]. Copyright 2018 IOP Publishing Ltd.
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2D materials other than BP can also be waveguide-integrated into photodetectors.
Han et al. [306], reported an on-chip polycrystalline PbTe photoconductive detector with a
sulphide glass waveguide through experiments (Figure 21a,b). At room temperature, the
device showed a response of 1.0 A/W at wavelengths between 2.1 and 2.5 µm. In addition,
the photoconductive signals of PbTe films in the wavelength range of 0.8–5 µm were
measured. The response wavelength dependence of sample 1 under 10 V bias is displayed
in Figure 21c. Liu et al. [307] used Ge-rich SiGe waveguides and transient components based
on the light guide mode to conduct MIR sensing within the wavelength range of 5.2 and
6.6 µm (Figure 21d–g). For further verification, the absorption spectra of the independent
photoresist spun onto a helical Ge-rich SiGe waveguide were monitored. At the spectral
window of 5.8–6, the optical loss of the waveguide increases significantly. The 2 µm was
identified and associated with intrinsic photoresist absorption. The platform’s ability to
detect small amounts of methane gas is also discussed. Zhang et al. [308] theoretically
investigated a tensile strain GeSn waveguide integrated with Si3N4 lining stress source for
use in MIR detectors and modulators. Under tensile strain, the direct band gap of GeSn
can be greatly reduced by reducing the conduction valley in the energy and increasing the
degeneracy of the high band. GeSn waveguides absorption coefficients with different Sn
compositions can be obtained accordingly. The cut-off wavelengths of the three different
waveguide photodetectors can be extended to 2.32, 2.69 and 4.06 µm, respectively, as shown
in Figure 21h–j.
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Figure 21. (a) Diagram of the cross-section of the integrated MIR detector. (b) Schematic diagram
of the chip in the device. (c) The response of sample 1 at different wavelengths at 213 K with bias
voltage of 10 V [307]. Copyright 2016 American Institute of Physics. (d) Schematic cross-section of
the waveguide considered. (e) SEM image of the waveguides covered by S1818 photoresist. (f) Top
view of the resulting sample. (g) Absorption coefficient of the photoresist [308]. Copyright 2018
The Optical Society. (h–j) Amplitude and wavelength diagrams of Ge0.97Sn0.03, Ge0.95Sn0.05 and
Ge0.90Sn0.10 waveguide modulators under different applied electric field conditions [309]. Copyright
2015 The Optical Society.
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Based on mature electronic equipment manufacturing technology, Younis et al. [309]
combined SOI and Ge for MIR detectors. The 200 nm thick SOI is used as the substrate,
and methods, such as epitaxial growth and chemical deposition, are used to obtain SiO2
flakes. In addition, 200 µm nano-cones placed on two sections of the waveguide, and
the Ge-on-SOI proposed by the researchers are demonstrated in Figure 22a. Figure 22b
demonstrates that the normalized transmission data of the rib waveguide. When the
Ge thickness is 0.85 µm, the refractive index of the waveguide is shown in Figure 22c.
The Ge-on-SOI proposed in this work has low transmission loss, and it can be used in
MIR sensor applications. Zhang et al. [308], combined GeSn with silicon nitride for MIR
detectors. Among them, Si is used as the substrate material, and silicon oxide, silicon,
GeSn, and silicon nitride constitute the basic structure of the SOUP waveguide, as shown
in Figure 22d. This structure can cause change in the waveguide through the stretching of
silicon nitride. In the experiment, the relaxed and stretched states of the waveguide are
compared. The band gap of the waveguide in the relaxed state is significantly larger than
that of the stretched waveguide, as shown in Figure 22e. The change in the absorption
spectrum is due to the change in the Sn content in GeSn as shown in Figure 22f. The cut-off
wavelength of Ge0.90Sn0.10 is in the MIR range. This confirms that stretched GeSn can be
used for waveguide MIR detectors.
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able GeSn waveguide. (e) Band gap change of GeSn in relaxed and stretched states. (f) Absorption
spectrum when the content of Sn in GeSn changes [308]. Copyright 2015 The Optical Society.

5.2. Schottky Photodetector and Phototransistor

The rich physical characteristics of BP and its potential applications in the construction
of nano-electron and nano-photonic devices have attracted great attention [310]. Yuan
et al. [100] found that the working wavelength range of photonic devices could be greatly
expanded by introducing arsenic into the black arseno–phosphorous alloy formed by BP
(B-AsxP1−x), as shown in Figure 23a,b. The prefabricated b-As0.83P0.17 photodetectors
embedded in hexagonal boron nitrates (hBN) showed peak non-intrinsic responsibility—
190, 16 and 1.2 mA/W at 3.4, 5.0 and 7.7 µm, respectively. Since the original b-As0.83P0.17 is
preserved through complete hBN packaging, the inherent photoconductivity effect led the
photocurrent generation mechanism, and the transmission hysteresis of these b-As0.83P0.17
photodetectors can be ignored. Therefore, the b-As0.83P0.17 alloy is an advancing material
due to its wide optical responsiveness in the MIR range due to inherent photoconductance.
Tan et al. [311], synthesized a new 2DM black carbonized phosphorus (b-PC) in order to
achieve the responsiveness and response time required for both weak signal and high-
speed detection (Figure 23c,d). The absorption spectrum can be as high as 8000 nm. Under
the excitation wavelength of 2 um, the adjustable response and response time of b-PC
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phototransistor are shown in Figure 23e. The peak response rate of b-PC phototransistor is
2163 AW−1 and the equivalent power of granular noise at 2004 nm is 1.3 fW Hz−1/2. In
addition, it showed that the response time of 0.7 ns can be adjusted by gating effect, which
makes it universal for high-speed applications. A high performance antenna with integrated
BP photoconductor with ultra-wideband detection from infrared to terahertz frequencies
is demonstrated by Wang [312] ((Figure 23f–g). Different photoconductive mechanisms,
such as photo thermoelectricity (PTE), radiant heat, and electron hole generation, can be
designed due to the device geometry, input central wavelength, and power. In particular,
when the photonic energy increased to the THz band, there is still a photoconductive
response at room temperature.
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Figure 23. (a) Section diagram of the as-fabricated hBN/b-As0.83P0.17/hBN heterostructure PD. (b) 
Cross section TEM image (Left) and element analysis diagram (right) of the device [100]. (c) Sche-
matic diagram of the b-PC phototransistor. (d) The AFM of the b-PC phototransistor. (e) The re-
sponse capacity of b-PC is compared to photodetectors reported in recent years measured at the 

Figure 23. (a) Section diagram of the as-fabricated hBN/b-As0.83P0.17/hBN heterostructure PD.
(b) Cross section TEM image (Left) and element analysis diagram (right) of the device [100].
(c) Schematic diagram of the b-PC phototransistor. (d) The AFM of the b-PC phototransistor. (e) The
response capacity of b-PC is compared to photodetectors reported in recent years measured at the
same incident power on the active region [311]. Copyright 2017 Wiley-Blackwell. (f) Antenna in-
tegrated BP photoconductor. (g) The interaction of incident infrared and terahertz photons results
in the electron–hole transition of BP slices. (h) The boundary between free hole absorption and
the generation of inter-band electron-hole pairs is marked by an absorption spectral profile [312].
Copyright 2017 Wiley-VCH Verlag.
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Zhou et al. [313], demonstrated a new model of highly sensitive Schottky barrier-
controlled phototransistor. It adopts a low layer BP channel perovskite modified by
MAPbI3−XClX (Figure 24a,b), and the channel current is affected by the Schottky bar-
rier at the source electrode. In the perovskite layer near Schottky barrier, the electric field
assisted the electron capture process, so the optical response velocity of the unit could
be adjusted by varying the drain voltage. The device is capable of displaying a high
responsiveness of 106–108 AW−1 (Figure 24c), an ultra-high ratio detection rate of up to
9 × 1013 Jones, and 10 ms response time.
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electrode material is Pt, which can form a Schottky junction with MoS2, as shown in Figure 

Figure 24. (a) Image of a BP/MAPbI3−XClX Schottky FET. The inset figure exhibits decorated with
MAPbI3−XClX perovskite. (b) A typical plane view SEM image of the MAPbI3−XClX perovskite
on silicon substrate. The inset figure shows the corresponding cross-sectional SEM image. (c) The
response rate increases with the decrease in light intensity [313]. Copyright 2019 Wiley-VCH Verlag.

For the purpose of developing technology in the field of Schottky phototransistor, Wu
et al. [314], applied MoS2 to phototransistors. The Au–Cr–Au layered structure is placed
on the top of MoS2, and this design can be used to distinguish the response mechanism.
Under the illumination of 454 nm to 1550 nm, MoS2 transistor will show different light
response properties. As shown in Figure 25a, the light response of different wavelength
bands is displayed. In the infrared light band, the photocurrent signal is negative, and
the response time is short. Figure 25b shows the change in scale transfer with light power.
In addition, it is found in the experiment that the negative photoelectric signal value in
the infrared band is related to the influence of ambient temperature. The transistor under
low temperature and dark conditions is measured, as shown in Figure 25c. Among the
figure, the inset shows the change of carrier mobility with temperature. This work can be
applied to infrared light detection technology. The number of layers of TMDCs can affect
the nature of the energy band gap. Ko et al. [315], used MoSe2 for phototransistor control.
The Figure 25d demonstrates the Raman spectrum curves of MoSe2 with different layers
are displayed. In the experiment, MoSe2 was placed on the Ti electrode by a mechanical
peeling method, and the material of another electrode was Cu. The external electron
efficiency of the MoSe2-based detector is demonstrated in Figure 25e. The figure shows
that the maximum external electron efficiency of the MoSe2 PD can reach 37,745%. In
addition, the researchers found that the photo response rate is opposite to the incident laser
energy, as shown in Figure 25f. This is caused by the trapping effect of impurities, such as
oxygen, on the surface of the material. The phototransistor proposed in this work can be
applied to detectors, sensors and other devices in the near-infrared field. To improve the
performance of phototransistor, Shi et al. [316], combined indium phosphide–zinc sulfide
and MoS2 to obtain a hybrid Schottky transistor (InP@ZnS-MoS2). The electrode material is
Pt, which can form a Schottky junction with MoS2, as shown in Figure 25g. This design can
effectively improve the light response intensity and speed of the transistor. Among them,
as the power density change, the light response can reach to 1374 A·W−1, as shown in
Figure 25h. In addition, the light response period of this design is shown in Figure 25i, and
the self-powered speed of this transistor can reach 21.5 µs. The InP@ZnS-MoS2 transistor
proposed in this work can improve the performance of the phototransistors effectively.
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Figure 25. (a) Transistor light response excited by light sources in different wavelength bands.
(b) When the light wavelength is constant, the influence of the ambient light intensity changes to
the transistor. (c) The influence of temperature changes to transistor in dark environments [314].
Copyright 2018 Wiley-Blackwell. (d) Raman spectrum when the number of layers and shape of MoSe2

change. (e) Graph of the influence of laser power and gate voltage on external electron efficiency.
(f) The influence of laser power on light response rate [315]. Copyright 2017 IOP Publishing Ltd.
(g) Structure diagram of MoS2 served as a transistor. (h) The relationship curve of light response
with power density. (i) A light response period curve of a transistor [316]. Copyright 2020 American
Chemical Society.

5.3. Photoelectrochemical Photodetector

The 2D BP nanocrystals were prepared by a convenient liquid stripping method. Ren
et al. [317] prepared BP nanocrystals for the manufacture of self-powered photodetectors
with good light response activity and environmental stability, as shown in Figure 26a,b.
Photoelectric chemistry (PEC) test showed that under light irradiation, the current density
of BP nanosheet could reach 265 nA cm−2, while the dark current density fluctuated around
1 nA cm−2. Furthermore, the device maintained excellent on/off performance even after
one month of operation, as shown in Figure 26c. In addition, the PEC performance of BP
nanoplate-based photodetectors was studied at various KOH concentrations, indicating
that the BP nanoplate-prepared photodetectors may have great application potential in
self-powered photodetectors. However, the inherent instability of BP limits its application
in optoelectronic devices. Therefore, Zhang et al. [318], used the hydrophobic polyionic
liquid poly (1-hexyl-3-vinylimidazolium) hexafluorophosphate (PIL-TFSI) to encapsulate
BP quantum dots to form BP-PIL (Figure 26d) and applied it to a photoelectrochemical pho-
todetector (PD). From the experimental results and density functional theory, it is found that
the stability of BP significantly improved and the fluoride of BP is significantly enhanced.
The prepared PD showed significantly improved optical response behavior (542 nA cm−2)
and remained unchanged after 90 days, as shown in Figure 26e,f. In addition, the properties
of PIL-TFSI enable the self-healing ability of the prepared PD, and the ON/OFF signal
still performs well after 50 cycles. Qiao et al. [319], obtained the hetero junction of BP
QDS-molybdenum disulfide (BP QDS-MOS2) and set up a PEC PD-based heterostructure
(Figure 26g). The PEC PD with BP QDS-MOS2 heterojunction has significantly enhanced
the optical response performance, as shown in Figure 26h,i. At the same time, the PEC type
PD also shows the light response behavior from the power supply, good light response
performance, and stability in the liquid environment. The results prove once again that
using BP quantum dots as hole receptors is a feasible method to promote the separation of
photoelectric hole pairs.
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al. [320] proposed a small layer InSe nanosheet, which has a direct band gap obtained by 
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type PD (Figure 27a,b). The detector shows good current density, light response, and cy-
cling stability in the KOH solution (Figure 27c). The detection performance of PEC InSe 
PD can be changed with the change of solution concentration and applied voltage, indi-
cating that it can be used as a potential candidate for PD. In addition, the extended opti-
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plied to other equipment, such as sensitized solar cells, water decomposition systems, and 
optical tracking systems. In order to find a high quality photoelectrode for water decom-

Figure 26. (a) Scanning electron microscope photograph of exfoliated BP. (b) Transmission electron
microscope photograph of exfoliated BP. (c) Current density curve with time [317]. Copyright 2017
Wiley-VCH Verlag [318]. Copyright 2019 Wiley-VCH Verlag. (d) The optical and composition charac-
teristic analysis. (e) The imaging of BP QDs and BP-PIL, which undergo three months testing. (f) The
photocurrent intensity curves of the newly prepared material and the stability tested material, and the
illustration shows the received signal during 7000–8000 s [318]. Copyright 2019 Wiley-VCH Verlag.
(g) The atomic force microscope image of BP QDs-MoS2 compound materials. (h) Photocurrent
intensity curves of MoS2 nanosheets and BP QDS-MOS2 compound materials at applied voltages
of 0 and 0.5 V in alkaline solution. (i) Electrochemical impedance diagrams of MoS2 nanosheets
and BP QDS-MOS2 compound materials at applied voltages of 0 and 0.5 V in alkaline solution [319].
Copyright 2020 Elsevier BV.

Indium selenide (InSe), as a typical III-VI layered material successfully catches exten-
sive attention by way of its unique layered structure and wide adjustable band gap. Li
et al. [320] proposed a small layer InSe nanosheet, which has a direct band gap obtained by a
mild liquid phase stripping method and was used to construct a photochemical (PEC) type
PD (Figure 27a,b). The detector shows good current density, light response, and cycling
stability in the KOH solution (Figure 27c). The detection performance of PEC InSe PD can
be changed with the change of solution concentration and applied voltage, indicating that
it can be used as a potential candidate for PD. In addition, the extended optimization of the
photoelectric chemical properties of InSe nanosheets will be further applied to other equip-
ment, such as sensitized solar cells, water decomposition systems, and optical tracking
systems. In order to find a high quality photoelectrode for water decomposition and water
absorption, Ren et al. [321] synthesized a new type of plasma photoanode heterostructure
which consists of plasma Ag and fullerene shell-WO3−X (Figure 27d–g). Among them,
the hot electrons generated by the exciter of Ag nanomaterials could be effectively trans-
ported to WO3−X nanosheet. The conversion efficiency and photodegradation of PEC were
improved due to the presence of silver and fullerene shell-WO3−X. Meanwhile, photo-
voltaic devices photoelectric conversion efficiency can be further improved by increasing
concentrating modules [322–326].
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reach 10893%. This work proves that ReSe2 can be used as an excellent photoelectric sensor 
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Figure 27. (a) Raman atlas of InSe nanosheets after InSe blocks and LPE. (b) AFM diagram of InSe
nanosheet. (c) Response time of PEC type InSe PD under 0–1 V bias in 2 M KOH electrolyte [320].
Copyright 2017 Wiley-VCH Verlag. (d) Transmission electron microscope (TEM) photograph of
WO3−x materials. (e) High resolution TEM photograph of the region in (d). (f) High resolution TEM
photograph of Ag/WO3−x heterostructure. (g) High resolution TEM photograph of the region in
(f) [321]. Copyright 2018 Elsevier.

ReSe2 is a 2D TMDC material, which has a hexahedral structure, and the structure is
different from the hexahedral structure of other TMDCs materials. The ReSe2 has different
properties in various directions. In order to apply this recently discovered material to PDs,
Yang et al. doped Mo into ReSe2 material to obtain an octahedral semiconductor material
(Mo: ReSe2) [327]. The Raman spectrum of Mo: ReSe2 is demonstrated in Figure 28a. The
relationship curve in the figure shows the Raman forms of Mo: ReSe2 is more than to other
TMDCs. In the experiment, silicon oxide is used as the substrate and Mo: ReSe2 material
is placed on the silicon oxide. The Au material is selected as the electrode, as shown in
Figure 28b. Meanwhile, the researchers found that the performance of the Mo: ReSe2
material in NH3 after annealing is better than that in normal environment, as shown in
Figure 28c. Under 633 light, the external electron efficiency of Mo: ReSe2 in ammonia gas
can reach 10893%. This work proves that ReSe2 can be used as an excellent photoelectric
sensor material. MoS2 materials are easy to prepare and have a low cost, but its electron
migration rate is lower than that of silicon crystals. For the purpose of improving the
shortcoming of MoS2, Li et al. obtained a material (SrTiO3@ MoS2) for PDs by combining
SrTiO3nano material and MoS2, as shown in Figure 28d [123]. In the experiment, SrTiO3
was used as the substrate and MoS2 loaded on the substrate. The X-ray diffraction images of
several materials are shown in Figure 28e. Among them, the green, purple, and orange lines
represent MoS2, SrTiO3 and SrTiO3@ MoS2 materials, respectively. The figure shows that
the X-ray diffraction peak of MoS2 is very low, while the peak of SrTiO3 is more obvious.
The current density of SrTiO3 and SrTiO3@ MoS2 materials changed with time in the KOH
electrolyte are shown in Figure 28f. Among them, the peak current density of SrTiO3@
MoS2 is 21.4 µA, which is much higher than that of SrTiO3. This work has contributed to
the development of MoS2 composite materials. To make the mass applications of TMDCs
materials served as PDs possible, Patel et al. [328] combined WSe2 and MoSe2 to form
a heterojunction structure (MoSe2-WSe2). In the experiment, the Si substrate is used as
the base, and the MoSe2 film is placed on the base. After that, WSe2 is placed on the top
layer, as demonstrated in Figure 28g. The Raman spectrum of MoSe2-WSe2 material is
shown in Figure 28h. In addition, the light response of the material will change with the
change of light intensity, as shown in Figure 28i. Compared with the traditional TMDCs/Si
structure, the MoSe2-WSe2 structure has better light response properties. This confirmed
the application potential of the large-area TMDCs in the optical field.
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material was used as the substrate, and Bi2Se3 was grown on the substrate by hydrother-
mal method. Finally, the Bi2Se3/Te@Se heterostructure required for the experiment was 
obtained, and the reaction process is shown in Figure 29a. The X-ray diffraction spectra of 
Se, Bi2Se3 and Bi2Se3/Te@Se were measured, as shown in Figure 29b. Among them, due to 
the problem of growth uniformity, the peak value of the Bi2Se3 material obtained by epi-
taxial growth has shifted. When the wavelength is constant, the photocurrent density of 
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Figure 28. (a) Raman spectrum of Mo: ReSe2 material. (b) Experimental schematic diagram of using
Mo: ReSe2 as photodetector. (c) Voltammetric characteristic diagram of Mo: ReSe2 material with
different conditions [327]. Copyright 2014 Nature Publishing Group. (d) Scanning electron micro-
scope image of SrTiO3@ MoS2. (e) X-ray diffraction images of several materials. (f) Comparison chart
of current intensity between SrTiO3 and SrTiO3@ MoS2 [123]. Copyright 2020 Hindawi Publishing
Corporation. (g) Schematic diagram of the MoSe2-WSe2 structure for light response measurement.
(h) Raman spectrum of MoSe2-WSe2. (i) Volt-ampere characteristic curve of MoSe2-WSe2 under
different light intensity [328]. Copyright 2020 American Chemical Society.

TIs can be used as materials for photoelectrochemical PEC, Zhang et al. combined
Bi2Se3 and Te@selenium (Te@Se) for PEC device [329]. In the experiment, Te@Se nanoma-
terial was used as the substrate, and Bi2Se3 was grown on the substrate by hydrothermal
method. Finally, the Bi2Se3/Te@Se heterostructure required for the experiment was ob-
tained, and the reaction process is shown in Figure 29a. The X-ray diffraction spectra of
Se, Bi2Se3 and Bi2Se3/Te@Se were measured, as shown in Figure 29b. Among them, due
to the problem of growth uniformity, the peak value of the Bi2Se3 material obtained by
epitaxial growth has shifted. When the wavelength is constant, the photocurrent density of
Bi2Se3/Te@Se in different alkaline solutions is different, as shown in Figure 29c. The figure
shows that in the HCL solution, Bi2Se3/Te@Se material has better self-driving ability. In
addition, the stability of Bi2Se3/Te@Se in several alkaline solutions has been tested. The
Bi2Se3/Te@Se material still has relatively stable reaction ability after one month. This work
proves that Tis can be used in PEC devices. In order to optimize the performance of Tis
in PEC light detector, Ren et al. compared the Au-Bi2Te3 substance solutions of different
concentrations [330]. The Au-Bi2Te3 concentrations of 1%, 3% and 5% are measured in
alkaline solution, respectively. The SEM image of 3% Au-Bi2Te3 is shown in Figure 29d.
X-ray diffraction is used to characterize several materials, as shown in Figure 29e. The
X-ray diffraction curves of pure Bi2Te3 materials, 1%, 3%, and 5% Au-Bi2Te3 are compared.
It can be seen that the peaks of several metal-semiconductor materials are consistent with
the peaks of pure Bi2Te3 materials. Among several materials, the light response intensity
and photocurrent of 3% Au-Bi2Te3 are better than other materials. Figure 29f shows the
photocurrent intensity curve of the material with different bias voltages. The inset is the
responsivity and light conversion efficiency. This work improves the light response perfor-
mance of TIs materials by combining Au particles and Bi2Te3, and researchers confirmed
the potential of Au-Bi2Te3 materials in a PEC detector.
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Figure 29. (a) Flow chart of Bi2Se3/Te@Se preparation. (b) X-ray diffraction spectra of several
materials. (c) The light response intensity curve of Bi2Se3/Te@Se in different alkaline solutions [329].
Copyright2019 Wiley-Blackwell. (d) SEM image of 3% Au-Bi2Te3. (e) X-ray diffraction spectra of pure
Bi2Te3 and Au-Bi2Te3 of different concentrations. (f) Curve of photocurrent with the change of bias
voltage [331]. Copyright 2020 Elsevier Ltd.

To facilitate a better understanding of the 2D materials based photodetector applica-
tions, a comparison of photodetection spectral range and other key parameters of photode-
tector is listed in Table 4.

Table 4. The 2D material candidates for LEDs operation.

2D Materials Spectral Range
(µm)

Room Temperature
Responsivity On/Off Ratio Specific Detectivity

(Jones) Ref.

Few-layer Te 1.4~3.5 13 and 8 A W−1

at 1400 and 2400 nm 105 2 × 109 at 1700 nm [156]

b-As0.83P0.17 2.4~8.05 15~30 A W−1 ND 108 [331]
BN/Multilayer

b-As0.83P0.17/BN 3.4 ~7.7 1.2 mA W−1 at 7700 nm 110 ND [100]

PdSe2 0.45~10.6 42.1 A W−1 at 10600 nm ND 0.28 [119,126]

5.4. MIR Imaging

The imaging systems usually require minimization, multifunction, adaptability, and
good controllability in different environments. Lei et al. [160], uses 2D Te materials to
study stable MIR polarization imaging as shown in Figure 30. Wide band sensitive light
response in ambient temperature shows excellent stability, and it will not degrade in the
atmospheric conditions. These findings show that the anisotropy of 2D Ti ensured the
polarization imaging in the scattering environment, and the linear polarization degree
exceeds 0.8, which expands the idea of polarization medium infrared imaging technology.
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6. Results Conclusions and Outlook

Since the extraordinary optoelectronic properties, 2D materials beyond graphene are
intensively employed to fabricate MIR optoelectronic devices. In this review, we investi-
gated the recent progress of 2D materials-based MIR optoelectronic devices, including 2D
material candidates that are suitable for MIR applications, such as BP, TMDCs, GDY, 2D Te
nanoflakes, perovskites, and Topological insulators. As well as their device application in
MIR bands, in particular, light emission devices, modulators, and photodetectors.

1. In terms of LEDs, compared to commercially available LEDs, the external quantum
efficiency and operation stability of 2D materials-based LEDs are still too low. To
satisfy the demand of practical applications, the external quantum efficiency and
operation stability need to be significantly improved. Furthermore, the emitting
wavelength needs to be further extended, which is far from the practical application.
For driven mode, more attention should be concentrated on the electrically driven
mode. Thus, it is of great significance to develop novel 2D materials-based LEDs with
various configurations in the future.

2. Regarding single-photon emitters based on 2D materials, they are thought to be
originated from the defects. However, the underlying physical mechanism, excitation
processes, and atomic structure are still under debate. Meanwhile, the emitting
wavelength needs to be extended into the deep MIR region.

3. The lasing threshold is relatively low at a lower temperature, however, for room
temperature lasing, the threshold needs to be significantly suppressed.

4. For modulator applications, the irradiation damage threshold of 2D materials needs
to be improved. In addition, the long term operation stability needs to be enhanced as
well, which plays a determining role for practical applications. Moreover, only a few
kinds of 2D material can be utilized for electro-optic modulators. Further improving
the architecture of optical modulators and exploring novel 2D materials may provide
an alternative means to overcome these challenges.

5. In terms of MIR photodetectors, since the weaker optical absorption of the MIR light,
the photo responsivity, carrier mobility, and response speed are much lower and
slower than that of visible and NIR photodetectors. Combined with other materials
with higher MIR light absorption coefficient to establish heterojunction may provide
an effective way to solve these problems.

6. For MIR imaging applications, the recent devices mainly adopt a point photodetector,
which is far from the practical application. MIR imaging devices based on large scale
2D material arrays should be developed.

In conclusion, 2D materials beyond graphene-based MIR optoelectronic devices have
already achieved some milestone achievements. However, these devices also face some
severe challenges as previously mentioned. With continuous investigation, we believe that
a more comprehensive understanding of MIR optoelectronic devices based on 2D materials
beyond graphene will emerge in the near future as a result of these ongoing concerted
research efforts.
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