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Abstract
Background: The use of computational methods for predicting protein interaction networks will
continue to grow with the number of fully sequenced genomes available. The Co-Conservation
method, also known as the Phylogenetic profiles method, is a well-established computational tool
for predicting functional relationships between proteins.

Results: Here, we examined how various aspects of this method affect the accuracy and topology
of protein interaction networks. We have shown that the choice of reference genome influences
the number of predictions involving proteins of previously unknown function, the accuracy of
predicted interactions, and the topology of predicted interaction networks. We show that while
such results are relatively insensitive to the E-value threshold used in defining homologs, predicted
interactions are influenced by the similarity metric that is employed. We show that differences in
predicted protein interactions are biologically meaningful, where judicious selection of reference
genomes, or use of a new scoring scheme that explicitly considers reference genome relatedness,
produces known protein interactions as well as predicted protein interactions involving
coordinated biological processes that are not accessible using currently available databases.

Conclusion: These studies should prove valuable for future studies seeking to further improve
phylogenetic profiling methodologies as well for efforts to efficiently employ such methods to
develop new biological insights.

Background
Genome sequencing projects are rapidly increasing the
raw data available for predicting protein function and
protein interaction networks. The best established
method for function prediction is based on sequence
homology to proteins of known function. Unfortunately,
strictly homology-based predictions are of limited use due
to the large number of homologous protein families with
no known function for any single member [1-3]. An alter-
native method for predicting protein function is the Phyl-

ogenetic profile method, also known as the Co-
Conservation method, which rests on the premise that
functionally related proteins are gained or lost together
over the course of evolution [4]. This method predicts
functional interactions between pairs of proteins in a tar-
get organism by determining whether both proteins are
consistently present or absent across a set of reference
genomes. These protein-protein interactions (PPI) are dis-
tinct from physical interactions as they capture putative
functional relationships. Sequence similarity is used only
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to identify homologs, not to infer function. Since first
introduced by Pellegrini et al. [4], Phylogenetic profiling
has been successfully applied to the prediction of protein
function by several groups and demonstrated to be more
powerful than sequence similarity alone at predicting pro-
tein function [5-11].

Currently several web-based databases compile predic-
tions of protein-protein interactions (PPIs), e.g. PLEX [7],
String [5] and Prolinks [8]. These databases either use all
available bacterial genomes at the time of implementa-
tion or a select subset of bacterial genomes without focus-
ing on how the selection of the bacteria will influence the
PPIs. Several groups have attempted to address this issue,
including a number of methods that account for genome
phylogeny when scoring profile similarities [12,13].
Barker et al. applied maximum likelihood statistical mod-
eling for predicting functional protein linkages based on
Phylogenetic profiling [13]. Their method detected inde-
pendent instances of the correlated gain or loss of protein
pairs on phylogenetic trees, reducing the high rates of false
positives observed in conventional across-species meth-
ods that do not explicitly incorporate a phylogeny [13].
Jothi et al. did a study using 16 different reference sets of
genomes, using combinations of bacterial, archaea and
eukaryotic genomes. They showed using a combination of
bacterial and archaea genomes as a reference set could be
enough to make accurate functional linkage predictions
[14]. Cokus et al. found phylogenetic relationships
between genomes by using the first order of the genomes
within profiles and then enumerating runs of consecutive
matches to compute the accuracy of the probability of
observing these phylogenetic relationships [15]. Zheng et
al. constructed Phylogenetic profiles based upon the pres-
ence or absence of neighboring protein pairs within a
genome [16]. They demonstrated that the inclusion of
more genomes (68 vs. 30) resulted in better performance
for PPI predictions, however, they did not provide a strat-
egy for bacteria selection. Sun et al. showed that accuracy
of PPI predictions can be improved by using a set of
genomes which are maximally distinct from one another
[17]. We have noted the same phenomenon here, but fur-
ther show that selection of groups of bacteria that are
closely related either phenotypically or genotypically gen-
erates biologically relevant information that is missed
when other methods for grouping bacteria are employed.

It is sensible that inclusion of genomes from organisms
that exist in similar environmental niches (i.e. rhizo-
sphere bacteria), share certain phenotypic properties (i.e.
motility), or that are from the same species (i.e. different
strains of E. coli) might bias protein interaction network
predictions in an undesirable manner. The challenge is
that the extent of such biases remains uncharacterized,
and thus methods for guiding the selection of relevant ref-

erence genomes are lacking. Here, we have examined such
biases and then used our studies to developed a new scor-
ing scheme to provide guidance for the selection of refer-
ence genomes in Phylogenetic profiling efforts.

Results
Phylogenetic profiling methods work by i) creating a Phy-
logenetic profile vector where Pij = 1 indicates a homolog
exists between protein i in the target genome and a pro-
tein in a reference genome j, ii) calculating similarity
measurements on the profile vectors for each pair of genes
in the target genome, and iii) defining protein interac-
tions in the target genome based on proteins sharing a
profile similarity value greater than a threshold value.
Using E. coli K12 as the target genome, we have evaluated
how changing different aspects of this process, including
the use of a new metric for defining similarity, affect pre-
dicted protein interaction networks.

Comparison and evaluation of protein-protein interaction
The effect of reference genome selection on interactions with 
proteins of unknown function
Many function prediction methods rely on the assump-
tion that functionally related proteins interact [11,18-21].
Thus, the utility of an interaction network whether based
on physical, genetic, or computationally predicted inter-
actions can be assessed by determining the number of pre-
dicted interactions involving proteins that have
unclassified functions in publicly accessible databases
that rely upon homology based methods for functional
assignment (Figure 1). For each network constructed
using four sets of reference genomes (All (268 bacteria),
Selected (75 bacteria), Proteobacteria (130 bacteria), and
Motile (104)), we identified the total number of PPI pairs
that have at least one of the proteins labeled as unclassi-
fied. Our results showed the number of unclassified pro-
teins was greatest when the reference genomes were either
closely related phylogenetically (Proteobacteria) or phe-
notypically (Motile), regardless of the database used for
assigning function. The Selected set of reference genomes
contains only a single representative strain from bacterial
species where more than one strain has been fully
sequenced (i.e. E. coli). As such, this set of reference
genomes can be considered the least closely related of all
of the reference sets examined. Protein interaction net-
works created from the Selected set consistently con-
tained the least number of proteins pairs involving with
unknown function. It is of note that the EcoCyc [22] and
Cluster of Orthologous Groups (COG) databases con-
tained the least number of unclassified proteins, and
therefore were chosen for the additional studies described
next.
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Comparison of different combinations of reference genomes and E-
value thresholds
The threshold value used to identify homologs between
target and reference genomes is a key measure when
assessing the effect of reference genomes on protein inter-
action networks. If the threshold value is low, then many
homologs may be identified even among distantly related
bacterial species. To assess this concern, we evaluated the
Positive Predicted Value (PPV = TP/(TP+FP)) for seven
sets of reference genomes (All, Selected, Proteobacteria,
Low GC Gram positive bacteria, High GC Gram positive
bacteria, Motile, and Aerobic) for each of four different E-
value thresholds across a range of similarity (confidence)
requirements using EcoCyc and COG functional catego-
ries (Figure 2 and Additional file 1). True positives (TP)
correspond to interactions where the proteins pair share
the same function (COG) or appear in the same complex,
pathway, operon, or paralogous group (EcoCyc) or are
homologs. All other interactions were considered false
positives (FP). The significance of interactions between
proteins with shared COG function was also evaluated
using randomized data. To preserve the distribution of
function assignment and network topology while disrupt-
ing the correlation among function assignments, the pro-
teins identities were scrambled at random and the profile
similarities were calculated. Our results indicated that the
PPV for all random sets were significantly different than

when using the original data (p-value < 0.0001) (Figure
2).

The E-value chosen for non-randomized interactions did
not substantially alter the trends observed among the dif-
ferent reference genomes except for High GC gram posi-
tive bacteria. This observation is likely explained by the
relatively low number of genomes contained within the
High GC Gram positive reference set (22 genomes). PPV
was the best for Selected, All (inverse homology) and Aero-
bic, indicating that these reference genome sets interac-
tions commonly occurred between proteins of the same
function and was worst for Proteobacteria, Motile, and
Low GC reference genome sets, with the All and High GC
groups always remaining in between these two other
groups. At restrictive E-value thresholds (E < 10-15), this
result reinforced those reported above stating that refer-
ence genomes of maximum diversity created the most
accurate (highest PPV) protein interaction networks.
What was surprising was that these trends were observed
even at less restrictive E-value thresholds, where it might
be expected that proteins of lower similarity, and thus
more likely to be false positives, would presumably be
added to the network. In fact, the number of Co-Con-
served proteins was similar regardless of the E-value
threshold for all reference genomes (see Tables 1, 2).
Thus, even if the number of predicted interaction pairs
was altered (which is also a function of Co-Conserved vec-
tor similarity), the number of new proteins added to the
overall network was relatively constant. These observa-
tions suggest that using reference genomes of increased
relatedness produces less accurate results (lower PPV)
because the predicted networks either 1) include proteins
from different function classifications that truly act
together in larger coordinated process (and thus are true
positives not false positives) or 2) include proteins where
at least one protein is poorly characterized. Moreover,
these observations suggest that methods for assessing sim-
ilarity might be improved by explicitly considering the
relatedness of reference genomes.

Network topology using different reference genome
The topology of bacterial Co-Conservation networks
exhibited interesting similarities and differences as a func-
tion of reference genomes. The clustering coefficient is the
edge density in the neighbors of a protein [23]. The aver-
age clustering coefficient of the network across all refer-
ence genome sets was high (Table 3), indicating that there
was a short path between any two proteins in a cluster,
and that proteins tended to be Co-Conserved in highly
connected groups. Interestingly, different reference sets
showed a large variation in the average degree of connec-
tivity (Table 3). The Low GC reference set had the highest
average connectivity while the Aerobic and Selected refer-
ence sets had the lowest average connectivity (Table 3).

Comparison of unclassified proteins in published databasesFigure 1
Comparison of unclassified proteins in published databases. 
The reference sets are 1 – All bacteria using Inverse homology 
2 – All bacteria; 3 – Motile bacteria; 4 – Protebacteria; 5 
– Selected bacteria. Pearson correlation coefficient on 
binary profiles was used to measure profile similarity for ref-
erence two through five. For Reference 1, Pearson correla-
tion coefficient applied to Inverse homology. Pearson 
correlation coefficient with confidence r > 0.8 E-value 10-5 

was used as threshold for BLAST. Classified (green); unclassi-
fied (yellow).
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Together these results show that networks based on Aero-
bic or Selected reference sets, which are maximally dis-
tinct either phenotypically or genotypically generate
many small, dense clusters. Interestingly, the result in Fig-
ure 2 for Aerobic and Selected suggest these small clusters
are functionally homogenous, since high PPV values indi-
cate many interactions among proteins of the same func-
tion.

Comparison of different scoring schemes
Pearson correlation and Mutual Information are two com-
mon methods for measuring vector similarity (see Meth-
ods). Previous Phylogenetic profiling methods have either

used protein vectors comprised of binary values (i.e.
homolog = 1, no homolog = 0) [4] or vectors normalized
with E-values [7,24]. We wanted to employ a vector
weighting metric that considered how related the target
and reference genomes were for identified homologs. To
this end, we developed the Inverse homology scoring
scheme, which weights each protein vector value fraction-
ally by the inverse of the number of homologs between
the target and reference genomes as a fraction of the total
number of proteins in the reference genome. This metric
emphasizes homologs identified in distantly related
genomes relative to those identified in more closely
related genomes. To evaluate this method of weighing, we

Comparison of different combinations of reference genome sets and E-value thresholdsFigure 2
Comparison of different combinations of reference genome sets and E-value thresholds. a) E-3 b) E-5 c) E-10 d) E-15. Positive Pre-
dicted Value (PPV) was calculated using COG functional category as described in the methods section. Random indicates pro-
tein-protein interactions generated by scrambling proteins identities for each reference genome set. In Additional file 1, PPV 
was calculated using EcoCyc.

a)

d)

b)

c)
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applied the Mutual Information, Pearson correlation coef-
ficient and Inverse homology scoring schemes to the All (i.e.
268 bacteria) reference genome set and assessed predicted
protein interactions (PPV) (see Figure 3). Our results indi-
cate that the Inverse homology scoring scheme increases
PPV across a range of confidence values when Pearson cor-
relation is used as the similarity metric (Figure 3a). Note
that this trend was also observed over a range of different
E-value thresholds as presented in Figure 2. This same
trend was observed when Mutual Information was
employed (Figure 3c). In contrast, the topology of net-
works created using Pearson correlation was similar
regardless of whether or not Inverse homology was
employed but was different in the case of Mutual Informa-
tion (see Figure 3b and 3d). Specifically, the use of the
Inverse homology weighting criteria decreased connectivity
and the number of clusters containing less than ten pro-
teins, thus altering the topology of the predicted protein
interaction network.

Selection of reference genome affects protein-protein 
interaction predictions
Our analysis of E. coli K12 as a target genome indicated
that the selection of reference organisms had a substantial
effect on the overall properties of predicted protein inter-
action networks. An important additional issue was the
details of how such effects were manifested at the level of
specific protein-protein interactions and protein interac-
tion clusters. To investigate this issue, we assessed the

extent to which unique protein interaction clusters were
predicted when different reference genomes were
employed (Figure 4). We show representative results of
such comparisons for Proteobacteria versus All (Figure
4a) or Motile versus All (Figure 4b) reference genomes.
Many protein nodes within interaction clusters were
uniquely identified when either Proteobacteria or Motile
reference genomes sub-sets were used. These clusters
ranged in size from as few as two proteins to some of the
largest protein interaction clusters, clearly indicating the
importance of reference genome selection on protein
interaction predictions. The key question here is whether
or not such unique interactions are biologically insightful.

Figure 4c–d show biofilm related E. coli K12 protein inter-
action networks developed when either All or Motile ref-
erence genome sets were used. When All was used as the
reference genome, proteins in this cluster had GGDEF
(Gly-Gly-Asp-Glu-Phe) or EAL (Glu-Ala-Leu) domains,
and sensor proteins for the two component regulatory sys-
tem (Figure 4d). This same result was observed when the
Selected or Proteobacteria reference genome sets were
used. Previous studies have shown that quorum sensing
and two component regulatory system are involved in
biofilm formation [25,26]. Moreover, our experiments
previously have shown that many of these previously
uncharacterized GGDEF containing proteins can contrib-
ute to biofilm formation [27]. When the reference
genome was changed to include genomes that shared a

Table 1: Predicted protein-protein interaction pairs using different sets of reference genomes.

Reference genome No. clusters >2 No. Co-Conserved predicted pairs No. Co-Conserved proteins

Aerobic 112 3,825 1,410
All 143 6,987 1,700
All (Inverse homology) 146 6,694 1,770
High GC Gram positive 33 7,932 1,389
Low GC Gram negative 43 56,659 1,667
Motile 110 16,905 1,990
Proteobacteria 111 24,047 2,072
Selected 133 7,408 1,361

Pearson correlation coefficient with confidence 0.8 and E-value of 10-5 were used on binary profile vectors unless noted.

Table 2: Predicted protein-protein interaction pairs using different set of reference genomes.

Reference genome No. clusters >2 No. Co-Conserved predicted pairs No. Co-Conserved proteins

Aerobic 105 3,890 1,233
All 122 9,539 1,539
All (Inverse homology) 129 6,469 1,557
High GC Gram positive 27 4,237 1,058
Low GC Gram positive 33 34,968 1,325
Motile 88 24,198 1,972
Proteobacteria 101 48,730 2,119
Selected 109 3,839 1,206

Pearson correlation coefficient with confidence 0.8 and E-value of 10-15 were used on binary profile vectors unless noted.
Page 5 of 13
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Table 3: Topological analysis network measured using different sets of reference genomes.

Reference Average clustering coefficient Average connectivity No. Co-Conserved proteins

Aerobic 0.77 5.42 1,410
All 0.81 8.22 1,700
All (inverse homology) 0.78 7.56 1,770
High GC 0.63 11.42 1,389
Low GC 0.72 67.97 1,667
Motile 0.74 16.98 1,990
Proteobacteria 0.75 23.21 2,072
Selected 0.82 5.44 1,360

Pearson correlation coefficient with confidence 0.8 and E-value of 10-5 were used on binary profile vectors.

Pearson correlation coefficient and Mutual Information applied to Inverse homologyFigure 3
Pearson correlation coefficient and Mutual Information applied to Inverse homology. The PPV was calculated using COG func-
tional categories: a) the PPV before and after Inverse homology applied to Pearson correlation coefficient and show topology of 
the network using All as reference before and after applying Inverse homology (confidence r > 0.8 and E-value 10-5); b) the PPV 
before and after Inverse homology applied to Mutual Information and the topology of the network using All as reference before 
and after applying Inverse homology (confidence MI > 0.3 and E-value 10-5).

a)

d)

c)

b)
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biofilm relevant phenotype (i.e. motility), the size of the
cluster and the number of proteins within this cluster with
different functional categories increased. The cluster still
contained proteins with GGDEF or EAL domains but now
included the sensors, amino acid biosynthesis proteins,
and regulators that may contribute to the expression and

regulation of overall biofilm phenotypes in E. coli. This
result indicates that in at least some cases the reference
selection can point out unique features of target organ-
isms that would be missed had another reference genome
been selected. Moreover, this result demonstrates that
choice of reference genomes selection can also be used to

Selection of reference genome affects protein-protein interaction predictionsFigure 4
Selection of reference genome affects protein-protein interaction predictions.a) PPIs generated using Proteobacteria as the 
reference genome set. Red nodes are the nodes that are predicted when the reference genome is Proteobacteria and not 
predicted when the reference genome is All (confidence for Proteobacteria is r > 0.9 and for All is r > 0.8 since these two 
confidences give similiar PPV). b) PPIs generated using Motile as the reference genome. Green nodes are the nodes that are 
predicted when the reference genome is Motile and not predicted when the reference genome is All (confidence for Motile 
is r > 0.88 and for All is r > 0.8 since these two confidences give the same PPV) c) Two of the clusters that is predicted when 
the reference genome are Protebacteria not All. The proteins within this cluster are mainly membrane proteins that are 
Co-Conserved with hypothetical or unclassified proteins. d) Comparison of GGDEF clusters with two different type of refer-
ence selection. (All and Motile). When All is used as the reference genome set, the GGDEF domain is Co-Conserved with 
EAL domain and two component regulatory system proteins but when Motile is used as a reference genome set, GGDEF 
domain is Co-Conserved with EAL domain, two component regulatory system, regulator and proteins involved in metabolism. 
All these processes are known to contribute to the common phenomenon of biofilm formation.

a) Proteobacteria

d) Motilec) All

b) Motile
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identify Co-Conserved clusters of proteins that function
in distinct pathways (regulators, cyclic-di-GMP metabo-
lism, etc.) yet contribute to a common phenomenon (bio-
films). This information is of substantial value to
biological studies seeking to decipher complex pheno-
types such as the biofilm phenotype examined here.

Comparison to alternative methods
We compared the performance of our method employing
Inverse homology weighting to the performance of Prolinks
and String databases both for predicting several well stud-
ied interaction networks and for overall PPV performance.
Our scoring scheme weights the Phylogenetic profile vec-
tors by taking into consideration the homology of the tar-
get genome versus the reference genome (Inverse
homology) while the methods employed in the Prolinks
and String databases do not consider the effect of the ref-
erence genome in their scoring scheme. It is of note that
previously published data available from Prolinks showed
that Prolinks had more linkages than other available
sources at the time of implementation [8]. In that we have
already demonstrated above the importance of reference
genome selection, we used All as the reference genome set
since almost all of the publicly accessible databases use all
available bacterial genomes at the time of their imple-
mentation. In previous studies, we showed that there were
several well known PPI pairs involved in flagellum or bio-
film processes that were not identified in publicly availa-
ble databases [28]. The bacteria flagellum process is a
complex molecular system with multiple components
required for functional motility, which extends from the
cytoplasm to the cell exterior. While there are many com-
mon themes in flagellar protein control and assembly,
there also appears to be variation among organisms. Some
of the flagellar proteins were not identified in Prolinks [8]
such as, three ring proteins (FlgH, FlgI, and FliF), some of
the axle-like proteins (FliE, FlgB, FlgF, and FliD) that have
been shown to physically interact with FlgB [29], and the
stator motor proteins MotA and MotB. When Inverse
homology is used in the determination of similarity, all of
the above proteins were contained within the predicted
protein interaction network (Figure 5a). In addition, pro-
teins (FliT, FlgM, FlgN) that are species specific are not Co-
Conserved as would be expected [30]. A similar result was
observed to the biofilm protein interaction clusters
described above, where several proteins that have known
GGDEF and EAL domains were missed by Prolinks [8]
and String [5] (Figure 5). Finally, direct comparison of the
total number of predicted pairs indicated that using
Inverse homology increased not only the number of pre-
dicted interaction pairs but also PPV over a large range of
such predicted interactions (Figure 5d).

Discussion and conclusion
The use of computational methods will continue to grow
as more genomes are fully sequenced. Here we examined
how differences in key aspects of the Phylogenetic profiles
method affected predicted protein interaction networks.
We specifically focused on aspects involving the selection
of reference genomes and the measurement of similarity
among protein Co-Conservation vector profiles.

Phylogenetic profiles method offer an alternative to
strictly homology-based approaches. While homology-
based methods can be effective for predicting the func-
tions of remote homologs, these methods perform poorly
as the evolutionary distance between homologous pro-
teins increases. Even a sophisticated homology-based
method fails to successfully assign functions to most of
the proteins for a particular organism. Phylogenetic pro-
files methods on the other hand are not strictly based on
homology and assign function to a protein based on the
context of its interactions with other proteins within a
cluster. We designed a new system that utilizes different
features of this method and showed that these features
affect the accuracy of predictions.

Pellegrini et al. introduced Phylogenetic profiles while
using 16 fully sequenced organism [4]. Since more
genomes have become available, the choice of reference
genomes to use when constructing Phylogenetic profiles
has become more important. Specifically, we noted that
the number of unclassified proteins varied considerably
depending on the reference set of genomes. This result
both verified and extended previous results based on
relatedness of reference genomes. We also showed that
selection of all sequenced bacteria as a reference genome
set may not produce the optimal PPV since the set of fully
sequenced bacteria is biased towards pathogens and labo-
ratory species (i.e. E. coli) among others. We showed that
different sets of reference genomes produce substantially
different results in the terms of the accuracy of predicted
interactions (i.e. PPV), and that such results were rela-
tively independent of the choice of E-value threshold
employed to define homologs. This specific result demon-
strates the need for flexibility in choosing among refer-
ence genomes when initiating Phylogenetic profiling
based efforts for prediction protein interaction networks.
One clear challenge here is that the selection of such refer-
ence genomes is not simple. Rather, this process requires
knowledge of the relevant organisms, both in terms of
their taxonomy and the specific phenotypes they express.
To aid in this process, we introduced a new scoring
scheme (Inverse homology) that considers the homology of
the target and reference genomes, and thus places some
emphasis on the evolutionary relationship of the relevant
genomes. We showed that depending on the similarity
metric used in combination with our Inverse homology
Page 8 of 13
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scoring scheme, either the accuracy or the topology of the
predicted protein interaction network was altered.

Our final studies were directed at understanding the
extent to which these issues affected overall predictions
and whether or not any observed differences provide new
biological insights. We examined the topology of the net-
work with various reference genomes and noted that
when more closely related bacteria were selected, the clus-
ters became larger with a higher degree of interconnected-
ness when compared to clusters derived from more
distantly related reference genomes (Table 1, 2, 3). In gen-
eral, small and medium sized clusters tend to contained

proteins of known function in contrast to large clusters
that contained proteins that function in distinct but coor-
dinate processes. As such, Phylogenetic profiling-based
approaches can benefit from flexibility in selecting and
weighting of reference genomes as demonstrated here. We
showed that such benefits do indeed generate unique bio-
logical insights. In particular, we showed that biofilm rel-
evant protein interaction networks contained a broader
range of relevant protein functions when reference
genomes were selected based on a shared essential pheno-
type (motility) as compared to using all available
genomes. We extended this result by comparing directly
the use of our Inverse homology scoring scheme to the

Comparison of our result to previous works using Co-Conservation of chemotaxis and flagellar proteins and GGDEF/EAL domainsFigure 5
Comparison of our result to previous works using Co-Conservation of chemotaxis and flagellar proteins and GGDEF/EAL 
domains. a) Our refined method. The reference genome is All and Inverse homology applied to Pearson correlation coefficient 
used as scoring scheme. The confidence of r > 0.8 and threshold E-value 10-5 was used. b) Predicted cluster for flagellar and 
GGDEF and EAL domains clusters by String (confidence 0.4) c) Predicted cluster for flagellar and GGDEF and EAL domains by 
Prolinks (confidence 0.6). d) The PPV for the top 2600 predicted pairs by Prolinks versus our method. Our method was Inverse 
homology applied to Pearson correlation coefficient r > 0.8 with E-value threshold 10-5.

a) All (Inverse  homology)

b) String

d)

c) Prolinks

Flagellum Biofilms
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methods used by publicly available databases (i.e. Pro-
links or String). The Inverse homology approach predicted
known protein interactions in two separate biological
processes (flagellum, biofilms) that were not predicted by
existing methods.

Overall, we have presented an evaluation of several key
criteria affecting the accuracy and topology of protein
interaction networks predicted by Phylogenetic profiling
methods. We have shown that the choice of reference
genome is of key importance and provided guidance,
both in terms of different evaluations and the report of a
new similarity scoring scheme, for future efforts seeking to
further improve computational methods for predicting
protein interactions as well as to use such methods for
developing new biological understanding.

Methods
Reference Genome Selection
At the time of our implementation (June 2006), 268 com-
plete microbial genomes were available through the
National Center for Biotechnology Information (NCBI)
and were downloaded from their ftp site [31]. Phenotypic
information such as motility and oxygen requirement was
generated manually from available data on NCBI [32].
Several different reference genomes were used in our sys-
tem and they were 1) Proteobacteria (130 bacteria), 2)
Low G+C Gram positive bacteria (75 bacteria), 3)High
G+C Gram positive bacteria (22 bacteria), 4) Selecting
only one strain from those fully sequenced for each organ-
ism (Selected (75 bacteria)), 5) All the fully sequenced
bacteria available on NCBI (All (268 bacteria)), 6) select-
ing based on oxygen requirement (Aerobic (91 bacteria),
7) Anaerobic (31 bacteria), and Facultative (107)), and
8) selecting based on Motility (Motile (104), and None-
Motile (82)). In our evaluation we focused on a target
genome E. coli K12 because a well curated dataset of pro-
tein functions is available [22] and substantial experimen-
tal data exists for this bacteria.

Creating Phylogenetic profiles matrix
We performed pairwise one-against-all BLAST searches to
identify all homologous target proteins in diverse refer-

ence organisms. For each protein i of the target organism,
the BLAST E-value of the top scoring sequence alignment
between protein i and all the proteins of each reference
genome j was assign to Eij. The Phylogentic profile was
constructed as a vector with elements Pij, where Pij = 1 if a
homolog exists (Eij <E-value threshold) for same protein
in genome j, otherwise Pij = 0. The number of the protein
homologs varies depending upon our reference genome
set and E-value threshold (Table 4). For example, when
the reference genome set was All and threshold E-value of
BLAST was 10-5, there were 289 proteins in E. coli K12 that
appeared in more than 90% of the reference genome set
and more than 53% of these were known essential pro-
teins [33] compared to 211 proteins with a threshold of
10-15, 59% of these were known essentials.

Based on the assumption that highly conserved proteins
(>90% of genomes evaluated) would be limited to a few
functional categories and poorly conserved proteins are
likely uncharacterized, we eliminated such proteins prior
to measuring profile similarities (described below). To
check this assumption, we characterized the discarded
proteins based on COG classifications as shown in Addi-
tional file 2. The majority of proteins that appeared in
more than 90% of the reference genomes were involved in
translation, ribosomal structure and biogenesis, while the
majority of proteins appearing in less than 10% of the ref-
erence genomes where unclassified.

Generating weighted Phylogenetic profile vectors using 
Inverse homology
As an alternative to binary vectors, we also developed a
weighting scheme which we refer to as Inverse homology.
The Inverse homology was calculated by weighting the Phy-
logenetic profile vector by taking into consideration the
homology of the target genome versus the reference
genome. Given an E-value threshold, the homology Hi, j
between two genomes was calculated as the ratio of
number of homologs of each reference organism j to the
number of proteins in the target genome i. For each pro-
tein i the target, if there was a homolog to reference pro-
tein j (Eij <E-value threshold) then Pij = 1/(Hi, j) otherwise
Pij = 0. Calculating the Pij in this way, rather than using

Table 4: Proteins existing in more than 90% and less than 10% of genomes base on different set of reference genomes. (E-value 10-5)

Reference genome No. proteins appearing in <10% No. proteins appearing in > 90%

Aerobic 1,297 455
All 1,034 289
High GC Gram positive 1,912 333
Low GC Gram negative 1,899 723
Motile 745 104
Proteobacteria 614 499
Selected 1,198 446
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binary values as originally thought [4] or normalizing the
E-values [7], incorporates genome homology information
and accounts for phylogenetic relationships between
genomes and improves estimates of profile similarities.

Measuring profile similarities
Given a set of (weighted) Phylogenetic profiles, we can
calculate the similarity between any pair of proteins using
either Pearson correlation coefficient or Mutual Informa-
tion. We describe each below.

Pearson correlation coefficient
Similarity between two protein vectors using Pearson cor-
relation coefficient was calculated as [4,7,34]fX = (I/N), fY
= (J/N), and fZ = (K/N)

I is the sum of PX, j overall reference genome j, J is the sum
of PY, j over j. When the vectors are binary, K is the subset
of genomes that contain homologs of both X and Y and N
represent the total number of reference genomes. When
the vectors are weighted by Inverse homology, K is the sum
1/Hi, j over the subset of genomes that contain homologs
of both X and Y and N is the sum of 1/Hi, j over all j for
target i.

Mutual Information
Several studies have used Mutual Information (MI) to
assess protein functional linkage [4,7,34]. The Mutual
Information MI (X, Y) is maximum when there is high
covariation between two proteins and is defined by

Then to carry the sum using the quantities fX, fY and fZ
describe above, we used the equations below, as described
by Wu et. al [4,7,34]

Then

I(X, Y) = I1(X, Y) + I2(X, Y) + I3(X, Y) + I4(X, Y).

Note: we use log2 when the vectors are binary and loge
when the vectors are weighted by Inverse homology.

Generating the protein-protein interaction network
Networks were created and presented as graphs in which
each protein is represented as a node and an interaction
between proteins is represented by an edge. An edge exists
between a pair of proteins whose Phylogenetic profiles
similarity score exceed a given threshold. For separation of
connected components of the network and building the
clusters of proteins, breadth-first search (BFS) graph algo-
rithms were used. The target E. coli K12 genome was ana-
lyzed, and the number of assigned pairs is shown in Table
1 and Table 2. Network graphs were visualized using
Cytoscape [35], an open-source, platform-independent
environment software. The lengths of the lines connecting
proteins hold no meaning and vary to facilitate viewing of
the network.

E-value threshold
We examined whether changing the BLASTP threshold E-
value would affect the accuracy and performance of the
Co-Conservation method. For determination and optimi-
zation of the E-value for each organism, four E-values
were applied to determine when a homologous protein
was present or absent, 1 × 10-15, 1 × 10-10, 1 × 10-5, and 1
× 10-3. An E-value was considered optimal if it had the
maximum number of correctly linked proteins, as ranked
by the selected scoring scheme. A correct linkage was
defined by two proteins sharing the same biological proc-
ess. For evaluation purposes we used on eight different
types of reference genomes. Therefore, 32 combinations
of different reference organism sets and various E-values
thresholds were formed and were evaluated using COG
functional categories and EcoCyc.

Analyzing the topology of the network
The degree of a node in a graph is the number of edges
connected to that node and proteins that are joined by an
edge are said to be adjacent. A neighbor of a protein i is a
protein adjacent to i. The clustering coefficient C indicates
the degree to which k neighbors of a particular node are
connected to each other. Let ki be the number of neigh-
bors of node i and ki-1 be the number of nodes connected
to neighbors of i. The clustering coefficient of node i is
given as

r
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Ci = 2 ni/ki * (ki-1)

where ni is the number of edges that exist between i, its
neighbors and their neighbors [23]. Then the average clus-
tering coefficient was calculated by averaging C over all
nodes i.

Comparison of predicted protein interaction to published 
data and available resources
In order to measure the performance and reliability of our
method over previous methods, we compared the number
of interacting proteins, the number of predicted unknown
proteins and the functional similarity of proteins sharing
a protein-protein interaction.

We evaluated the predicted protein-protein interaction
data of E. coli K12, based on Clusters of Orthologous
Groups of proteins (COG) in NCBI [36] e.g. for E. coli K12
[31]), biological pathway information in KEGG orthology
(KO) [37] five broad functional categories (Metabolism,
Genetic Information Processing, Environmental Informa-
tion Processing, Cellular Processes, and Human Dis-
eases), TIGR [38] functional role category (18 different
functional role categories), and protein complexes, path-
way, operons, regulator (pairs of gene A and B, where the
product of gene A is the a component of transcription fac-
tor that regulates gene B), and paralogous groups in Eco-
Cyc. EcoCyc (June 2006) data were downloaded from
[22], we extracted all information related to protein com-
plexes, pathway, operons, regulators, and paralogous
groups from EcoCyc.

To find out whether the selection of bacteria makes a dif-
ference and what the optimal way to select the bacteria is,
we compared the performance of PPV using different
types of reference genomes. The predicted pairs where at
least one protein was unclassified were removed from
analysis. In addition the interactions that involved pro-
teins that are classified as "General function" in COG
function categories were considered unclassified in COG.
The functional similarity of a protein interaction dataset
for COG was a true positive (TP) where the pair had the
same functional category and a false positive (FP) where
they belong to different functional categories. Similarly,
for the EcoCyc database, proteins that appear in the same
complex, pathway, operons, homologs and paralogous
group are presumed to be true positives, while the other
classified pairs were false positives. Sensitivity and Specif-
icity are good predictive values but since the negative data
set can not be defined, we used the Positive Predictive
Value (PPV). The PPV was calculated as PPV = TP/
(TP+FP). Finally, we compared our result to previous
works such as String [5] and Prolinks [8] databases.
Though String and Prolinks employ a variety of methods
for predicting interactions, only those interactions based

solely on Phylogenetic profiles were extracted. Prolinks
makes available all interactions together with a confi-
dence score for each interaction. We compared the top
2,600 interactions obtained by Inverse homology against
the top 2,600 interactions from Prolinks by calculating
the PPV using the EcoCyc database for E. coli K12 (Figure
5d). We also analyzed several clusters involving well
known processes (i.e. flagellum, chemotaxis, and biofilm
proteins), as described in the Results section in detail,
against interactions from String and Prolinks.
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