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Abstract

Modulating physical cell culture environments via nanoscale substrate topographic modification has recently
been of significant interest in regenerative medicine. Many studies have utilized a polymer-demixing technique
to produce nanotextured films and showed that cellular adhesion, proliferation, and differentiation could be reg-
ulated by the shape and scale of the polymer-demixed nanotopographies. However, little attention has been paid
to the topographic fidelity of the polymer-demixed films when exposed to cell culture conditions. In this brief ar-
ticle, two polymer-demixing systems were employed to assess topographic changes in polymer-demixed films
after fibronectin (FN) extracellular matrix protein adsorption and after incubation in phosphate-buffered saline
at 37�C. We showed that FN adsorption induced very small variations ( < 2 nm) to the polystyrene/polybromos-
tyrene (PS/PBrS)-demixed nanoisland textures, not substantially altering the nanotopographies given by the
polymer demixing. In addition, poly(L-lactic acid)/PS (PLLA/PS)-demixed nanoisland topographies using
PLLA with Mw = 50 · 103 did not show notable degradation up to day 24.
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Introduction

The modulation of physical cell culture environments
via nanoscale substrate topographic modification has

recently been of significant interest.1–4 Various methods, in-
cluding oxidation and chemical etching, plasma and physi-
cal vapor deposition, electron-beam and nanoimprint
lithography, self-organization and phase separation, have
been utilized to produce nanotopographies.5 The use of
nanotopographies for controlling cell behavior has a strong
rationale. By replicating environments to which cells are
exposed in vivo, one can provide biomimicking milieus as
in vitro templates and elucidate fundamental mechanisms
of cellular developmental, physiological, and pathological
processes.1

Among various nanofabrication techniques, polymer dem-
ixing, one of the self-organization methods, has been used to
fabricate thin film substrates. It can produce large-sized sub-
strates covered with nanotopographic features cost effec-
tively, as it adopts a simple spin-casting process using a
polymer blend solution from two slightly immiscible poly-
mers.6 Further, the shape and scale of the nanotopographic

features can be controlled by adjusting the composition and
concentration of the polymer blend solution, respectively,
as previously demonstrated.7,8

Many studies,9–15 including ours,12–15 have shown that cell
adhesion, proliferation, and differentiation can be regulated
by polymer-demixed nanotextures. Of particular interest,
we showed that polymer-demixed nanotopographies can affect
focal adhesion kinase signaling,12 cell mechanotransduction
under fluid flow,14 and mesenchymal stem cell differentiation
toward osteogenesis.15 Even considering these data, relatively
less attention has been paid to the topographic fidelity of poly-
mer-demixed films during cell culture. Since these studies have
dealt with topographies at the nanoscale, one question is
whether adsorbed extracellular matrix (ECM) proteins will
alter given nanotopographies. Another question that may
arise, especially when polymer demixing uses a biodegradable
polymer as one of the components,8 is whether the topogra-
phies will be altered due to degradation. To address these ques-
tions, two polymer-demixing systems were employed in this
study. The films were assessed in topographic changes (1)
after ECM protein adsorption and (2) after incubation in phos-
phate-buffered saline (PBS) at 37�C.
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Materials and Methods

Polymer-demixed nanotextured films

Two types of nanotopographic films were produced using
polymer demixing following our published protocols.7,8 Pol-
ystyrene/polybromostyrene (PS/PBrS)-demixed nanoisland
films were produced at 40/60 (w/w) PS/PBrS composition
and 1% (w/w) total polymer concentration. As a template
for assessing potential degradation, poly(L-lactic acid)/PS
(PLLA/PS) demixing was done at 70/30 w/w PLLA/PS
composition and 0.5% (w/w) polymer concentration. The
same materials and spin-casting conditions as previous stud-
ies7,8 were used, that is, molecular weights (Mw) were PS =
289 · 103, PBrS = 65 · 103, and PLLA = 50 · 103 (PS and PBrS
from Sigma, PLLA from Polysciences), and spin casting was
performed at 4000 rpm for 30 s using a Specialty Coating
Systems P6700 spincoater. For the PS/PBrS system, demixed
topographic films were annealed for 2 h at 130�C. This was
above the glass transition temperature (Tg) of PS (103�C)
but below the Tg of PBrS (150�C), which was to make PS seg-
regate to the film surface.7

Topography measurement after fibronectin adsorption

Single protein adsorption on PS/PBrS-demixed nanotopo-
graphic films was performed using fibronectin (FN). The ad-
sorption of FN from a PBS solution (50 lg/mL) was
performed for 30 min. The films were then washed, dried,
and assessed by an atomic force microscope (AFM; Nano-
scope IIIa) in the tapping mode to measure the topographic
height information and in the phase mode to obtain informa-
tion on chemical composition.

Topography and pH measurement after incubation
in PBS at 37 �C

PLLA/PS-demixed nanotextured films were incubated in
PBS at 37�C using a regular incubator. After 12 and 24 days of
incubation, changes in pH were measured using a pH meter,
while the films were still maintained in PBS. On the same
days, films were taken out of the incubator and dried for AFM
measurement (tapping mode). Surface roughness (R) was quan-
tified using three different samples. It should be noted that PBS
was not changed throughout the degradation tests.

Results

Effect of FN adsorption on topography
of polymer-demixed films

To assess topographic changes after protein adsorption,
PS/PBrS-demixed films were adsorbed with FN and mea-
sured by AFM. PS/PBrS (40/60 w/w) demixing at 1% con-
centration resulted in topographies with randomly
distributed islands. The average island height was
26.2 – 4.0 nm (Fig. 1C). This falls on the interpolated island
height from our previous study that showed 11, 38, and
85 nm average island heights at 0.5%, 2%, and 5% total poly-
mer concentrations, respectively.7 FN adsorption did not
change the overall shape of PS/PBrS-demixed nanoislands
(Fig. 1B). In the section view, FN adsorption at 50 lg/mL in-
duced very small changes in nanoisland texture. The average
magnitude of variations from FN adsorption was 1.2 – 0.7 nm,
which is less than the standard deviation of the original island

height. In the AFM phase mode, bare PS/PBrS-demixed films
showed consistent phase offset across the surface other than
island perimeters (Fig. 1E). This suggests uniform chemistry
formation except the ring-shaped portions. The ring-shaped
difference may, however, be an artifact from AFM scanning
(see more in the Discussion section). For FN-adsorbed PS/
PBrS-demixed films, the phase AFM image showed consis-
tent phase offset throughout the surface (Fig. 1F), indicating
that FN adsorption at a given concentration uniformly cov-
ered the entire nanoisland topographies.

Effect of cell culture relevant incubation on topography
and pH of polymer-demixed films

PS/PBrS-demixed films are not degradable, whereas some
polymer-demixing systems have employed biodegradable
polymers, for example, PLLA.8 The objective was for the po-
tential use of these films as substrates for drug delivery (how-
ever, limited reports have been found in the literature
regarding this issue). The degradation of bioabsorbable poly-
mers is largely determined by their molecular weights.16 In
this study, we performed degradation tests using our pub-
lished polymer-demixing system (PLLA Mw = 50 · 103 in
PLLA/PS demixing)8,15 to check potential topographic

FIG. 1. Atomic force microscope (AFM) measurement of
polystyrene/polybromostyrene (PS/PBrS)-demixed films,
(A, C, E) without or (B, D, F) with fibronectin (FN) adsorp-
tion. PS/PBrS (40/60 w/w) demixing was performed at a
1% total polymer concentration. AFM (Nanoscope IIIa; Digi-
tal Instruments) was used in tapping mode under ambient
condition to obtain height (A, B) and section (C, D) informa-
tion. In addition, AFM was used in the phase mode (E, F) to
assess the difference in chemical composition. FN adsorption
at 50 lg/mL produced uniform FN coverage throughout the
nanoisland surface, and induced very small variations
(1.2 – 0.7 nm) in height to the given nanotopographies. Red
arrows show measurements from island top to bottom.
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changes in these nanotextures during cell culture. Since
in vitro cell differentiation assays usually last for several
weeks,15 we employed an incubation time up to 24 days.
The overall shape of the nanoislands produced by PLLA/
PS demixing was not substantially altered by incubation at
37�C until day 24 (Fig. 2). Quantified roughness (R) of the sur-
faces showed a trend of gradual increase, 6.1 – 1.3 nm,
6.3 – 1.8 nm, and 6.4 – 1.2 nm on day 0, 12, and 24, respec-
tively. However, these changes did not reach statistical signif-
icance when assessed by analysis of variance (n = 3). The pH
measured with time did not significantly change, either, pH
8.01 – 0.024, 8.02 – 0.023, and 8.01 – 0.028 on day 0, 12, and
24, respectively (n = 3).

Discussion

We demonstrated that key characteristics of polymer-
demixed nanotopographies, that is, nanoisland shape and
scale, are maintained even after ECM protein adsorption
and cell culture relevant incubation. For PS/PBrS-demixed
films, FN adsorption at 50 lg/mL induced very small height
variations to the given nanoisland textures. For PLLA/PS
demixing with PLLA Mw = 50 · 103, nanotopographies and
pH were not significantly altered after up to 24 days of incu-
bation. Together, these results at least partly address one of
the fundamental questions on nanotopographic regulation
of cells, that is, whether nanotopographic cell function control
is dominantly mediated by other cell-substrate interfacial
phenomena. Under the experimental conditions employed,
we conclude that nanotopographic regulation of cells is not
significantly affected by ECM protein adsorption or changes
due to film degradation.

One advantage of polymer demixing is that the nanotopog-
raphy effect on cells can be examined, while surface chemis-
try is maintained unchanged. PS/PBrS-demixed and then
annealed nanotextures have a top film surface chemistry of
PS due to selective surface segregation of PS,7,17 which has
been observed by X-ray photoelectron spectroscopy. It was
proposed that the lower surface energy component (PS) seg-
regates to the air-film interface to minimize interfacial free en-

ergy. Considering this, it is not clear at this stage whether the
ring-shaped difference observed in AFM phase mode (Fig.
1E) is a true phase difference or an AFM artifact. It may pos-
sibly be an edge artifact, as many rings showed an asymmet-
ric structure. It should be noted that in the PLLA/PS
demixing developed in our previous study, PLLA segregated
to the film surface even without annealing.8

Regardless of the ring structure observed in the AFM
image of bare PS/PBrS-demixed film, FN showed well-
distributed adsorption throughout the nanoisland topogra-
phies (Fig. 1F) and did not substantially alter the original
nanotopographic texture in either island shape or height
(Fig. 1A, B, C, D). This suggests that nanotopography effects
on cells from polymer-demixed nanotextures, observed in our
previous studies,12–15 may be independent of adsorbed ECM
proteins. In a recent study using FN adsorption on PLLA/PS-
demixed films at lower FN concentrations, FN did not
uniformly cover the substrate.18 This study reported that
FN adsorption at 2 lg/mL resulted in 20–25% surface cover-
age. At this low concentration, interestingly, FN adsorption
on PLLA/PS-demixed films was more on nanoisland
peaks.18 In contrast, our results indicate that 50 lg/mL was
sufficient to cover the entire PS/PBrS-demixed nanotextures.
In addition to the solution protein concentration, protein ad-
sorption is also affected by substrate characteristics, for exam-
ple, chemistry. Sousa et al.19 assessed FN adsorption on TiO2

surfaces with varying roughnesses. They used techniques to
quantify FN adsorption, including FN radiolabeling with
125I and detection by radioimmunoassay and ellipsometry,
after FN adsorption. They demonstrated that even at a high
FN concentration of 70 lg/mL, the amount of FN adsorption
on TiO2 surfaces was less than that of the ideal amount for the
FN monolayer (1750–41,000 lg/m2).20 As a result, FN adsorp-
tion at 70 lg/mL on TiO2 did not show uniform monolayer-
type adsorption but showed a clustered shape. This was con-
firmed by AFM, as the AFM phase images showed two dis-
tinct phases (FN and TiO2 surface).19 Although rigorous
assays (radioimmunoassay or ellipsometry) for quantifying
FN adsorption amount were not performed in this study, uni-
form FN coverage on PS/PBrS-demixed surfaces could be
clearly seen in the AFM phase image, but it is not clear at
this stage whether this FN adsorption is monolayer or multi-
layer adsorption. One more thing to be noted is that since we
performed AFM tests of FN-adsorbed films after drying, to-
pographic height fluctuation by FN adsorption may be
slightly different for the wet state. However, for the same
FN adsorption conditions (50 lg/mL, 30 min), Sousa et al.19

showed that surface roughness change due to drying was
quite small (roughness was about 0.2–1 nm higher for the
wet state compared with that of the dried state). This suggests
that topographic height changes from drying would still be
within the standard deviation of the original island height
for nanotopographies employed.

We showed that PLLA at a given Mw did not undergo no-
table degradation up to day 24, as noted by overall topo-
graphic shape, measured roughness parameter, and pH
change. However, we cannot guarantee under this set of ex-
perimental conditions that there was no degradation related
to molecular phenomena such as hydrolysis. For bulk poly-
mer samples, several techniques are useful to assess the
degradation behavior, including measurement of mole-
cular weight and polydispersity index by gel permeation

FIG. 2. AFM measurement of poly(L-lactic acid)/PS (PLLA/
PS)-demixed films after incubation in phosphate-buffered sa-
line (PBS) at 37�C. PLLA/PS (70/30 w/w) demixing was per-
formed at a 0.5% total polymer concentration. On each day, the
film was taken out of PBS, dried, and measured by AFM using
the tapping mode. Roughness parameters (R) on each day
were quantified using the AFM software. The change in R
did not show statistical significance (see the main text). Red
arrows show measurements from island top to bottom.
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chromatography, measurement of mechanical properties, and
so on. For polymers undergoing degradation in solution, time-
dependent static light scattering may also be used to reveal the
degradation mechanisms, for example, random degradation of
single and multiple stranded coils or stripping of sidechains.21

Although our study assessing changes in topography and pH
showed apparent degradation data that are useful for evaluat-
ing cell culture conditions, further tests using longer degrada-
tion times and other techniques would be required to reveal
the thorough degradation profile and mechanisms. However,
these are beyond the scope of the current work.

The PLLA/PS-demixing system may have a potential to be
used as a film template for drug delivery if lower Mw PLLA is
used. Ideally, polymer-demixed nanotopographic films
would initially induce enhanced cell adhesion and growth
(as reported in our previous studies7,8), and then, with the ini-
tiation of PLLA degradation, an embedded drug (e.g., growth
factor) could be released to stimulate later stage cell function,
for example, differentiation. While fine tuning of the degrada-
tion profile would be required, such nanotextured drug deliv-
ery films may be considered interesting new biomaterials.
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