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Abstract 

Background:  In the intensive care unit (ICU), delirium is a common, acute, confusional state associated with high 
risk for short- and long-term morbidity and mortality. Machine learning (ML) has promise to address research priori-
ties and improve delirium outcomes. However, due to clinical and billing conventions, delirium is often inconsistently 
or incompletely labeled in electronic health record (EHR) datasets. Here, we identify clinical actions abstracted from 
clinical guidelines in electronic health records (EHR) data that indicate risk of delirium among intensive care unit (ICU) 
patients. We develop a novel prediction model to label patients with delirium based on a large data set and assess 
model performance.

Methods:  EHR data on 48,451 admissions from 2001 to 2012, available through Medical Information Mart for Inten-
sive Care-III database (MIMIC-III), was used to identify features to develop our prediction models. Five binary ML clas-
sification models (Logistic Regression; Classification and Regression Trees; Random Forests; Naïve Bayes; and Support 
Vector Machines) were fit and ranked by Area Under the Curve (AUC) scores. We compared our best model with two 
models previously proposed in the literature for goodness of fit, precision, and through biological validation.

Results:  Our best performing model with threshold reclassification for predicting delirium was based on a multiple 
logistic regression using the 31 clinical actions (AUC 0.83). Our model out performed other proposed models by bio-
logical validation on clinically meaningful, delirium-associated outcomes.

Conclusions:  Hurdles in identifying accurate labels in large-scale datasets limit clinical applications of ML in delirium. 
We developed a novel labeling model for delirium in the ICU using a large, public data set. By using guideline-
directed clinical actions independent from risk factors, treatments, and outcomes as model predictors, our classifier 
could be used as a delirium label for future clinically targeted models.
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Background
Delirium is an acute, confusional state associated with a 
fluctuating disturbance in awareness and cognition aris-
ing alongside serious illness [1]. In the intensive care unit 
(ICU), delirium affects up to 41–50% of patients overall 
[2, 3], up to 82% of patients with prolonged ICU length 

of stay (LOS) [3], and over 75% of patients undergo-
ing mechanical ventilation [4]. Patients with in-hospital 
delirium are at risk for adverse short- and long-term out-
comes, including increased LOS, discharge to postacute 
nursing facilities [3, 5–7], slowed surgical recovery [8], 
persistent cognitive impairment [9], incident dementia 
[10], and death [10].

Delirium poses challenges for both researchers and 
clinicians from incompletely understood pathophysiol-
ogy [3, 5], multifactorial etiology [3, 11], terminological 
inconsistency [5], and under-recognition and inappropri-
ate management in the clinical setting [3, 5]. The clinical 
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presentation of the syndrome is broad, including an agi-
tated, hyperactive subtype; a somnolent, hypoactive sub-
type; or mixed features [5]. The hypoactive subtype is less 
frequently diagnosed and has poorer prognosis [5]. Addi-
tional patients may manifest with subsyndromal delirium 
or “attenuated delirium syndrome”: a subclinical confu-
sional state meeting part, but not all, of the DSM-5 crite-
ria for delirium [12]. Due in part to delirium’s comorbid 
presentation with serious illness, advanced age, depres-
sion, and dementia[5, 12] and its heterogeneous and 
fluctuating symptom presentation [12], delirium is often 
under-recognized in the hospital [5, 12, 13]. Because 
delirium arises comorbidly, the primary treatment is 
identification, diagnosis, and treatment of the etiologic 
organic illness or toxic insult, accompanied by pharma-
cological and nonpharmacological delirium symptom 
management [11]. These challenges make delirium an 
important target of machine learning (ML) [14–22].

Training ML models require a valid delirium label 
which can accurately capture a patient with the condi-
tion. For a method of labeling to be useful as a founda-
tion for clinical prediction, it must be independent of 
both risk factors and outcomes of interest. Although the 
gold standard is a provider-administered screening tool 
such as the Confusion Assessment Method for the ICU 
(CAM-ICU) [13, 23], these labor-intensive identifiers 
must be prospectively administered and are not available 
in all settings [13, 20–22], revealing a need for a delirium 
identifier that can be abstracted retrospectively and com-
putationally from the medical record.

Two preliminary studies on small cohorts (< 400 
patients) have proposed other simple, chart-based labels 
when CAM-ICU is absent. Kim et al.[24] used the CAM-
ICU and provider interview as the gold standard to label 
delirium with modest sensitivity (30%), high specific-
ity (97%) and high positive predictive value (PPV = 83%) 
from the presence of either an International Classifica-
tion of Diseases (ICD) code or antipsychotics use, with 
improved sensitivity for delirium that was hyperactive or 
mixed type (64%) or severe (73%). By chart review, Puelle 
et  al.[25] identified eight key words or phrases (altered 
mental status, delirium, disoriented, hallucination, con-
fusion, reorient, disorient and encephalopathy) with high 
PPV (60–100%) for delirium (model sensitivity and speci-
ficity not reported).

Here we present an assessment of three methods to 
label delirium in the chart from medical record events. 
We propose a supervised binary classifier based on 
counts of 31 clinician actions, including medications, 
orders, and clinical impressions in free-text notes. All 31 
predictors are independent of risk factors and outcomes 
of interest, generating a labeling method that could be 
used as a foundation for downstream clinical predictions. 

We compare this model to Kim et al.’s classification based 
on ICD code and antipsychotics use (“Kim’s classifier”) 
and to Puelle et al.’s eight words with high PPV (“Puelle’s 
classifier”). To the best of our knowledge, we are the first 
to test these proposals on a large-scale dataset. Because 
our dataset is too large to permit chart review and CAM-
ICU is unavailable, we set ICD code as our initial delirium 
identifier. We assess the quality of classification of each 
model by biological validation[26] on clinically meaning-
ful, delirium-associated outcomes, demonstrating supe-
rior performance with our model of 31 clinician actions. 
Our model has the potential to be generalized and imple-
mented across ICU datasets to support improved labe-
ling for downstream clinical predictive modeling.

Strategies to label and validate delirium in large‑scale 
datasets
In 2015, Inouye et  al. proposed research priorities for 
delirium, including improved diagnosis and subtyping, 
stratification of high risk patients, biomarker detection, 
and identification of genetic determinants [3]. Research-
ers have since applied unsupervised ML, including 
clustering[15] and latent class analysis [14], to subtype 
patients. More commonly, supervised ML is used to pre-
dict delirium incidence within an ICU stay based on a 
priori risk factors [21], heart rate variability [17], or med-
ical record events from the first 24  h of hospitalization 
[16, 18, 20, 27].

To make clinically actionable predictions, the 
researcher requires a delirium label that is independ-
ent of the clinical covariates and predictors of interest. 
The preferred measures in clinical practice for labeling 
delirium are nurse- or provider-administered, validated 
screening tools, including the CAM-ICU[13, 23] and the 
Intensive Care Delirium Screening Checklist (ICDSC) 
[13, 28, 29]. CAM-ICU administered during treatment is 
a mainstay label of delirium in the ML research setting 
[14–19]. However, variations in institutional practice and 
physician buy-in can lead to inconsistent use of the CAM 
or ICDSC in the clinical setting [13]. When CAM-ICU 
is unavailable or suspect, researchers may employ nurse 
chart review [20, 21]. However, chart review relies on 
clinical judgment[25] and poses time and labor costs that 
grow prohibitive as data sets increase in size.

Other researchers have used ICD codes as a delirium 
label [22]. Though convenient, ICD codes, especially 
secondary codes (such as delirium in a critical illness 
setting), are prone to high levels of missingness and inac-
curacy [30–32]. Although the prevalence of delirium 
in the ICU has been estimated to be as high as 24–82% 
[2–4], published models have been built using ICD code 
labels for delirium that may be as sparse as 3.1% [22]. 
This mismatch between proportion of expected patients 
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with delirium and available ICD codes suggests a risk of 
outcome misclassification if ICD codes are used, with 
potential for serious bias in learned model outputs [33]. 
Weaknesses in delirium labeling underlying much state-
of-the-art research calls the generalizability and clinical 
utility of these studies into question.

Various tools are available when binary outcome mis-
classification in a dataset is suspected. Sensitivity analysis 
can be used to adjust the summary output of a logistic 
regression model, but it relies heavily on frequency esti-
mates supplied by the researcher’s a priori knowledge of 
the field, and cannot be learned from the model [33]. For 
some binary classifiers, outcome misclassification can be 
addressed by tuning model cut-points based on a priori 
knowledge or researcher goals for sensitivity or specific-
ity or properties of the receiver operating curve (ROC) 
to enact a desired reclassification, a core practice in diag-
nostic test development[34] with applications in super-
vised model refinement [16].

Assessing outcome reclassification on real data is chal-
lenging due to absence of a gold standard. However, the 
concern is pressing: unless model fit is perfect (sensitiv-
ity and specificity = 100%), all binary classification inher-
ently generates some degree of “outcome reclassification,” 
where members labeled as belonging to one group when 
entering the model are later predicted to belong to the 
other group. For clinical regression models, Harrell et al. 
proposed that the concordance index or c-index, calcu-
lated from pairwise comparisons of a prognostic indica-
tor between classified and reclassified subjects, could be 
employed as a “clinically meaningful” measure of model 
goodness-of-fit [37]. We have previously proposed the 
related principle of biological validation: that ML assign-
ments can be meaningfully validated by employing well-
understood biological outcomes when ground-truth 
is unavailable [26]. Inspired by Harrell’s approach, we 
compare five prognostic measures between classified 
and reclassified groups to biologically validate outcome 
reclassification and model goodness-of-fit for delirium 
identification.

Methods
Study population
Study data were drawn from Medical Information 
Mart for Intensive Care-III (MIMIC-III), a freely avail-
able database of electronic health record (EHR) data 
collected on 63,157 intensive care unit (ICU) admis-
sions at Beth Israel Deaconess Medical Center from 
2001 to 2012 [38–41]. Delirium within a hospitaliza-
tion was defined by ICD-9 code [24]. (Additional file 2:  
Table A.1) Unique admissions were included for all 
adult patients ≥ 18  years of age with ICU length-of-
stay (LOS) less than 31  days (48,451 hospitalizations). 

Restricting LOS removed 2,315 outlier hospitalizations 
(4.6%) with LOS up to 295 days. From the cohort popu-
lation, 25% of positives and negatives were randomly 
sampled and reserved for a test set (12,135 admissions), 
retaining 75% for training (36,406 admissions).

A novel model predicting delirium from clinician actions
Variable selection
We proposed a model to label presence of delirium in 
a chart based on clinician actions. We hypothesized 
that changes in clinical actions concordant with diag-
nostic work-up for delirium can serve as an indicator 
that the clinical team had made a delirium diagnosis. 
Clinician actions presumed to indicate a response to 
delirium onset were identified from published guide-
lines for delirium work-up and abstracted from elec-
tronic health record (EHR) data. These included 18 
laboratory and imaging orders and 4 medications [13, 
42]. Pharmacologic interventions were selected based 
on evidence of widespread use for the management of 
delirium, not by efficacy or other clinical measures [13]. 
Clinical impressions were extracted from the presence 
of eight words or phrases with high PPV for delirium in 
EHR notes [25]. Additional file 2: Table A.2 lists the 31 
included clinical actions. No steps were taken to iden-
tify or impute missing values. Occurrence of clinician 
actions were formed into an event count matrix across 
each admission [43]. A more detailed description of 
data pre-processing, with code, is available in Addi-
tional file 1: File B.

Supervised model selection and refinement
We compared performance of five binary ML classi-
fiers [16, 17, 19, 22], including logistic regression (stats 
R-package), Classification and Regression Trees (CART; 
rpart R-package) [44, 45], supervised random forests 
(randomForest) [46, 47], naïve Bayes (e1071) [48, 49], 
and support vector machines (SVM; e1071) [49, 50]. 
(Additional file 1: File A.1) The logistic regression model 
underwent refinement and feature selection by stepwise 
forwards and backwards selection, L1/LASSO (Least 
Absolute Shrinkage and Selection Operator) penaliza-
tion [51, 52], L2/Ridge penalization [53], and combined 
L1-L2 penalization (penalized). [54] Model performance 
on the training set was compared by ROC visualization 
and AUC (pROC) [55]. (Additional file  1: File A.2) The 
top performing model was selected by maximum AUC. 
Model development is reported here in accordance with 
Transparent Reporting of a multivariable prediction 
model for Individual Prognosis or Diagnosis (TRIPOD) 
guidelines [56].
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Reclassification and binary threshold determination
Logistic regression generates a model with a log-odds 
threshold set at zero to divide hospitalizations with 
incident delirium from those without. This “natural” or 
“default” cut-point reflects the prior probability of delir-
ium within the cohort, and is therefore susceptible to 
error from outdated prior information (such as known 
misclassification). As commonly implemented in diag-
nostic test development, we tuned the cut-point of our 
binary classifier to calibrate sensitivity and specificity to 
correct for known misclassification [34], a technique in 
practice in delirium supervised model development [16]. 
Because we suspect ICD-9 code missingness [30–32], we 
desire a model with high sensitivity. In the case of known 
misclassification, we believe that some of the additional 
positives generated by increased sensitivity represent 
true, but unlabeled, positives that have been reclassified. 
These reclassified positives represent hospitalizations 
containing real incident delirium, but lacking ICD-9 
codes due to a priori outcome misclassification from 
known ICD-9 code missingness [30–32]. Thus, reclassi-
fication by up-tuning sensitivity allows us to generate a 
model that better labels the presence of true delirium.

On training data, we compared six algorithmic meth-
ods for reclassification of a binary model by tuning 
sensitivity: the Youden index [57], maximizing both sen-
sitivity and specificity, maximizing accuracy, minimizing 
the distance to ROC (0,1), maximizing accuracy given a 
minimum constraint of sensitivity, and maximizing sen-
sitivity given a minimal specificity constraint (Additional 
file  1: A.3; cutpointr R-package) [58]. We determined 
the threshold of choice based on concordance between 
measures, choosing a cut-point that represented trends 
between tuning methods. We also visualized reclassifica-
tion by each cut-point by density plot.

The final model was trained on training data using the 
binary classifier with highest AUC, selected by maximum 
AUC, and the cut-point with highest measured concord-
ance. This best-performing model was run on retained 
test data. Validation was performed on test data only.

Comparison models
We identified two related models in the literature pro-
posed from chart review to predict incidence of delirium 
within a hospital stay from clinician actions and imple-
mented them at an expanded scale.

To assess Puelle’s classifier [25], we trained a logistic 
regression model with eight binary predictors for pres-
ence or absence at any point in a hospitalization of eight 
words in notes with high PPV for delirium on the train-
ing set (Additional file 1: Material A.4.1). Previously, we 
had implemented the same eight words in our model of 

31 clinician actions (Additional file  2: A.2). We omitted 
Puelle’s final criterion, “’alert and oriented’ (< 3)” due to 
difficulty of abstracting this data point from free-text 
note fields without natural language processing. The 
resultant model was validated on the test set. The binary 
threshold was chosen with the Youden Index. We com-
pared our novel model to Puelle’s classifier by the Akaike 
Information Criterion (AIC) and the Bayes Information 
Criterion (BIC) [59].

We tested Kim’s classifier [24] by labeling hospitaliza-
tions as delirium-positive if they contained a delirium 
ICD-9 code or if anti-psychotics were prescribed at any 
point during hospitalization (Additional file  1: Material 
A.4.2). Admissions were delirium-negative if a delirium 
ICD-9 code was not applied and anti-psychotics were 
not administered. This simple recategorization did not 
require training and was applied directly to the test set.

Validation of reclassified models by clinical markers 
and outcomes
Statistical measures of final model performance included 
sensitivity, specificity, PPV, negative predictive value 
(NPV), AUC (for supervised models), and comparison 
against expected prevalence of ICU delirium.

Reclassification was validated on five clinically mean-
ingful demographic and outcome measures: age at 
admission [3], discharge location [5–7], death in hos-
pital, death within 30  days of admission [38], and 
one-year mortality from admission [10]. To assess 
success and meaningfulness of re-classification and 
goodness-of-fit for each model, we separated admis-
sions into four groups (Table  1). First, we compared 
ICD-Positives and Double-Negatives. If these were 
significantly different, we report tests comparing ICD-
Positives to Reclassified-Positives, Double-Negatives 
to Reclassified-Negatives, and Reclassified-Positives to 
Reclassified-Negatives. Similarity or difference between 
groups was assessed using Tukey multiple comparisons 

Table 1  Definitions of four classified and re-classified categories 
generated by a binary classifier

For any binary classifier with less than 100% accuracy, model testing results in 
some degree of reclassification of positives and/or negatives, generating four 
groups. For example, some admissions with an ICD-9 code for delirium are 
labeled as negative by the model, leading to re-classification

Classification group Has delirium ICD-9 
code

Model 
predicts 
delirium

Double-Positives Yes Yes

Reclassified-Positives No Yes

Reclassified-Negatives Yes No

Double-Negatives No No
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of means for continuous data and Pearson’s chi-squared 
tests with pairwise comparisons with the Holm correc-
tion for categorical data [60, 61].

Results
From 48,451 unique adult admissions in MIMIC-III 
with LOS ≤ 31  days, we identified 3,850 patients with 
delirium by ICD-9 codes (7.9%). Demographic char-
acteristics and pertinent outcomes of the cohort are 
described in Table  2. Briefly, the group with patients 
with delirium had statistically significant differences 
with the group without delirium for race/ethnicity, age 
at admission, and length of stay.

Novel model of 31 clinician actions
Figure  1 summarizes the performance of five super-
vised binary classifiers by ROC. Logistic regression 
performed best on the training set (AUC = 0.83). Naïve 
Bayes, SVM, CART, and random forests produced 
models with AUC of 0.66, 0.61, 0.59, and 0.58, respec-
tively. Attempts to refine the logistic regression with 
forwards and backwards selection (AUC = 0.83), L1 
(LASSO) penalization (AUC = 0.83), L2 (Ridge) penali-
zation (AUC = 0.83), or combined L1 and L2 penaliza-
tion (AUC = 0.83) did not improve performance. Of 31 
clinical actions in the base model, forwards and back-
wards selection retained 25 predictors. L1, L2, and 
combined L1-L2 penalization retained all 31 clinical 

Table 2  Demographic characteristics of a cohort of adult ICU patients

Differences between patients with and without delirium ICD-9 codes were tested with t-tests and chi-squared tests, as appropriate
a  Percent of total patients
b  Percent within subgroup (with or without delirium ICD-9 code)
c  Pearson’s Chi-squared test with Yates’ continuity correction
d  Pearson’s Chi-squared test
e  Other race, race unavailable, multi race ethnicity (0.21% of total cohort), Native American, Native Hawaiian, or Pacific Islander (0.06% of cohort)
f  Welch’s two-sample t-test
g  Continuous variable in the MIMIC-III discretized for illustration in this table

Total Patients with Delirium ICD-9 
Code

Patients without Delirium ICD-9 
Code

p-Value

n (%)a n (%)b n (%)b

Total 48,541 3,850 44,691 –

Sex

Male 27,220 (56.1%) 2,181 (56.6%) 25,039 (56.0%) 0.538c

Female 21,321 (43.9%) 1,675 (43.4%) 19,646 (44.0%)

Race/Ethnicity

White or Caucasian 34,792 (71.7%) 2,857 (74.1%) 31,935 (71.5%)  < 0.005d

Black or African 4,668 (9.6%) 381 (9.9%) 4,287 (9.6%)

Hispanic or Latino 1,720 (3.5%) 129 (3.4%) 1,591 (3.6%)

Asian 1,133 (2.3%) 74 (1.9%) 1,059 (2.4%)

Othere 6,228 (12.8%) 415 (10.8%) 5,813 (13.0%)

Age at Admission7

 < 30 years 2,222 (4.6%) 140 (3.6%) 2,082 (4.6%)  < 0.0005f

30–39 years 2,568 (5.3%) 164 (4.3%) 2,404 (5.4%)

40–49 years 5,151 (10.6%) 388 (10.1%) 4,763 (10.7%)

50–59 years 8,396 (17.3%) 607 (15.7%) 7,789 (17.4%)

60–69 years 10,117 (20.8%) 715 (18.5%) 9,402 (21.0%)

70–79 years 10,042 (20.7%) 789 (20.5%) 9,253 (20.7%)

80–89 years 7,432 (15.3%) 747 (19.4%) 6,685 (15.0%)

 ≥ 90 years 2,613 (5.4%) 306 (7.9%) 2,307 (5.2%)

Length of Stayg

 < 5 days 17,406 (35.9%) 783 (20.3%) 16,623 (37.2%)  < 0.0005f

5 – 10 days 19,131 (39.4%) 1,470 (38.1%) 17,661 (39.5%)

11 – 20 days 9,163 (18.9%) 1,149 (29.8%) 8,014 (17.9%)

21 – 30 days 2,841 (5.9%) 454 (11.8%) 2,387 (5.3%)
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actions. Because three of four feature selection meth-
ods recommended inclusion of all 31 features and the 
potential for knowledge loss with predictor elimination, 
the model with 31 clinical actions was selected.

Table  3 presents 17 highly significant predictors 
(p < 0.001) from the final, multiple logistic regres-
sion model of 31 clinical actions. The full model can be 
found in Additional file  2: Table A.3. Among clinical 
impressions captured from single words in text notes, 
odds of delirium were higher with each note mention-
ing “mental status” (OR = 1.14), “deliri*”(OR = 1.12), 
“hallucin*”(OR = 1.25), or “confus*” (OR = 1.16), and 
“disorient*”(OR = 1.10). Odds of delirium were lower 
for each note mentioning “reorient*” (OR = 0.86). 
Among laboratory tests, odds of delirium were sig-
nificantly greater with clinical orders for urine culture 
(OR = 1.13), thyroid function test (OR = 1.12), serum 
B12 or folate (OR = 1.45), and blood or urine toxicology 
screen (OR = 1.28). Prescription orders for antipsychotics 
(OR = 1.44), benzodiazepines (OR = 1.08), and dexme-
detomidine (OR = 1.43) were associated with higher odds 
of delirium.

Reclassification and model comparison
We compared six metrics for sensitivity (Se) tuning: 
the Youden Index (Se = 80%), maximizing sensitiv-
ity and specificity (Se = 80%), maximizing accuracy 

Fig. 1  Comparison of ROC curves for 5 binary classifiers for presence 
or absence of delirium in the critical care setting. By AUC, logistic 
regression (unadjusted odds) outperformed supervised binary 
classification by naïve Bayes, support vector machines (SVM), 
Classification and Regression Trees (CART), and random forests

Table 3  Highly significant predictors from a multiple logistic regression model to classify delirium in the medical record

Presented here are 17 predictors from 31 clinical actions from a multiple logistic regression model with p < 0.001. Coefficients and confidence intervals are presented 
for odds. The full model is available in Additional file 2: A.3
a  Arterial blood gas
b  Complete blood count

Odds Ratio 95% CI
Lower Bound

95% CI Upper Bound Z-Value p-Value

“Mental status” 1.144 1.114 1.176 9.766  < 0.000005

“Deliri*” 1.121 1.082 1.163 6.249  < 0.000005

“Hallucin*” 1.252 1.161 1.351 5.820  < 0.000005

“Confus*” 1.160 1.123 1.199 8.872  < 0.000005

“Reorient*” 0.863 0.807 0.923 − 4.270 0.00002

Urine culture 1.131 1.084 1.179 5.682  < 0.000005

ABGa 0.978 0.972 0.984 − 7.097  < 0.000005

Renal function panel 1.041 1.024 1.058 4.871  < 0.000005

CBCb 0.965 0.952 0.978 − 5.186  < 0.000005

Thyroid function test 1.122 1.058 1.189 3.872 0.00011

Toxicology screen 1.275 1.217 1.336 10.243  < 0.000005

Autoimmune serology 0.408 0.292 0.556 − 5.464  < 0.000005

B vitamins 1.451 1.315 1.598 7.477  < 0.000005

HIV antibody 0.479 0.314 0.705 − 3.574 0.00035

Antipsychotics 1.443 1.400 1.488 23.589  < 0.000005

Benzodiazepines 1.076 1.048 1.103 5.614  < 0.000005

Dexmedetomidine 1.432 1.260 1.626 5.513  < 0.000005
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(Se = 5.20%), minimizing the distance to ROC (0,1) 
(Se = 76%), maximizing accuracy constraining sensitiv-
ity (Se = 50%), and maximizing sensitivity constraining 
specificity (Se = 92%). Additional file 2: Table A.4 illus-
trates the cut-point, sensitivity, specificity, and accu-
racy of six methods for tuning a threshold for a binary 
logistic classifier. Figure  2 visualizes reclassification of 
the test cohort by our model into four groups (ICD-
Positives, Reclassified-Positives, Reclassified-Nega-
tives, Double-Negatives) along our chosen method, the 
Youden Index. (Additional file  2: Figure A.1 presents 
this visualization for Puelle’s classifier.)

On the test data, logistic regression with threshold 
reclassification by the Youden Index (cut-point = −2.72) 
and all 31 clinical predictors included resulted in a 
model with AUC of 0.83, 79.4% sensitivity, 71.5% speci-
ficity, 19.7% PPV, and 97.6% NPV, evaluated against 
delirium ICD-9 codes. This threshold reclassification 

suggests a delirium prevalence within the ICU cohort 
up to 32.5%. Puelle’s classifier, using a Youden Index 
cut-point of -2.671, produced 79.8% sensitivity, 72.2% 
specificity, 19.8% PPV, and 97.6% NPV, predicting a 
cohort delirium prevalence 31.9%. Puelle’s classifier had 
AIC of 18,378 and BIC of 18,455. Our novel model had 
AIC of 16,786 and BIC of 17,058. By definition, Kim’s 
reclassification categorized all ICD-Positives as having 
delirium and did not generate Reclassified-Negatives, 
resulting in 100% sensitivity, 85.7% specificity, 37.7% 
PPV, and 100% NPV, with an estimated cohort preva-
lence of delirium up to 21.1%.

Table  4 illustrates similarity and difference between 
four reclassification groups on five clinical measures. 
With Kim’s reclassifier, Double-Positives and Dou-
ble-Negatives differed significantly for age, discharge 
location, death during hospitalization, and one-year mor-
tality, but did not differ for 30-day mortality (p = 0.472). 
Double-Positives and Reclassified-Negatives differed 

Table 4  Significant differences for three models between four reclassification groups on five clinical measures

Binary classification generates four groups of subjects, including two groups of reclassified hospitalizations, which were compared by biological validation to assess 
model goodness-of-fit. Double-Positives are expected to differ from Double-Negatives. In the case of successful reclassification, we expect Double-Positives to be 
similar to Reclassified-Positives, Double-Negatives to be similar to Reclassified-Negatives, and Reclassified-Positives to differ from Reclassified-Negatives. Bolded fields 
represent p-values concordant with expectations of good model fit
a  p-values were generated from pairwise chi-squared testing with the Holm correction for all measures except age, which was tested with pairwise Tukey multiple 
comparisons of means
b  Pairwise testing was not performed in the event of no significant difference between Double-Positives and Double-Negatives
c  The Kim model does not generate reclassified negatives, making associated tests unavailable

Reclassification Groups

Double + 
vs
Double─

Double + 
vs
Reclassified + 

Reclassified + 
vs
Reclassified─

Double-
vs
Reclassified─

Expected Relationship Different
p < 0.05a

Same
p > 0.05a

Different
p < 0.05a

Same
p > 0.05a

Novel Model

Age  < 0.00005  < 0.00005  < 0.00005  < 0.00005

Discharge location  < 0.00005  < 0.00005  < 0.00005  < 0.00005

Death in hospital  < 0.00005 0.00011 0.0452 0.0859

30-day mortality 0.00072 0.115 0.00017 0.0011

one-year mortality  < 0.00005 0.178 0.0017  < 0.00005

Puelle’s Classifier

Age  < 0.00005 0.00097  < 0.00005 0.964

Discharge location  < 0.00005  < 0.00005 0.00062 0.00062

Death in hospital 0.0017  < 0.00005 0.820 0.103

30-day mortalityb 0.0949 – – –

one-year mortality  < 0.00005  < 0.00005 0.660 0.0015

Kim’s Classifierc

Age  < 0.00005 0.0130 – –

Discharge location  < 0.00005  < 0.00005 – –

Death in hospital 0.0035  < 0.00005 – –

30-day mortalityb 0.472 – – –

one-year mortality  < 0.00005 0.0010 – –
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significantly in all tested categories. Under Puelle’s clas-
sifier, Double-Positives and ICD-Negatives differed sig-
nificantly in all clinical validation measures except 30-day 
mortality (p = 0.949). Reclassified-Negatives and Double-
Negatives did not significantly differ for age (p = 0.964) 
and death in hospital (p = 0.103). However, ICD-Posi-
tive and Reclassified-Positives differed significantly on 
all tested validation measures. Reclassified-Positives 
and Reclassified-Negatives did not differ significantly 
by death in hospital (p = 0.820) or one-year mortality 
(0.660). In our novel model, Double-Positives and Dou-
ble-Negatives differed significantly on all five validation 
measures. Double-Positives and Reclassified-Positives 
did not significantly differ by 30-day mortality (p = 0.115) 
or one-year mortality (p = 0.178). Double-Negatives 
and Reclassified-Negatives did not differ significantly by 
death in hospital. Reclassified-Positives and Reclassified-
Negatives differed significantly (p < 0.05) for all 5 valida-
tion measures.

Discussion
ML holds the potential to unlock improved diagnosis, 
risk stratification, and treatment of delirium in the ICU, 
a complex syndrome associated with serious morbidity 
and mortality. Before ML can be used to make clini-
cally actionable predictions, informaticians developing 
models for delirium incidence, prognosis, and treat-
ment need tools to accurately label patients with delir-
ium in large datasets, despite serious flaws with current 
labeling methods. Ideally, delirium researchers need 

a valid, efficient, computational tool that is independ-
ent of clinical variable of interest to label patients with 
delirium in large datasets without the need for chart 
review on in-person clinical assessments. A high-accu-
racy, computationally-generated label could be used for 
training future models on pressing clinical questions, 
including identifying timing of delirium onset in the 
hospital course or classifying patients with delirium 
into clinically relevant clusters. Here, we proposed to 
label delirium from clinician actions, using placement 
of orders associated with standard workup of delirium 
as a surrogate for clinicians recognizing delirium in real 
time.

After comparison of five supervised ML methods and 
four methods of feature selection, we proposed a novel, 
multiple logistic regression model to label ICU delirium 
from counts of 31 clinician actions abstracted from clini-
cal guidelines, with high AUC (0.83). If predictors are 
not independent, we expect improved performance from 
non-linear models. However, because these 31 clinical 
actions are regularly employed in wider clinical practice 
independent of delirium and thus none are specific for 
delirium, it is possible that a greater than expected inde-
pendence between covariates resulted in unexpectedly 
good performance from the logistic model. The assump-
tion of independence is reinforced by a correlation 
matrix with less than 4% of 31 predictors having a Spear-
man’s ρ of ≥ 0.6. The logistic model is both appropriate to 
the data and offers clearer, biological interpretability than 
many non-linear models.

Model performance on a training set was validated on 
a randomly selected test set. The model was concordant 
with clinical intuition, with odds of delirium higher with 
words such as “deliri*,” “hallucin*,” and “disorient*,” but 
odds of delirium lower with “reorient*.” Marked eleva-
tions in odds of delirium were associated with toxicol-
ogy screening, used to detect delirium from substance 
intoxication or withdrawal, and prescription of antipsy-
chotics or dexmedetomidine. Evidence of intoxication 
falls within the DSM-5 criteria for diagnosis of delirium 
[1, 12]. Guidelines recommend antipsychotics as the drug 
class of choice for symptomatic treatment of delirium 
[13]. Dexmedetomidine is recommended as a preferred 
drug for management of delirium on mechanically venti-
lated patients [13].

We compared our labeling model to two similar models 
previously proposed in the literature to abstract delirium 
incidence from chart review. Both our model and Puelle’s 
classifier produced sensitivity and specificity between 71 
and 80%, indicating good fidelity to delirium ICD-9 codes 
with modest reclassification of both positives and nega-
tives. Although the implementation of Puelle’s classifier 
has similar PPV and sensitivity with fewer predictors, 

Fig. 2  Probability density plot of four reclassification groups 
generated by our model predicting delirium from 31 clinical actions. 
Binary classification by multiple logistic regression generates four 
groups, including two groups of reclassified hospitalizations
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our novel model had superior performance by both lower 
AIC and BIC.

Kim et al. [24] reported low sensitivity (30%) but high 
specificity (97%) of their classifier on a prospective study 
of 184 adults. Specificity on the expanded MIMIC-III 
data set was 85.7%. Our implementation of Kim classifier 
never generates reclassified negatives: all patients with 
ICD-9 codes for delirium are classified in the delirium 
group by definition. Thus, the 100% sensitivity and 100% 
NPV reflect definitions for model creation, not quality of 
fit. The PPV of Kim’s classifier (37.7%) surpasses that of 
Puelle’s classifier (19.8%) and our model (19.7%). How-
ever, PPV is also defined by simple re-categorization in 
Kim’s classifier, and is not indicative of improved perfor-
mance. For both Kim’s and Puelle’s classifiers, reduced 
performance with computational application on the 
expanded, MIMIC-III dataset suggest limitations in gen-
eralizability and validation of these small-scale proposals.

Because ground-truth is not reasonably attainable in 
these data by chart review due to their very large size, 
we compared goodness-of-fit of the three models by bio-
logical validation [26]. First, we assume that, for a good 
model, predicted prevalence of delirium (sum of ICD-
Positives and Reclassified-Positives) should approach 
known ICU delirium prevalence from the literature. In 
a meta-analysis of 48 studies on ICU delirium, Krewulak 
et al. [2] obtained an overall pooled delirium prevalence 
of 31%. Kim’s classifier predicted delirium prevalence 
above ICD-9 code frequency (21.1%). Our model (32.5%) 
and Puelle’s classifier (31.9%) predicted delirium preva-
lence concordant with Krewulak’s pooled figures, indicat-
ing an appropriate quantity of reclassified patients.

We further biologically validate against clinically 
meaningful outcome measures. We compared clas-
sification and reclassification groups by age, discharge 
location, short-term risk of death, and one-year mor-
tality. Our method of model validation rests on the 
principle that application of any binary classifier that 
does not have perfect (100%) sensitivity and specific-
ity reclassifies subjects, such that some number of sub-
jects receive a classification from the model that differs 
from their input label assignment (Table  1, Fig.  2). If 
the binary classification model is valid, then this una-
voidable reclassification should result in reclassified 
subjects resembling their reclassified assignment more 
so than their label assignment across the five compari-
son measures. On the basis of biological validation, our 
novel model markedly outperformed Kim’s and Puelle’s 
classifiers, correctly capturing significant differences 
between Double-Positives and Double-Negatives and 
between Reclassified-Positives and Reclassified-Nega-
tives on all five measures. Delirium is a heterogeneous 

syndrome with subtype variation, including an under-
diagnosed hypoactive subtype and a subclinical form 
[5, 12]. Thus, differences between Double-Positives 
and Reclassified-Positives may represent variability 
in clinician practice between delirium subtypes, with 
our model reclassifying patients belonging to subtypes 
underrepresented in previous studies.

Limitations
The clinical utility of our novel model rests on impor-
tant contextual factors. First, our study is based on 
publicly available data from one institution. However, 
our model uses one of the largest count of observa-
tions for developing a ML model for delirium than 
previously used in other studies. Although we propose 
the implementation of a generalizable labeling model 
that is relatively less labor intensive than models that 
depend upon screening tools, ICD codes, and chart 
review (many of which that are not easily available), 
we recognize the importance of heterogeneity that will 
exist at both an institutional and a local provider level 
[62]. Examples include sub-group and temporal con-
siderations and idiosyncratic coding and documenta-
tion practices. There is a need for local validation and 
recalibration to ensure the optimal performance of our 
labeling method [63]. Because of under-identification 
of hypoactive or milder delirium in the clinical[5] or 
analytic[24] setting, deviations in model goodness of 
fit may reflect variation in clinical practice and patient 
presentation between delirium subtypes.

As noted previously, our model’s overall perfor-
mance, albeit relatively better than other counterpart 
models, still has constraints in terms of factors such as 
sensitivity and PPV. Like other ML models, decisions to 
implement our model will require considerations about 
tradeoffs around model performance factors, the costs 
of model implementation, and the implications of false-
positives [64, 65]. The potential response to positive 
cases and other approaches that can be used to estab-
lish true-positive cases will be critical. Finally, because 
this model does not use time-dependent variables, it 
may not be able to label a patient with delirium until 
after all encounter data is available.

Future work to predict delirium subtypes from the 
medical record is warranted. Patients being presented 
with other diseases, example SARS-CoV-2, may result 
in the introduction of other features that may improve 
the calibration of the model given the prevalence of 
such a disease in the local ICU. ICU delirium has been 
shown to be comorbid with SARS-CoV-2, arising from 
disorientation and social isolation, use of mechanical 
ventilation, and an aging patient population [66].
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Conclusions
We developed a novel labeling model for delirium in the 
ICU using a large data set from a publicly available data-
base. This database has been previously used to develop 
ML models for other applications [67, 68]. Our model 
incorporates 31 clinical actions as features, an approach 
that has been previously overlooked in other delirium 
prediction models. We assessed the performance of our 
labeling model based on other delirium prediction mod-
els and biological markers of significance. Our model 
demonstrates relative superiority based on the assess-
ment rubric; however, more validation and recalibra-
tion are needed to consider important contextual factors 
that may arise before and during the use of the model 
in a local ICU. These results provide a tool to aid future 
researchers developing ML classifiers for ICU patients 
with delirium.
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