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Abstract
Introduction: Scalp-recorded electrophysiological responses to complex, periodic 
auditory signals reflect phase-locked activity from neural ensembles within the 
auditory system. These responses, referred to as frequency-following responses 
(FFRs), have been widely utilized to index typical and atypical representation of speech 
signals in the auditory system. One of the major limitations in FFR is the low signal-to-
noise ratio at the level of single trials. For this reason, the analysis relies on averaging 
across thousands of trials. The ability to examine the quality of single-trial FFRs will 
allow investigation of trial-by-trial dynamics of the FFR, which has been impossible 
due to the averaging approach.
Methods: In a novel, data-driven approach, we used machine learning principles to 
decode information related to the speech signal from single trial FFRs. FFRs were 
collected from participants while they listened to two vowels produced by two 
speakers. Scalp-recorded electrophysiological responses were projected onto a low-
dimensional spectral feature space independently derived from the same two vowels 
produced by 40 speakers, which were not presented to the participants. A novel 
supervised machine learning classifier was trained to discriminate vowel tokens on a 
subset of FFRs from each participant, and tested on the remaining subset.
Results: We demonstrate reliable decoding of speech signals at the level of single-
trials by decomposing the raw FFR based on information-bearing spectral features in 
the speech signal that were independently derived.
Conclusions: Taken together, the ability to extract interpretable features at the level 
of single-trials in a data-driven manner offers unchartered possibilities in the 
noninvasive assessment of human auditory function.
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1  | INTRODUCTION

Scalp-recorded electrophysiological responses to complex auditory 
signals closely resemble the acoustic properties of the stimuli. These 
responses are referred to as the frequency-following response (FFR). 
Previous studies suggest that the FFR reflects phase-locked activity 
from neural ensembles within the auditory system (Gardi, Merzenich, 
& McKean, 1979; Møller & Jannetta, 1982; Smith, Marsh, & Brown, 
1975). Spectral features of the speech-evoked FFR contain suffi-
cient information reflecting stimulus features, such as the identity 
of a steady-state vowel token (Kraus & Nicol, 2005; Krishnan, 1999, 
2002). The fidelity of the FFR to the speech stimuli has been associ-
ated with individual variability in auditory function in typical (Krishnan, 
Swaminathan, & Gandour, 2009; Krizman, Marian, Shook, Skoe, & 
Kraus, 2012; Krizman, Skoe, Marian, & Kraus, 2014; Song, Skoe, 
Wong, & Kraus, 2008; Wong, Skoe, Russo, Dees, & Kraus, 2007) and 
atypical/clinical populations, such as those with language and reading 
disorders (Banai, Abrams, & Kraus, 2007; Chandrasekaran, Hornickel, 
Skoe, Nicol, & Kraus, 2009; Cunningham, Nicol, Zecker, Bradlow, & 
Kraus, 2001; Hornickel, Skoe, Nicol, Zecker, & Kraus, 2009; Russo 
et al., 2008). The FFR as a metric has thus been widely regarded as 
a potent biomarker of auditory processing (Johnson, Nicol, & Kraus, 
2005; Kraus & Chandrasekaran, 2010; Skoe & Kraus, 2010).

A major limitation of the scalp-recorded FFR is the low signal-to-
noise ratio at the level of single trials. The FFR is posited to originate 
from deep structures within the ascending auditory system (Gardi 
et al., 1979; Møller & Jannetta, 1982; Smith et al., 1975), with pos-
sible cortical sources contributing to the lower spectral components 
(Coffey, Herholz, Chepesiuk, Baillet, & Zatorre, 2016). Therefore, the 
current standard for FFR signal averaging requires the collection of 
several thousand trials (Skoe & Kraus, 2010), which precludes the 
possibility of examining the properties of the FFR at the level of single 
trials. This limitation constrains FFR research on two fronts. First, the 
proposed generator of the FFR, the auditory midbrain, exhibits rapid 
neural adaptation to repeated stimuli (Anderson & Malmierca, 2013; 
Pérez-González, Hernández, Covey, & Malmierca, 2012; Malone & 
Semple, 2001; Zhao, Liu, Shen, Feng, & Hong, 2011). An averaged 
signal, especially in the context of passive listening, is thus likely to be 
an aggregate of multiple responses that have undergone adaptation 
due to the lack of novelty in the incoming acoustic stream. Second, 
the averaging approach renders it difficult to assess the effects of 
flexible cognitive demands, such as different attention conditions 
across trials (Varghese, Bharadwaj, & Shinn-Cunningham, 2015). The 
ability to analyze the FFR at the level of single trials could address 
these limitations, hence enhancing the utility of the responses.

One of the ways in which meaningful information can be extracted 
from the single-trial FFR is via machine learning. Machine learning 
approaches have previously been used to decode phonemes from 
cortical electrophysiological responses (Hausfeld, De Martino, Bonte, 
& Formisano, 2012; Mesgarani, Cheung, Johnson, & Chang, 2014; 
Pei, Barbour, Leuthardt, & Schalk, 2011). Direct electrocorticog-
raphy methods have been used to show that the firing patterns of 

cortical neurons can be used to reliably discriminate English phonemes 
(Mesgarani et al., 2014; Pei et al., 2011), which has been replicated 
with a noninvasive approach of recording cortical activity (Hausfeld 
et al., 2012). Unlike their cortical counterparts, the FFR closely mim-
ics the spectrotemporal properties of the original auditory stimuli 
(Bidelman, 2014), to the degree that listeners can recognize words 
from the neural responses that have been converted into sound stim-
uli (Galbraith, Arbagey, Branski, Comerci, & Rector, 1995). Thus, it is 
conceivable that phonemic decoding would be feasible from the FFRs. 
Indeed, once the responses are averaged across multiple trials, vow-
els can be decoded from the FFRs (Sadeghian, Dajani, & Chan, 2015). 
However, this approach still relies on averaging across hundreds of 
trials, limiting experimenters’ ability to characterize intersubject vari-
ability on a trial-by-trial basis.

Here, we used a novel machine learning approach to decode vow-
els from single trial, speech-evoked FFRs. We focused on the spectral 
features observable in the FFR to the vowel sounds, and examine the 
extent to which vowel related features could be used to classify the 
stimuli. FFRs were collected from listeners as they passively listened 
to multiple repetitions (1,000+) of four speech stimuli: two English 
vowels ([æ] and [u]) produced by two male native English speakers 
(Hillenbrand, Getty, Clark, & Wheeler, 1995). Each single-trial FFR was 
converted into a spectrum, and then projected to a spectral feature 
space independently derived from the same two vowels ([æ] and [u]) 
produced by 40 male speakers (Hillenbrand et al., 1995). Finally, we 
trained a Gradient Boosted Decision Tree model (XGBoost; Chen & 
Guestrin, 2016) as our classifier. Boosted Decision trees offer state 
of the art learning performance and also offer high feature interpret-
ability. In this study, we asked the following questions: (1) How well 
can the individual stimuli (N = 4) and vowel tokens (N = 2) be decoded 
from single trials? (2) How many trials are necessary for reliable decod-
ing performance? (3) Are the features used in decoding interpretable? 
To anticipate, our results, discussed in detail below, showed that the 
speech tokens can be reliably decoded from single trial FFRs, even with 
training sets consisting of 50 trials per each stimulus. Furthermore, the 
spectral feature used to successfully classify the vowels closely cor-
responded to formant structure of the stimuli. Thus, we demonstrate 
that phonological information can be extracted from single-trial FFR 
using a machine learning approach based on interpretable spectral 
features.

2  | MATERIALS AND METHODS

2.1 | Participants

Young adults (N = 38; 30 females; ages 18–35; mean age = 21.6, 
SD = 3.5) were recruited for a large-scale multi-session research pro-
ject from the greater Austin community. A subset of these participants 
attended an FFR recording session (N = 25; 20 females; ages 18–32; 
mean age = 22.2, SD = 4.1), comprising the dataset reported in this 
study. All participants were native speakers of English, according to 
an abridged form of LEAP-Q (Marian, Blumenfeld, & Kaushanskaya, 
2007). All participants underwent audiological screening using 
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pure-tone audiometry and exhibited hearing thresholds of less than 
25 dB hearing level at frequencies between 250 and 8,000 Hz (octave 
steps). Potential participants were excluded if they reported a history 
of neurological or psychological disorders or ongoing intake of psy-
chogenic medications. All participants were monetarily compensated. 
All materials and methods were approved by the Institutional Review 
Board of the University of Texas at Austin. All participants provided 
written informed consent before their participation in this study.

2.2 | Construction of the spectral feature space

Nuclei of [æ] and [u] vowels produced by 40 male native English 
speakers (not presented to the participants) were resampled at the 
rate of 25 kHz (Hillenbrand et al., 1995). Each of the 80 sounds were 
converted into a spectrum with a spectral step size of 4 Hz, and trun-
cated between 0 and 4 kHz, leaving 1,000 spectral sampling points. 
A principal component analysis (PCA) was conducted to calculate a 
set of non-covarying principal spectral components that explain the 
variance across the log-transformed spectra (Pedregosa et al., 2011). 
The top 12 components together accounted for 80% of the variance.

2.3 | Electrophysiological recording procedures

Electrophysiological responses were recorded using an active Ag–
AgCl scalp electrode placed on the Cz site based on the 10–20 
system, with an electrode placed on the left mastoid serving as the 
ground and on the right mastoid as the reference. Impedances for 
all the electrodes were less than 5 kΩ. During the recording session, 
participants sat in an acoustically shielded chamber and watched a 

silent movie of their choice with English subtitles. The stimuli were 
binaurally presented via insert earphones (ER-3; Etymotic Research, 
Elk Grove Village, IL, USA). Participants were instructed to ignore the 
sounds and focus on the movie. The stimuli were [æ] and [u] vowels 
produced by two male native English speakers (Figure 1a), which were 
not used in the construction of the spectral feature space (Hillenbrand 
et al., 1995), from which the vowel nuclei were extracted using the 
documented start and end time points, and duration normalized to 
250 ms and RMS amplitude normalized to 70 dB sound pressure level. 
Sounds were presented binaurally at a variable interstimulus interval 
from 122 to 148 ms. The responses were collected at the sampling 
rate of 25 kHz using BrainVision PyCorder (1.0.7; Brain Products, 
Gilching, Germany). Responses to all four stimuli were collected dur-
ing a single session. The order of stimulus presentation was counter-
balanced across participants.

2.4 | Preprocessing of the frequency-following  
responses

After the recording, the responses were preprocessed with BrainVision 
Analyzer (2.0; Brain Products). First, responses were off-line bandpass 
filtered from 80 to 3,500 Hz (12 dB/octave, zero phase-shift; Aiken 
& Picton, 2008; Bidelman, Moreno, & Alain, 2013; Krishnan, 2002). 
Responses were then segmented into epochs of 310 ms (−40 ms 
before stimulus onset and 270 ms after stimulus onset). Time points 
were adjusted by 7 ms to account for the neural lag inherent in FFR. 
After baseline correcting each response to the mean voltage of the 
noise floor (−40 to 0 ms), trials with activity exceeding the range of 
±35 μV were rejected. For each stimulus, at least 1,000 artifact-free 

F IGURE  1  (a) Spectra for [æ] and [u] 
vowels produced by two male native 
speakers of English. The x-axis codes 
frequency ranging from 0 to 4 kHz, in 
4-Hz steps. The y-axis codes relative 
amplitude at each spectral bin, which has 
been scaled by the standard deviation of 
each of the four sound files. (b) Spectra 
for the frequency following responses 
collected from 25 participants, which were 
averaged across 1,000 trials. The x- and 
y-axes are identical to those used in (a).  
(c) Overlaying the two sets of spectra 
reveals spectral similarity across the stimuli 
and the responses within each speech token
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trials were obtained, discarding any additional trials that might have 
been collected (Skoe & Kraus, 2013).

2.5 | Projection of the single-trial FFRs onto the 
spectral feature space

The 250-ms stimulus portion of each of the single-trial waveforms 
was converted into a spectrum through steps and parameters identi-
cal with those for the construction of the spectral feature space as 
discussed above (Figure 1b). Grand average spectra of the responses 
showed a close resemblance to the original stimuli (Figure 1c; Kraus 
& Nicol, 2005; Krishnan, 1999, 2002; Skoe & Kraus, 2013). Next, the 
spectra were projected onto the aforementioned 12-dimensional 
spectral feature space. To do so, each of the spectra was multiplied 
by the first two columns of the transformation matrix derived from 
the PCA performed on the 80 sounds. Therefore, each single-trial FFR 
was now represented as a vector of 12 numerical values, which cor-
responded to the weighting of 12 spectral features (Figure 2).

2.6 | Decoding the FFRs using a machine learning  
approach

Machine learning was conducted on a participant-by-participant basis. 
Each trial was defined as a vector of 12 elements, as calculated from 
the projection onto the spectral feature space. First, we examined 
the degree to which vowel tokens (N = 2) or individual stimuli (N = 4) 

could be decoded from the single-trial FFR. To this end, the training 
set was from the first 950 trials per each stimulus from each partici-
pant. A classifier was trained to classify either the vowel ([æ] or [u]; 
Figure 3a) or stimulus ([æ]1, [u]1, [æ]2, or [u]2; Figure 3b) label from the 
training set.

A gradient boosted decision tree model was initialized with logis-
tic binary classification as the objective, in the case of two-category 
classification (i.e., vowels), and with multiclass probability as the 
objective, in the case of four-category classification (i.e., individual 
stimuli) (Chen & Guestrin, 2016). An exhaustive grid search across 
two hyper-parameters, number of estimators (from 2 to 12; step 
size of 2) and maximum depth of each tree (from 2 to 6; step size 
of 2), was performed based on maximizing the decoding performance 
within the training set. Then, the performance of the classifier was 
tested on the remaining test set of 50 trials per each stimulus, sep-
arately for each participant. Decoding performance of the classifier 
was quantified by extracting a receiver operating characteristics curve 
based on the probability vector of the predicted labels, and calculat-
ing the area under each curve (AUC), on a participant by participant 
basis (Figure 3c). In the case of the stimulus classification, the AUC 
was calculated for each stimulus via a one-versus-all scheme, and then 
averaged across the stimuli (Galar, Fernández, Barrenechea, Bustince, 
& Herrera, 2011). This approach was used to circumvent inflation of 
accuracies due to a response bias in the classifier. Next, we examined 
the number of total trials necessary for reliable decoding. To this end, 
the aforementioned decoding procedures were replicated, while vary-
ing the size of the training set from 50 to 950 trials per stimulus, with 
a step size of 50 trials. The test set was composed of the 50 trials per 
stimulus that immediately followed those used in training. Finally, in 
an ad hoc analysis, the spectral features implicated in decoding were 
examined informally to assess the interpretability of the findings.

3  | RESULTS

3.1 | Decoding vowels and stimuli from single-trial 
FFRs: all trials

Across 25 participants, vowel decoding yielded a mean AUC meas-
ure of 0.668 (SD = 0.145) with the median of 0.638 (Figure 4a). A one 
sample t test revealed that these AUC values significantly differed 
from the chance level of 0.5, t(24) = 5.798, p < .0001, 95% CI [0.608, 
0.728]. Only two participants exhibited AUC values that were equal 
to or less than 0.5. Stimulus decoding yielded a mean AUC of 0.729 
(SD = 0.087) with the median of 0.709 (Figure 4a). A one sample t-test 
revealed that these AUC values significantly differed from the chance 
level of 0.5, t(24) = 13.169, p < .0001, 95% CI [0.693, 0.765]. In all 
participants, AUC values were higher than 0.5.

3.2 | Decoding vowels and stimuli from varying 
sizes of the training set

The distribution of AUC values for vowel and stimulus decoding across 
training set sizes are shown in Figure 4b. Linear regression analysis 

F IGURE  2 Spectral projection of the single-trial frequency 
following responses (FFRs) onto the spectral feature space. Figures 
are derived from a representative participant. The raw FFR spectra 
(left) were multiplied by a matrix of 12 vectors (center) corresponding 
to the top principal components independently derived from 
spectra of [æ] and [u] vowels produced by 40 male native speakers. 
This procedure resulted in projection of the raw FFRs onto the 
12-dimensional spectral feature space (right)
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F IGURE  3  (a) Training-test scheme for vowel (N = 2) decoding. For each participant, a classifier was trained to identify the [æ] and [u] labels 
from each trial, based on the 12 spectral features. Then, the trained classifier was tested on an independent subset. The resulting prediction 
vector included values pertaining to the probability of each vowel. In this particular example from a representative participant, the classifier 
outputs reasonably accurate responses for [æ]1 and [u]2, but not for [æ]2 and [u]1. (b) Training-test scheme for stimulus (N = 4) decoding. For 
each participant, a classifier was trained to identify for [æ]1, [æ]2, and [u]1, and [u]2 labels from each trial, based on the 12 spectral features. 
Then, the trained classifier was tested on an independent subset. The resulting prediction vector included values pertaining to the probability 
of each of the four stimuli. In this particular example from a representative participant, the classifier outputs reasonably accurate responses for 
[æ]1 and [æ]2, but not for [u]1 and [u]2. (c) Based on the aforementioned probability vectors, a receiver operating characteristics (ROC) curve was 
generated. The area under the curve (AUC) measure served as a metric of decoding performance. Note that for stimulus decoding, the ROC 
curve was constructed separately for each stimulus per a one-versus-all scheme

F IGURE  4  (a) Area under the curve (AUC) measures are displayed for vowel (mean = 0.67; SD = 0.15; median = 0.67) and stimulus 
(mean = 0.73; SD = 0.09; median = 0.71) decoding. In this box plot, the dark centerlines correspond to the median, while the top and bottom 
edges of the boxes correspond to the 25th and 75th percentiles across the 25 participants, respectively. Note that stimulus decoding AUC is 
averaged across individual one-versus-all AUC calculated from each of the four stimuli, the chance level therefore corresponding to 0.50 rather 
than 0.25. (b) Vowel and stimulus decoding AUC across different sizes of the training set. The x-axis corresponds to the trials per each of the 
four stimuli (from 50 to 950; step size of 50 trials) that were included as a part of the subset included in training of the classifier. Note that the 
test set always consisted of the 50 trials per stimulus that immediately followed the training set
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was conducted separately for vowel and stimulus to assess decoding 
performance across all attempts, as well as to assess the effect of the 
size of training sets on the reliability of decoding. In each case, the 
dependent variable was logit-transformed AUC (i.e., 1 and 0 mapped 
onto ±∞, respectively, with 0.5 mapped onto 0) for a given participant, 
and the fixed effect was the training set size per stimulus (50, 100, 
150, …, and 950). For vowel decoding, the intercept, which modeled 
the logit-transformed AUC with the smallest training size, was higher 
than 0, b = 1.172, SE = .157, t = 7.589, p < .0001, suggesting that 
decoding performance was higher than chance. There was no effect 
of training set size, b = −0.0002, SE = .000207, t = −1.033, p = .303. 
For stimulus decoding, the intercept was higher than 0, b = 1.217, 
SE = .104, t = 11.759, p < .0001, suggesting higher-than-chance per-
formance. There was no effect of training set size, b = −0.000150, 
SE = .000102, t = −1.475, p = .142.

3.3 | Feature interpretability

Finally, we examined the spectral features used during classification 
of vowels and stimuli. From each participant, the percentage of times 
in which a given spectral feature was utilized by individual decision 
trees was calculated. The distribution of these feature weights is dis-
played in Figure 5a. An informal inspection of the weights suggested 
that the PC1 was the most reliable feature in decoding vowels (mean 
weight = 38%; SD = 24%, median = 33%) as well as stimuli (mean 
weight = 42%; SD = 25%; median = 38%). In PC1, three extrema were 
readily identifiable at 602, 1822, and 2594 Hz (Figure 5b). These 
values corresponded with the first, second, and third formant fre-
quencies for [æ]1 (647, 1864, and 2561 Hz) and [æ]2 (553, 2140, and 

2327 Hz; Figure 5c; Hillenbrand et al., 1995), and consequently, with 
the maxima in the spectra of the grand average FFR signal evoked by 
these stimuli (Figure 5c).

4  | DISCUSSION

We demonstrate an innovative application of machine learning princi-
ples to reliably extract vowel information from the single-trial speech-
evoked FFRs. In our approach, the raw FFR was first projected onto 
a spectral feature space defined by a multitude of sounds not used 
in the experiment, contributing to the generalizability of the results. 
The feature predominantly used to classify the FFR closely corre-
sponded to the spectral profiles of one of the two vowels used in the 
experiment. Feature interpretability and generalizability support the 
likelihood that decoding reflects biologically credible aspects of the 
FFR, rather than reliable yet trivial features. Finally, reliable decoding 
performance was achieved with a relatively low training set size of 50 
trials per stimulus.

The ability to draw better inferences from the FFR data offers 
significant potential for auditory neuroscience research. The FFR is 
elicited preattentively and does not rely on participants’ ability to per-
form tasks successfully. Moreover, compared to other electrophys-
iological modalities in which decoding of speech-evoked responses 
have been examined (e.g., EEG; Hausfeld et al., 2012; ECoG; Pei et al., 
2011; Mesgarani et al., 2014), the FFR has a considerable advantage 
regarding availability, low monetary cost, and quick implementation 
time (Skoe & Kraus, 2010). As such, it has been extensively used as 
a biomarker of auditory function, in both research settings (Banai 

F IGURE  5  (a) Importance of spectral features during vowel and stimulus decoding (950-trial training set). The x-axis corresponds to the 
12 principal components (PCs) that were used as input features for the classifier. The y-axis corresponds to the percentage of times in which 
the feature was used by a given decision tree. (b) The top four PCs in the frequency domain. In PC1, which was disproportionately used by 
the classifiers, three extrema are readily identifiable (arrows). (c) Log-transformed spectra of the original stimuli (left; black lines) and the grand 
average frequency following response (right; red lines) are displayed. Three formant frequencies are identifiable (arrows), which also correspond 
to the three extrema of the PC1 marked with arrows in (b)
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et al., 2007; Chandrasekaran et al., 2009; Cunningham et al., 2001; 
Hornickel et al., 2009; Johnson et al., 2005; Kraus & Chandrasekaran, 
2010; Krishnan et al., 2009; Krizman et al., 2012, 2014; Russo et al., 
2008; Skoe & Kraus, 2010; Song et al., 2008; Wong et al., 2007) as 
well as in clinical settings, such as infant hearing screening (Herrmann, 
Thornton, & Joseph, 2006; Mason & Herrmann, 1998). The ability to 
decode single-trial FFR opens up new avenues for experimentation in 
auditory neuroscience. For instance, the effect of dynamically mod-
ulated attention on the FFR cannot be easily tested using a block- 
by-block averaging approach since attentional effects may fluctuate 
on a much more rapid timescale. FFRs are sensitive to short-term reg-
ularity in the input stream (Lehmann, Arias, & Schönwiesner, 2016). 
This may be the reason for somewhat inconclusive results on the 
effect of attention on the FFR, where some researchers have shown 
attention effects (Lehmann & Schönwiesner, 2014; Sörqvist, Stenfelt, 
& Rönnberg, 2012; Strait, Kraus, Parbery-Clark, & Ashley, 2010), 
whereas others have not (Varghese et al., 2015). Implementation 
of single-trial decoding approaches would allow flexibility in exper-
imental designs, where trial-by-trial behavioral performance can be 
included as a covariate in FFR analysis. Also, some clinical disorders 
like developmental dyslexia, a neurological disorder that impacts read-
ing and spelling skills, have been characterized by increased neural 
variability. For example, a prior study showed individuals with dys-
lexia exhibited less consistent responses when two subaverages were 
compared to each other (Hornickel, Zecker, Bradlow, & Kraus, 2012). 
Assessing variability on a trial-by-trial basis could yield more robust 
and stable group differences rather than assessing signal quality from 
average responses.

We acknowledge the following limitations of this study. First, par-
ticipants were presented with two vowels produced by two speakers. 
These four stimuli fulfill the minimum number of types of speech 
tokens required to assess representation of segmental and indexical 
information as exhibited in the FFR. Furthermore, the spectral decom-
position approach as derived from an independent set of stimuli (in 
which novel speakers produced the same vowels) hint at the possibil-
ity of generalizability of the decoding performance as reported in the 
results section. However, future studies should further explore FFRs 
to multiple speakers and multiple speech sounds. Second, the main 
focus of this study was to demonstrate the possibility of decoding 
single-trial FFRs. For this reason, less emphasis was placed on maxi-
mizing the decodability using multiple classifiers (e.g., support vector 
machine) or different parameters. Future studies, in addition to using 
a more comprehensive set of speech sounds, could serve the field by 
exploring different types of computational approaches to optimize the 
decoding ability.

In summary, we present a set of results that demonstrate the fea-
sibility of decoding speech sound information from single-trial FFRs. 
The speech-evoked FFRs were analyzed in a way that addresses two 
common pitfalls of a machine learning approach: feature interpret-
ability (countered by using decipherable spectra) and generalizability 
(countered by deriving features from an independent set of stimuli). 
We suggest that this approach could be further refined to yield infer-
ences of the neurally driven activity of the auditory pathway, which 

may not have been plausible by analyzing signals averaged across 
thousands of trials decoding.
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