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Abstract
Introduction: Scalp-	recorded	 electrophysiological	 responses	 to	 complex,	 periodic	
auditory	 signals	 reflect	 phase-	locked	 activity	 from	 neural	 ensembles	 within	 the	
auditory	 system.	 These	 responses,	 referred	 to	 as	 frequency-	following	 responses	
(FFRs),	have	been	widely	utilized	to	index	typical	and	atypical	representation	of	speech	
signals	in	the	auditory	system.	One	of	the	major	limitations	in	FFR	is	the	low	signal-	to-	
noise	ratio	at	the	level	of	single	trials.	For	this	reason,	the	analysis	relies	on	averaging	
across	thousands	of	trials.	The	ability	to	examine	the	quality	of	single-	trial	FFRs	will	
allow	 investigation	of	 trial-	by-	trial	dynamics	of	 the	FFR,	which	has	been	 impossible	
due to the averaging approach.
Methods: In	a	novel,	data-	driven	approach,	we	used	machine	 learning	principles	 to	
decode	 information	 related	 to	 the	 speech	 signal	 from	 single	 trial	 FFRs.	 FFRs	were	
collected from participants while they listened to two vowels produced by two 
speakers.	Scalp-	recorded	electrophysiological	responses	were	projected	onto	a	low-	
dimensional spectral feature space independently derived from the same two vowels 
produced	 by	 40	 speakers,	 which	 were	 not	 presented	 to	 the	 participants.	 A	 novel	
supervised machine learning classifier was trained to discriminate vowel tokens on a 
subset	of	FFRs	from	each	participant,	and	tested	on	the	remaining	subset.
Results: We	demonstrate	 reliable	decoding	of	 speech	signals	at	 the	 level	of	 single-	
trials	by	decomposing	the	raw	FFR	based	on	information-	bearing	spectral	features	in	
the speech signal that were independently derived.
Conclusions: Taken	together,	the	ability	to	extract	interpretable	features	at	the	level	
of	 single-	trials	 in	 a	 data-	driven	 manner	 offers	 unchartered	 possibilities	 in	 the	
noninvasive assessment of human auditory function.
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1  | INTRODUCTION

Scalp-	recorded	 electrophysiological	 responses	 to	 complex	 auditory	
signals closely resemble the acoustic properties of the stimuli. These 
responses	are	referred	to	as	the	frequency-	following	response	(FFR).	
Previous	studies	suggest	 that	 the	FFR	reflects	phase-	locked	activity	
from	neural	ensembles	within	the	auditory	system	(Gardi,	Merzenich,	
&	McKean,	1979;	Møller	&	Jannetta,	1982;	Smith,	Marsh,	&	Brown,	
1975).	 Spectral	 features	 of	 the	 speech-	evoked	 FFR	 contain	 suffi-
cient	 information	 reflecting	 stimulus	 features,	 such	 as	 the	 identity	
of	a	steady-	state	vowel	token	(Kraus	&	Nicol,	2005;	Krishnan,	1999,	
2002).	The	fidelity	of	the	FFR	to	the	speech	stimuli	has	been	associ-
ated	with	individual	variability	in	auditory	function	in	typical	(Krishnan,	
Swaminathan,	 &	 Gandour,	 2009;	 Krizman,	 Marian,	 Shook,	 Skoe,	 &	
Kraus,	 2012;	 Krizman,	 Skoe,	 Marian,	 &	 Kraus,	 2014;	 Song,	 Skoe,	
Wong,	&	Kraus,	2008;	Wong,	Skoe,	Russo,	Dees,	&	Kraus,	2007)	and	
atypical/clinical	populations,	such	as	those	with	language	and	reading	
disorders	(Banai,	Abrams,	&	Kraus,	2007;	Chandrasekaran,	Hornickel,	
Skoe,	Nicol,	&	Kraus,	 2009;	Cunningham,	Nicol,	 Zecker,	 Bradlow,	&	
Kraus,	 2001;	 Hornickel,	 Skoe,	 Nicol,	 Zecker,	 &	 Kraus,	 2009;	 Russo	
et	al.,	2008).	The	FFR	as	a	metric	has	 thus	been	widely	 regarded	as	
a	potent	biomarker	of	auditory	processing	 (Johnson,	Nicol,	&	Kraus,	
2005;	Kraus	&	Chandrasekaran,	2010;	Skoe	&	Kraus,	2010).

A	major	limitation	of	the	scalp-recorded	FFR	is	the	low	signal-	to-	
noise	ratio	at	the	level	of	single	trials.	The	FFR	is	posited	to	originate	
from	 deep	 structures	within	 the	 ascending	 auditory	 system	 (Gardi	
et	al.,	1979;	Møller	&	Jannetta,	1982;	Smith	et	al.,	1975),	with	pos-
sible cortical sources contributing to the lower spectral components 
(Coffey,	Herholz,	Chepesiuk,	Baillet,	&	Zatorre,	2016).	Therefore,	the	
current	standard	for	FFR	signal	averaging	requires	the	collection	of	
several	 thousand	 trials	 (Skoe	&	Kraus,	 2010),	which	 precludes	 the	
possibility	of	examining	the	properties	of	the	FFR	at	the	level	of	single	
trials.	This	limitation	constrains	FFR	research	on	two	fronts.	First,	the	
proposed	generator	of	the	FFR,	the	auditory	midbrain,	exhibits	rapid	
neural	adaptation	to	repeated	stimuli	(Anderson	&	Malmierca,	2013;	
Pérez-	González,	Hernández,	 Covey,	&	Malmierca,	 2012;	Malone	&	
Semple,	2001;	Zhao,	 Liu,	 Shen,	Feng,	&	Hong,	2011).	An	averaged	
signal,	especially	in	the	context	of	passive	listening,	is	thus	likely	to	be	
an aggregate of multiple responses that have undergone adaptation 
due	to	the	lack	of	novelty	in	the	incoming	acoustic	stream.	Second,	
the averaging approach renders it difficult to assess the effects of 
flexible	 cognitive	 demands,	 such	 as	 different	 attention	 conditions	
across	trials	(Varghese,	Bharadwaj,	&	Shinn-	Cunningham,	2015).	The	
ability	to	analyze	the	FFR	at	the	 level	of	single	trials	could	address	
these	limitations,	hence	enhancing	the	utility	of	the	responses.

One	of	the	ways	in	which	meaningful	information	can	be	extracted	
from	 the	 single-	trial	 FFR	 is	 via	 machine	 learning.	Machine	 learning	
approaches have previously been used to decode phonemes from 
cortical	electrophysiological	responses	(Hausfeld,	De	Martino,	Bonte,	
&	 Formisano,	 2012;	 Mesgarani,	 Cheung,	 Johnson,	 &	 Chang,	 2014;	
Pei,	 Barbour,	 Leuthardt,	 &	 Schalk,	 2011).	 Direct	 electrocorticog-
raphy methods have been used to show that the firing patterns of 

cortical neurons can be used to reliably discriminate English phonemes 
(Mesgarani	 et	al.,	 2014;	 Pei	 et	al.,	 2011),	which	 has	 been	 replicated	
with	 a	noninvasive	 approach	of	 recording	 cortical	 activity	 (Hausfeld	
et	al.,	2012).	Unlike	their	cortical	counterparts,	the	FFR	closely	mim-
ics the spectrotemporal properties of the original auditory stimuli 
(Bidelman,	 2014),	 to	 the	 degree	 that	 listeners	 can	 recognize	words	
from the neural responses that have been converted into sound stim-
uli	 (Galbraith,	Arbagey,	Branski,	Comerci,	&	Rector,	1995).	Thus,	 it	 is	
conceivable	that	phonemic	decoding	would	be	feasible	from	the	FFRs.	
Indeed,	once	the	responses	are	averaged	across	multiple	trials,	vow-
els	can	be	decoded	from	the	FFRs	(Sadeghian,	Dajani,	&	Chan,	2015).	
However,	 this	 approach	 still	 relies	 on	 averaging	 across	 hundreds	 of	
trials,	limiting	experimenters’	ability	to	characterize	intersubject	vari-
ability	on	a	trial-	by-	trial	basis.

Here,	we	used	a	novel	machine	learning	approach	to	decode	vow-
els	from	single	trial,	speech-	evoked	FFRs.	We	focused	on	the	spectral	
features	observable	in	the	FFR	to	the	vowel	sounds,	and	examine	the	
extent	to	which	vowel	related	features	could	be	used	to	classify	the	
stimuli.	FFRs	were	collected	from	listeners	as	they	passively	listened	
to	multiple	 repetitions	 (1,000+)	 of	 four	 speech	 stimuli:	 two	 English	
vowels	 ([æ]	 and	 [u])	 produced	 by	 two	male	 native	 English	 speakers	
(Hillenbrand,	Getty,	Clark,	&	Wheeler,	1995).	Each	single-	trial	FFR	was	
converted	 into	a	spectrum,	and	then	projected	to	a	spectral	 feature	
space	independently	derived	from	the	same	two	vowels	([æ]	and	[u])	
produced	by	40	male	speakers	 (Hillenbrand	et	al.,	1995).	Finally,	we	
trained	a	Gradient	Boosted	Decision	Tree	model	 (XGBoost;	Chen	&	
Guestrin,	 2016)	 as	our	 classifier.	Boosted	Decision	 trees	offer	 state	
of the art learning performance and also offer high feature interpret-
ability.	 In	this	study,	we	asked	the	following	questions:	 (1)	How	well	
can	the	individual	stimuli	(N	=	4)	and	vowel	tokens	(N	=	2)	be	decoded	
from	single	trials?	(2)	How	many	trials	are	necessary	for	reliable	decod-
ing	performance?	(3)	Are	the	features	used	in	decoding	interpretable?	
To	anticipate,	our	results,	discussed	in	detail	below,	showed	that	the	
speech	tokens	can	be	reliably	decoded	from	single	trial	FFRs,	even	with	
training	sets	consisting	of	50	trials	per	each	stimulus.	Furthermore,	the	
spectral feature used to successfully classify the vowels closely cor-
responded	to	formant	structure	of	the	stimuli.	Thus,	we	demonstrate	
that	phonological	 information	can	be	extracted	 from	single-trial	FFR	
using a machine learning approach based on interpretable spectral 
features.

2  | MATERIALS AND METHODS

2.1 | Participants

Young	 adults	 (N	=	38;	 30	 females;	 ages	 18–35;	 mean	 age	=	21.6,	
SD	=	3.5)	were	recruited	for	a	large-	scale	multi-session	research	pro-
ject	from	the	greater	Austin	community.	A	subset	of	these	participants	
attended	an	FFR	recording	session	(N	=	25;	20	females;	ages	18–32;	
mean	 age	=	22.2,	SD	=	4.1),	 comprising	 the	 dataset	 reported	 in	 this	
study.	All	participants	were	native	speakers	of	English,	according	to	
an	abridged	 form	of	LEAP-	Q	 (Marian,	Blumenfeld,	&	Kaushanskaya,	
2007).	 All	 participants	 underwent	 audiological	 screening	 using	
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pure-	tone	audiometry	and	exhibited	hearing	thresholds	of	 less	 than	
25	dB	hearing	level	at	frequencies	between	250	and	8,000	Hz	(octave	
steps).	Potential	participants	were	excluded	if	they	reported	a	history	
of neurological or psychological disorders or ongoing intake of psy-
chogenic	medications.	All	participants	were	monetarily	compensated.	
All	materials	and	methods	were	approved	by	the	Institutional	Review	
Board	of	the	University	of	Texas	at	Austin.	All	participants	provided	
written informed consent before their participation in this study.

2.2 | Construction of the spectral feature space

Nuclei	 of	 [æ]	 and	 [u]	 vowels	 produced	 by	 40	 male	 native	 English	
speakers	 (not	 presented	 to	 the	participants)	were	 resampled	 at	 the	
rate	of	25	kHz	(Hillenbrand	et	al.,	1995).	Each	of	the	80	sounds	were	
converted	into	a	spectrum	with	a	spectral	step	size	of	4	Hz,	and	trun-
cated	between	0	and	4	kHz,	 leaving	1,000	spectral	sampling	points.	
A	principal	 component	analysis	 (PCA)	was	conducted	 to	calculate	a	
set	of	non-	covarying	principal	spectral	components	that	explain	the	
variance	across	the	log-	transformed	spectra	(Pedregosa	et	al.,	2011).	
The	top	12	components	together	accounted	for	80%	of	the	variance.

2.3 | Electrophysiological recording procedures

Electrophysiological	 responses	 were	 recorded	 using	 an	 active	 Ag–
AgCl	 scalp	 electrode	 placed	 on	 the	 Cz	 site	 based	 on	 the	 10–20	
system,	with	an	electrode	placed	on	the	 left	mastoid	serving	as	 the	
ground and on the right mastoid as the reference. Impedances for 
all the electrodes were less than 5 kΩ.	During	the	recording	session,	
participants sat in an acoustically shielded chamber and watched a 

silent movie of their choice with English subtitles. The stimuli were 
binaurally	presented	via	 insert	earphones	 (ER-	3;	Etymotic	Research,	
Elk	Grove	Village,	IL,	USA).	Participants	were	instructed	to	ignore	the	
sounds	and	focus	on	the	movie.	The	stimuli	were	[æ]	and	[u]	vowels	
produced	by	two	male	native	English	speakers	(Figure	1a),	which	were	
not	used	in	the	construction	of	the	spectral	feature	space	(Hillenbrand	
et	al.,	1995),	 from	which	 the	vowel	nuclei	were	extracted	using	 the	
documented	 start	 and	 end	 time	 points,	 and	 duration	 normalized	 to	
250	ms	and	RMS	amplitude	normalized	to	70	dB	sound	pressure	level.	
Sounds were presented binaurally at a variable interstimulus interval 
from	122	to	148	ms.	The	 responses	were	collected	at	 the	sampling	
rate	 of	 25	kHz	 using	 BrainVision	 PyCorder	 (1.0.7;	 Brain	 Products,	
Gilching,	Germany).	Responses	to	all	four	stimuli	were	collected	dur-
ing a single session. The order of stimulus presentation was counter-
balanced across participants.

2.4 | Preprocessing of the frequency- following  
responses

After	the	recording,	the	responses	were	preprocessed	with	BrainVision	
Analyzer	(2.0;	Brain	Products).	First,	responses	were	off-	line	bandpass	
filtered	 from	80	to	3,500	Hz	 (12	dB/octave,	zero	phase-	shift;	Aiken	
&	Picton,	2008;	Bidelman,	Moreno,	&	Alain,	2013;	Krishnan,	2002).	
Responses	 were	 then	 segmented	 into	 epochs	 of	 310	ms	 (−40	ms	
before	stimulus	onset	and	270	ms	after	stimulus	onset).	Time	points	
were	adjusted	by	7	ms	to	account	for	the	neural	lag	inherent	in	FFR.	
After	baseline	correcting	each	response	 to	 the	mean	voltage	of	 the	
noise	floor	 (−40	to	0	ms),	 trials	with	activity	exceeding	the	range	of	
±35 μV	were	rejected.	For	each	stimulus,	at	least	1,000	artifact-	free	

F IGURE  1  (a)	Spectra	for	[æ]	and	[u]	
vowels produced by two male native 
speakers of English. The x-	axis	codes	
frequency	ranging	from	0	to	4	kHz,	in	
4-	Hz	steps.	The	y-	axis	codes	relative	
amplitude	at	each	spectral	bin,	which	has	
been scaled by the standard deviation of 
each	of	the	four	sound	files.	(b)	Spectra	
for	the	frequency	following	responses	
collected	from	25	participants,	which	were	
averaged	across	1,000	trials.	The	x-		and	
y-	axes	are	identical	to	those	used	in	(a).	 
(c)	Overlaying	the	two	sets	of	spectra	
reveals spectral similarity across the stimuli 
and the responses within each speech token
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trials	were	obtained,	discarding	any	additional	trials	that	might	have	
been	collected	(Skoe	&	Kraus,	2013).

2.5 | Projection of the single- trial FFRs onto the 
spectral feature space

The	 250-	ms	 stimulus	 portion	 of	 each	 of	 the	 single-	trial	waveforms	
was converted into a spectrum through steps and parameters identi-
cal with those for the construction of the spectral feature space as 
discussed	above	(Figure	1b).	Grand	average	spectra	of	the	responses	
showed	a	close	resemblance	to	the	original	stimuli	 (Figure	1c;	Kraus	
&	Nicol,	2005;	Krishnan,	1999,	2002;	Skoe	&	Kraus,	2013).	Next,	the	
spectra	 were	 projected	 onto	 the	 aforementioned	 12-	dimensional	
spectral	feature	space.	To	do	so,	each	of	the	spectra	was	multiplied	
by	 the	 first	 two	columns	of	 the	 transformation	matrix	derived	 from	
the	PCA	performed	on	the	80	sounds.	Therefore,	each	single-	trial	FFR	
was	now	represented	as	a	vector	of	12	numerical	values,	which	cor-
responded	to	the	weighting	of	12	spectral	features	(Figure	2).

2.6 | Decoding the FFRs using a machine learning  
approach

Machine	learning	was	conducted	on	a	participant-	by-	participant	basis.	
Each	trial	was	defined	as	a	vector	of	12	elements,	as	calculated	from	
the	 projection	 onto	 the	 spectral	 feature	 space.	 First,	 we	 examined	
the	degree	to	which	vowel	tokens	(N	=	2)	or	individual	stimuli	(N	=	4)	

could	be	decoded	from	the	single-	trial	FFR.	To	this	end,	the	training	
set was from the first 950 trials per each stimulus from each partici-
pant.	A	classifier	was	trained	to	classify	either	the	vowel	([æ]	or	[u];	
Figure	3a)	or	stimulus	([æ]1,	[u]1,	[æ]2,	or	[u]2;	Figure	3b)	label	from	the	
training set.

A	gradient	boosted	decision	tree	model	was	initialized	with	logis-
tic	binary	classification	as	the	objective,	 in	the	case	of	two-	category	
classification	 (i.e.,	 vowels),	 and	 with	 multiclass	 probability	 as	 the	
objective,	 in	 the	 case	 of	 four-	category	 classification	 (i.e.,	 individual	
stimuli)	 (Chen	 &	 Guestrin,	 2016).	 An	 exhaustive	 grid	 search	 across	
two	 hyper-	parameters,	 number	 of	 estimators	 (from	 2	 to	 12;	 step	
size	 of	 2)	 and	maximum	depth	 of	 each	 tree	 (from	2	 to	 6;	 step	 size	
of	2),	was	performed	based	on	maximizing	the	decoding	performance	
within	 the	 training	 set.	Then,	 the	 performance	 of	 the	 classifier	was	
tested	on	the	remaining	test	set	of	50	trials	per	each	stimulus,	sep-
arately for each participant. Decoding performance of the classifier 
was	quantified	by	extracting	a	receiver	operating	characteristics	curve	
based	on	the	probability	vector	of	the	predicted	labels,	and	calculat-
ing	the	area	under	each	curve	(AUC),	on	a	participant	by	participant	
basis	 (Figure	3c).	 In	 the	 case	of	 the	 stimulus	 classification,	 the	AUC	
was	calculated	for	each	stimulus	via	a	one-	versus-	all	scheme,	and	then	
averaged	across	the	stimuli	(Galar,	Fernández,	Barrenechea,	Bustince,	
&	Herrera,	2011).	This	approach	was	used	to	circumvent	inflation	of	
accuracies	due	to	a	response	bias	in	the	classifier.	Next,	we	examined	
the	number	of	total	trials	necessary	for	reliable	decoding.	To	this	end,	
the	aforementioned	decoding	procedures	were	replicated,	while	vary-
ing	the	size	of	the	training	set	from	50	to	950	trials	per	stimulus,	with	
a	step	size	of	50	trials.	The	test	set	was	composed	of	the	50	trials	per	
stimulus	that	 immediately	followed	those	used	in	training.	Finally,	 in	
an	ad	hoc	analysis,	the	spectral	features	implicated	in	decoding	were	
examined	informally	to	assess	the	interpretability	of	the	findings.

3  | RESULTS

3.1 | Decoding vowels and stimuli from single- trial 
FFRs: all trials

Across	25	participants,	 vowel	decoding	yielded	a	mean	AUC	meas-
ure	of	0.668	(SD	=	0.145)	with	the	median	of	0.638	(Figure	4a).	A	one	
sample t	 test	 revealed	 that	 these	 AUC	 values	 significantly	 differed	
from	the	chance	level	of	0.5,	t(24)	=	5.798,	p < .0001,	95%	CI	[0.608,	
0.728].	Only	two	participants	exhibited	AUC	values	that	were	equal	
to	or	less	than	0.5.	Stimulus	decoding	yielded	a	mean	AUC	of	0.729	
(SD	=	0.087)	with	the	median	of	0.709	(Figure	4a).	A	one	sample	t-	test	
revealed	that	these	AUC	values	significantly	differed	from	the	chance	
level	 of	 0.5,	 t(24)	=	13.169,	p < .0001,	 95%	CI	 [0.693,	 0.765].	 In	 all	
participants,	AUC	values	were	higher	than	0.5.

3.2 | Decoding vowels and stimuli from varying 
sizes of the training set

The	distribution	of	AUC	values	for	vowel	and	stimulus	decoding	across	
training	 set	 sizes	 are	 shown	 in	Figure	4b.	 Linear	 regression	 analysis	

F IGURE  2 Spectral	projection	of	the	single-	trial	frequency	
following	responses	(FFRs)	onto	the	spectral	feature	space.	Figures	
are	derived	from	a	representative	participant.	The	raw	FFR	spectra	
(left)	were	multiplied	by	a	matrix	of	12	vectors	(center)	corresponding	
to the top principal components independently derived from 
spectra	of	[æ]	and	[u]	vowels	produced	by	40	male	native	speakers.	
This	procedure	resulted	in	projection	of	the	raw	FFRs	onto	the	
12-	dimensional	spectral	feature	space	(right)
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F IGURE  3  (a)	Training-	test	scheme	for	vowel	(N	=	2)	decoding.	For	each	participant,	a	classifier	was	trained	to	identify	the	[æ]	and	[u]	labels	
from	each	trial,	based	on	the	12	spectral	features.	Then,	the	trained	classifier	was	tested	on	an	independent	subset.	The	resulting	prediction	
vector	included	values	pertaining	to	the	probability	of	each	vowel.	In	this	particular	example	from	a	representative	participant,	the	classifier	
outputs	reasonably	accurate	responses	for	[æ]1	and	[u]2,	but	not	for	[æ]2	and	[u]1.	(b)	Training-	test	scheme	for	stimulus	(N	=	4)	decoding.	For	
each	participant,	a	classifier	was	trained	to	identify	for	[æ]1,	[æ]2,	and	[u]1,	and	[u]2	labels	from	each	trial,	based	on	the	12	spectral	features.	
Then,	the	trained	classifier	was	tested	on	an	independent	subset.	The	resulting	prediction	vector	included	values	pertaining	to	the	probability	
of	each	of	the	four	stimuli.	In	this	particular	example	from	a	representative	participant,	the	classifier	outputs	reasonably	accurate	responses	for	
[æ]1	and	[æ]2,	but	not	for	[u]1	and	[u]2.	(c)	Based	on	the	aforementioned	probability	vectors,	a	receiver	operating	characteristics	(ROC)	curve	was	
generated.	The	area	under	the	curve	(AUC)	measure	served	as	a	metric	of	decoding	performance.	Note	that	for	stimulus	decoding,	the	ROC	
curve	was	constructed	separately	for	each	stimulus	per	a	one-	versus-	all	scheme

F IGURE  4  (a)	Area	under	the	curve	(AUC)	measures	are	displayed	for	vowel	(mean	=	0.67;	SD	=	0.15;	median	=	0.67)	and	stimulus	
(mean	=	0.73;	SD	=	0.09;	median	=	0.71)	decoding.	In	this	box	plot,	the	dark	centerlines	correspond	to	the	median,	while	the	top	and	bottom	
edges	of	the	boxes	correspond	to	the	25th	and	75th	percentiles	across	the	25	participants,	respectively.	Note	that	stimulus	decoding	AUC	is	
averaged	across	individual	one-	versus-	all	AUC	calculated	from	each	of	the	four	stimuli,	the	chance	level	therefore	corresponding	to	0.50	rather	
than	0.25.	(b)	Vowel	and	stimulus	decoding	AUC	across	different	sizes	of	the	training	set.	The	x-	axis	corresponds	to	the	trials	per	each	of	the	
four	stimuli	(from	50	to	950;	step	size	of	50	trials)	that	were	included	as	a	part	of	the	subset	included	in	training	of	the	classifier.	Note	that	the	
test set always consisted of the 50 trials per stimulus that immediately followed the training set
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was conducted separately for vowel and stimulus to assess decoding 
performance	across	all	attempts,	as	well	as	to	assess	the	effect	of	the	
size	of	 training	sets	on	 the	 reliability	of	decoding.	 In	each	case,	 the	
dependent	variable	was	logit-	transformed	AUC	(i.e.,	1	and	0	mapped	
onto	±∞,	respectively,	with	0.5	mapped	onto	0)	for	a	given	participant,	
and	the	fixed	effect	was	the	training	set	size	per	stimulus	 (50,	100,	
150,	…,	and	950).	For	vowel	decoding,	the	intercept,	which	modeled	
the	logit-	transformed	AUC	with	the	smallest	training	size,	was	higher	
than	 0,	 b = 1.172,	 SE	=	.157,	 t = 7.589,	 p < .0001,	 suggesting	 that	
decoding performance was higher than chance. There was no effect 
of	 training	 set	 size,	b = −0.0002,	SE	=	.000207,	 t = −1.033,	p = .303. 
For	 stimulus	 decoding,	 the	 intercept	 was	 higher	 than	 0,	 b = 1.217,	
SE	=	.104,	 t = 11.759,	p < .0001,	suggesting	higher-	than-	chance	per-
formance.	 There	was	 no	 effect	 of	 training	 set	 size,	 b = −0.000150,	
SE =	.000102,	t = −1.475,	p = .142.

3.3 | Feature interpretability

Finally,	we	examined	the	spectral	features	used	during	classification	
of	vowels	and	stimuli.	From	each	participant,	the	percentage	of	times	
in	which	a	given	spectral	 feature	was	utilized	by	 individual	decision	
trees was calculated. The distribution of these feature weights is dis-
played	in	Figure	5a.	An	informal	inspection	of	the	weights	suggested	
that	the	PC1	was	the	most	reliable	feature	in	decoding	vowels	(mean	
weight	=	38%;	 SD	=	24%,	 median	=	33%)	 as	 well	 as	 stimuli	 (mean	
weight	=	42%;	SD	=	25%;	median	=	38%).	In	PC1,	three	extrema	were	
readily	 identifiable	 at	 602,	 1822,	 and	 2594	Hz	 (Figure	5b).	 These	
values	 corresponded	 with	 the	 first,	 second,	 and	 third	 formant	 fre-
quencies	for	[æ]1	(647,	1864,	and	2561	Hz)	and	[æ]2	(553,	2140,	and	

2327	Hz;	Figure	5c;	Hillenbrand	et	al.,	1995),	and	consequently,	with	
the	maxima	in	the	spectra	of	the	grand	average	FFR	signal	evoked	by	
these	stimuli	(Figure	5c).

4  | DISCUSSION

We demonstrate an innovative application of machine learning princi-
ples	to	reliably	extract	vowel	information	from	the	single-	trial	speech-	
evoked	FFRs.	In	our	approach,	the	raw	FFR	was	first	projected	onto	
a spectral feature space defined by a multitude of sounds not used 
in	the	experiment,	contributing	to	the	generalizability	of	the	results.	
The	 feature	 predominantly	 used	 to	 classify	 the	 FFR	 closely	 corre-
sponded to the spectral profiles of one of the two vowels used in the 
experiment.	Feature	 interpretability	and	generalizability	support	 the	
likelihood that decoding reflects biologically credible aspects of the 
FFR,	rather	than	reliable	yet	trivial	features.	Finally,	reliable	decoding	
performance	was	achieved	with	a	relatively	low	training	set	size	of	50	
trials per stimulus.

The	 ability	 to	 draw	 better	 inferences	 from	 the	 FFR	 data	 offers	
significant	 potential	 for	 auditory	 neuroscience	 research.	The	FFR	 is	
elicited	preattentively	and	does	not	rely	on	participants’	ability	to	per-
form	 tasks	 successfully.	Moreover,	 compared	 to	 other	 electrophys-
iological	modalities	 in	which	 decoding	 of	 speech-	evoked	 responses	
have	been	examined	(e.g.,	EEG;	Hausfeld	et	al.,	2012;	ECoG;	Pei	et	al.,	
2011;	Mesgarani	et	al.,	2014),	the	FFR	has	a	considerable	advantage	
regarding	availability,	 low	monetary	cost,	 and	quick	 implementation	
time	(Skoe	&	Kraus,	2010).	As	such,	 it	has	been	extensively	used	as	
a	 biomarker	 of	 auditory	 function,	 in	 both	 research	 settings	 (Banai	

F IGURE  5  (a)	Importance	of	spectral	features	during	vowel	and	stimulus	decoding	(950-	trial	training	set).	The	x-	axis	corresponds	to	the	
12	principal	components	(PCs)	that	were	used	as	input	features	for	the	classifier.	The	y-	axis	corresponds	to	the	percentage	of	times	in	which	
the	feature	was	used	by	a	given	decision	tree.	(b)	The	top	four	PCs	in	the	frequency	domain.	In	PC1,	which	was	disproportionately	used	by	
the	classifiers,	three	extrema	are	readily	identifiable	(arrows).	(c)	Log-	transformed	spectra	of	the	original	stimuli	(left;	black	lines)	and	the	grand	
average	frequency	following	response	(right;	red	lines)	are	displayed.	Three	formant	frequencies	are	identifiable	(arrows),	which	also	correspond	
to	the	three	extrema	of	the	PC1	marked	with	arrows	in	(b)
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et	al.,	 2007;	 Chandrasekaran	 et	al.,	 2009;	 Cunningham	 et	al.,	 2001;	
Hornickel	et	al.,	2009;	Johnson	et	al.,	2005;	Kraus	&	Chandrasekaran,	
2010;	Krishnan	et	al.,	2009;	Krizman	et	al.,	2012,	2014;	Russo	et	al.,	
2008;	Skoe	&	Kraus,	2010;	Song	et	al.,	2008;	Wong	et	al.,	2007)	as	
well	as	in	clinical	settings,	such	as	infant	hearing	screening	(Herrmann,	
Thornton,	&	Joseph,	2006;	Mason	&	Herrmann,	1998).	The	ability	to	
decode	single-	trial	FFR	opens	up	new	avenues	for	experimentation	in	
auditory	neuroscience.	For	 instance,	 the	effect	of	dynamically	mod-
ulated	 attention	on	 the	 FFR	 cannot	 be	 easily	 tested	using	 a	 block-	 
by-	block	averaging	approach	since	attentional	effects	may	fluctuate	
on	a	much	more	rapid	timescale.	FFRs	are	sensitive	to	short-	term	reg-
ularity	 in	the	 input	stream	(Lehmann,	Arias,	&	Schönwiesner,	2016).	
This may be the reason for somewhat inconclusive results on the 
effect	of	attention	on	the	FFR,	where	some	researchers	have	shown	
attention	effects	(Lehmann	&	Schönwiesner,	2014;	Sörqvist,	Stenfelt,	
&	 Rönnberg,	 2012;	 Strait,	 Kraus,	 Parbery-	Clark,	 &	 Ashley,	 2010),	
whereas	 others	 have	 not	 (Varghese	 et	al.,	 2015).	 Implementation	
of	 single-	trial	 decoding	 approaches	would	 allow	 flexibility	 in	 exper-
imental	 designs,	where	 trial-	by-	trial	 behavioral	 performance	 can	 be	
included	as	a	covariate	in	FFR	analysis.	Also,	some	clinical	disorders	
like	developmental	dyslexia,	a	neurological	disorder	that	impacts	read-
ing	 and	 spelling	 skills,	 have	 been	 characterized	 by	 increased	 neural	
variability.	 For	 example,	 a	 prior	 study	 showed	 individuals	with	 dys-
lexia	exhibited	less	consistent	responses	when	two	subaverages	were	
compared	to	each	other	(Hornickel,	Zecker,	Bradlow,	&	Kraus,	2012).	
Assessing	variability	on	a	trial-	by-	trial	basis	could	yield	more	robust	
and	stable	group	differences	rather	than	assessing	signal	quality	from	
average responses.

We	acknowledge	the	following	limitations	of	this	study.	First,	par-
ticipants were presented with two vowels produced by two speakers. 
These four stimuli fulfill the minimum number of types of speech 
tokens	required	to	assess	 representation	of	segmental	and	 indexical	
information	as	exhibited	in	the	FFR.	Furthermore,	the	spectral	decom-
position	approach	as	derived	 from	an	 independent	 set	of	 stimuli	 (in	
which	novel	speakers	produced	the	same	vowels)	hint	at	the	possibil-
ity	of	generalizability	of	the	decoding	performance	as	reported	in	the	
results	section.	However,	future	studies	should	further	explore	FFRs	
to	multiple	 speakers	 and	multiple	 speech	 sounds.	 Second,	 the	main	
focus of this study was to demonstrate the possibility of decoding 
single-	trial	FFRs.	For	this	reason,	 less	emphasis	was	placed	on	maxi-
mizing	the	decodability	using	multiple	classifiers	(e.g.,	support	vector	
machine)	or	different	parameters.	Future	studies,	in	addition	to	using	
a	more	comprehensive	set	of	speech	sounds,	could	serve	the	field	by	
exploring	different	types	of	computational	approaches	to	optimize	the	
decoding ability.

In	summary,	we	present	a	set	of	results	that	demonstrate	the	fea-
sibility	of	decoding	speech	sound	information	from	single-	trial	FFRs.	
The	speech-	evoked	FFRs	were	analyzed	in	a	way	that	addresses	two	
common pitfalls of a machine learning approach: feature interpret-
ability	 (countered	by	using	decipherable	spectra)	and	generalizability	
(countered	by	deriving	 features	 from	an	 independent	set	of	stimuli).	
We suggest that this approach could be further refined to yield infer-
ences	of	 the	neurally	driven	activity	of	 the	auditory	pathway,	which	

may	 not	 have	 been	 plausible	 by	 analyzing	 signals	 averaged	 across	
thousands of trials decoding.
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