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Abstract: This study aimed to assess differences in somatosensory control strategies between older
patients with sagittal imbalance and young adults during postural tasks. The center of pressure
displacement in 27 older patients with sagittal imbalance and 27 young adults was determined upon
standing blindfolded on a balance board. Vibratory stimulation at 56 to 100 Hz was applied bilaterally
to the gastrocnemius and soleus muscles (GS) and lumbar multifidus to evaluate the contributions of
proprioceptive signals to postural control. Data of older patients and young adults were compared
using the Mann–Whitney U-test or independent sample t-tests. Compared with the young adults,
the older patients were significantly more reliant on the GS (p < 0.005) for their postural control and
showed a higher relative proprioceptive weighting ratio (RPW) (p = 0.038). The postural strategy
adopted by the older patients depended on the level of proprioceptive stimulation applied to the GS,
and the postural control strategy of the ankle correlated with RPW. Overall, this study identifies RPW
as a novel measure of postural strategy in older patients with sagittal imbalance and provides an
understanding of strategies used to maintain balance, which may assist in developing preventative
measures to reduce the risk of falls.

Keywords: proprioceptive; postural control; sagittal imbalance; muscle spindle

1. Introduction

Postural stability is essential for all activities of daily living. However, individuals may
adopt different strategies for achieving postural stability, as it depends on the integration of
the spine and sensorimotor systems [1]. In a previous study, we found that proprioceptive
cues in healthy young adults were principally required for orientation of postural control
rather than for control of upright posture, for which vestibular and visual cues were more
important [2]. Diseases affecting postural alignment of the spine may lead to decreased
quality of life, weakened back muscles, and postural instability [3–6]. Sagittal balance is
a mechanical system consisting of osteoarticular elements in the spine–pelvis structure
of the lower legs. It allows a direct correlation of the postural balance as a predictive
and prognostic factor of lumbar degenerative diseases [7]. The degenerative process
primarily affects the lumbar spine and involves intervertebral ligaments, bone, facet joints,
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and discs [8]. Moreover, spinal alignment is a unique anatomical feature, which allows
the maintenance of a neutral upright posture with minimum energy expenditure [8].
Other researchers reported that older adults with spinal deformity have an impaired
perception of upright vertical alignment that worsens with age-related impairment of
proprioceptive and vibratory input from the lower extremities [9]. Correct posture allows
one to retain a postural balance and limits movement in relation to the support plane,
ensuring postural stability with minimum muscle involvement [10,11]. Recent studies have
reported that sagittal balance and spinopelvic alignment contributed to an energy efficiency
posture of people in healthy or diseased states [12,13]. Moreover, stabilizing the spinal
alignment is important for maintaining a correct posture [14]. When undertaking postural
control tasks, adolescents with idiopathic scoliosis experienced difficulty in reweighting
proprioceptive inputs following brief periods of proprioceptive deprivation [15]. Other
studies in adult patients with spinal deformities have reported postural instability when
standing [16,17]. Those results may indicate that patients with sagittal imbalance might
have poor proprioception. Thus, proprioception is essential for maintaining optimal spinal
alignment and coordinating muscle activation [18].

Postural tasks during local vibratory stimulation have become important clinical tools
for assessing proprioception in adults with various disorders, including spinal deformity,
low back pain (LBP), lumbar spondylosis, and non-specific LBP [19–22]. Postural task
analyses have shown that healthy young adults and older patients depend on proprio-
ceptive inputs from the trunk and lower leg regions [23–27]. A previous study identified
age-induced alterations in muscle spindles by investigating the differences in the postural
control strategies of the ankle and hip between young adults and older adults [28,29].

Postural instability has previously been observed in patients with LBP, along with
decreases in the relative proprioceptive weighting ratio (RPW) at muscle spindles in the
trunk [20,21]. RPW provides additional information about the proprioceptive dominance; a
high value of the RPW indicates perfect reliance on lower limb input (“lower limb-focused
strategy”), whereas a low value of the RPW indicates perfect reliance on trunk input [19,30].
Given that the postural control in older patients with sagittal imbalance depends on
proprioceptive inputs, examining the RPW in the postural sway of the ankle and hip during
local vibratory stimulation scenarios may provide valuable insights. Moreover, the use of
local vibratory stimulation to assess the posture of patients with sagittal imbalance due to
spinal deformity in older adults may assist in the evaluation of postural instability in such
patients and provide valuable functional assessments in those with poor proprioception.
Furthermore, since postural control strategies for older patients with sagittal imbalance
depend on proprioceptive inputs, the effect of local vibratory stimulation on the postural
sway of the ankle and hip may provide valuable information. However, the difference of
RPW in older adults with sagittal imbalance and young adults is not yet clearly understood.

The purpose of this study was to assess postural stability in patients with sagittal
imbalance using local vibratory stimulation. Our aims were to compare postural stability
between patients with sagittal imbalance and young adult controls and determine the
differences in postural sway of the ankle and hip in patients with sagittal imbalance. We
hypothesized that patients with sagittal imbalance would have poor proprioceptive inputs
from the trunk compared to healthy controls. In addition, we aimed to investigate the
relationship between sagittal alignment and proprioception control strategies on ankle and
trunk in patients with sagittal imbalance.

2. Materials and Methods
2.1. Participants

Individuals with sagittal imbalance and aged between 65 and 83 years were eligible
for this study. The participants were enrolled between December 2018 and September 2020
after visiting the authors’ institute or the Nagoya Heisei College of Nursing & Medical
Care, or responding to a call for volunteers, or for other reasons. Twenty-seven older adults
with spinal column stenosis and spondylitis deformans who presented for conservative
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treatment were recruited for the study. A diagnosis of lumbar spondylosis was confirmed
using L1/2 to L4/5 area magnetic resonance imaging by a spine surgeon (Y.S.).

The participants had medically diagnosed LBP but had no arthralgia and did not
require assistance in maintaining a standing posture. The diagnosis of LBP was confirmed
by a spine surgeon. For control purposes, 27 healthy young adults aged over 18 years
and sex-matched with the older cohort were recruited. None of the participants required
assistance in daily living activities. Participants with the following characteristics were
excluded: vestibular function disorders, spinal compression fracture, spinal cord tumor,
spinal infection, paralysis, ataxia, neurological disorders, balance disorders, or a history of
spinal surgery.

2.2. Postural Control Assessment

Center of pressure (COP) displacement was recorded using a balance board (Wii;
Nintendo Co., Ltd., Kyoto, Japan) [31–33]. Balance board data were acquired using a
sampling frequency of 100 Hz and calculated using MATLAB (MathWorks, Inc., Natick,
MA, USA). Participants wore an eye mask and stood barefoot on the balance board with
their feet together. They were instructed to remain still and relaxed with arms hung
loosely at the side. Each participant performed three trials of postural tasks: one with no
vibratory stimulation, one with vibratory stimulation of gastrocnemius and soleus muscles
(GS), and one with vibratory stimulation of lumbar multifidus (LM). In order to evaluate
postural sway during proprioceptive inputs to the muscle spindles, the response frequency
ranging from 56 to 100 Hz was analyzed. For information regarding proprioceptive
dominance, RPW was calculated as follows: RPW [%] = (RMSGS)/(RMSGS + RMSLM) ×
100), where RMSGS and RMSLM are the root mean square of the COP displacement in the
anteroposterior direction during GS and LM vibrations, respectively [6,28,34,35]. RMS was
calculated as follows:

RMS∗ =

√√√√ 1
1500

3000

∑
n=1500

{
YDur
∗ (n)− YPre

∗

}2

where n is the number of data series; Y*
Dur(n) is the CoP in the anteroposterior direction in

the duration section (Dur-section); Y*
Pre is the mean value of CoP in the anteroposterior

direction in the pre-sectiion (Pre-section); the subscript “*” is used to distinguish the
stimulation body locations, namely, the GS or LM.

2.3. Muscle Vibration

Vibratory stimulation was applied alternately by fixing vibrators from the vibration
device on the participant’s GS and LM (Figure 1).

A sweep frequency [34] was used to deliver the vibration, which was continuously
changed from 56 to 100 Hz (frequency ascend mode) or 100 to 56 Hz (frequency descend
mode) for 15 s. The ascend or descend sweep frequency mode was randomly determined
for each subject [34]. The measurement procedure entailed application of the vibration
to both the GS and LM. The applying order to GS or LM was randomly determined for
each subject. Each application required 30 s; this time was divided into the first 15 s
and last 15 s to form the pre-section and duration section, respectively. In the duration
section, the vibratory stimulus was applied to the GS or LM of the participant with his/her
eyes closed [6,19,27,28,34,35]. The number of repetitions of stimulation was two, and the
stimulation was given to GS and LM once for 15 s. Therefore, the total stimulation time was
30 s. In addition, the participants rested on a chair once for 60 s between measurements.
In previous studies, the task has been performed once because there was an influence of
getting used to the postural sway test [6,19–21,27,28,34,35]. Therefore, in this study, the
task was performed once as well. Assessments were performed by an experienced research
assistant, a physiotherapist, and a physician.
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Figure 1. Vibration device setup. (a) Lumbar multifidus (LM). (b) Gastrocnemius and soleus
(GS) muscles.

The steps of this experiment were described as follows:

1. Measurement of postural sway during stimulation to GS or LM (30 s)
2. A sitting rest (60 s)
3. Measurement of postural sway during stimulation to GS or LM (30 s).

2.4. Low Back Pain Assessment

Pain was assessed using the visual analog scale (VAS) (0–10) [6,19]. All participants
were asked to complete a pain questionnaire.

2.5. Sagittal Imbalance

Sagittal vertical axis (SVA) has been proposed as a criterion for sagittal alignment [7]
and was defined in our study as the horizontal offset from the posterosuperior corner of S1
to the vertebral body of C7. SVA was measured using a SYNAPSE (Fujifilm Medical Co.,
Ltd., Tokyo, Japan). Sagittal imbalance was defined as SVA >40◦. SVA was measured in
only the patient group.

2.6. Statistical Analysis

Normal distributions were confirmed using the Shapiro–Wilk test. Data of older and
healthy young adults were compared using the Mann–Whitney U-test or independent
sample t-tests. Moreover, Spearman’s rank correlation analysis was performed to determine
the relationship between SVA and COP excursion of GS and LM. Effect sizes were calculated
using r or Cramer’s V. Effect sizes with r = 0.1 or r = −0.1 were considered small; those
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with r = 0.3 or r = −0.3, moderate; and those with r = 0.5 or r = −0.5, large. All data were
analyzed using IBM® SPSS® Statistics for Windows version 24.0 (IBM Corp., Armonk, NY,
USA). Statistical significance was considered when the p-value was <0.05.

2.7. Sample Size

The sample size for the Mann–Whitney U-test was determined using power analysis.
Power analysis was performed with G*Power (Heinrich Heine University, Düsseldorf,
Germany) using an alpha of 0.05, a power of 0.80, and a large effect size (d = 0.8) for a
two-tailed test [36,37]. Based on these assumptions, the required sample size was calculated
as 54 (27 older patients with sagittal imbalance and 27 young adults).

3. Results

For the older patients with sagittal imbalance, the SVA range was 44.1–178.2, with
an average of 93.1 ± 35.2. Except for LBP (VAS), mean age, and height, there were no
significant differences in participant characteristics between the older patients with sagittal
imbalance and the healthy young adults (Table 1). A larger postural sway was observed
when analyzing COP of no vibratory stimulation in the older patients compared to that in
the healthy young adults (p = 0.023) (Table 2 and Figure 2). Older patients also displayed a
significantly larger postural sway during the application of vibrations to the GS (p < 0.005)
(Table 2 and Figure 2), as well as a nonsignificant trend for a larger postural sway when local
vibrations were applied to the LM. A dependence on ankle strategy was observed in the
older patients compared to that in the healthy young adults based on the RPW (p = 0.038)
(Table 2 and Figure 2). Furthermore, results of the Spearman’s rank correlation analysis
showed that in older patients, the response of the LM vibration was not significantly
correlated with SVA (r = −0.294; p = 0.136), whereas the GS had a moderately negative
correlation with SVA (r = −0.413; p = 0.032).

Table 1. Participant characteristics.*

Variable Older Patients
(n = 27)

Young Adults
(n = 27)

Effect Size
(r or Cramer’s V) p-Value

Age (years) 78.0 (65–83) 20.0 (18–28) −0.9 0.001
Sex (male/female) 15/12 15/12 0.0001 1.000

Height (cm) 155.7 (6.8) 165.2 (6.8) 0.5 0.0001
Weight (kg) 58.0 (31.6–79.4) 60.2 (41.7–77.9) 0.1 0.562

BMI (kg/m2) 23.9 (4.3) 22.1 (2.4) 0.3 0.059
VAS (cm) 6.7 (0–10) 0 (0–2.7) −0.9 0.0001

* Data are presented as mean (standard deviation) or median values (range). The p-values for age and weight were determined using the
Mann–Whitney U-test; the remaining p-values were determined using the independent t-test or chi-square test. BMI: body mass index;
VAS, visual analog scale.

Table 2. Displacement of the COP during local vibratory stimulation in young adults and older
individuals standing on a balance board.*

Older Patients
(n = 27)

Young Adults
(n = 27) Effect Size (r) p-Value

RMS no
vibration (mm) 8.4 (2.8–18.1) 6.2 (3.1–16.4) −0.3 0.023

RMSGS (mm) 13.3 (5.0–24.3) 8.9 (2.9–21.6) −0.4 <0.005
RMSLM (mm) 8.4 (3.2–24.3) 7.7 (3.3–15.4) −0.04 0.789

RPW (%) 59.8 (11.1) 52.3 (14.4) 0.3 0.038
* Data are presented as the mean (standard deviation) or median values (range). The p-values were determined
using the Mann–Whitney U-test or the independent t-test (RPW). COP: center of pressure; GS: gastrocnemius and
soleus muscles; LM: lumbar multifidus; RMS: root mean square; RPW: relative proprioceptive weighting ratio.
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Figure 2. RMS values of the COP displacement for the trials on the balance board. COP: center of pressure; GS: gastrocnemius
and soleus muscles; LM: lumbar multifidus; RMS: root mean square; RPW: relative proprioceptive weighting ratio. A unit
of RMS = mm; a unit of RPW = %.

4. Discussion

This is the first study to examine postural control strategies in older patients with
sagittal imbalance using proprioceptive stimulation. Our findings demonstrate that such
patients, when standing, have decreased reliance on proprioceptive signals from the trunk
with a 56 to 100 Hz vibratory stimulus. There was more reliance on an ankle strategy
to maintain stability compared to the young adult controls. A previous study showed a
significant decrease in proprioceptive sensation among patients with spinal imbalance for
the trials with eyes closed [38]. Although patients with poor postural control may appear
balanced when using an ankle strategy under static conditions, reduced proprioceptive
signaling of the trunk may exacerbate underlying postural instability and induce a fall.
Sensitivity to the control in the COP displacement is caused by an increase in tension of
the paraspinal muscle [39,40]. Previous studies have suggested that patients with spinal
deformities may maximally exert compensatory muscles and postural reserves when
using strategies to maintain postural control [22]. In our cohort, postural control was
achieved with ankle strategies both with and without vibratory stimulation. These results
suggest that postural control is impaired regardless of the proprioceptive input during local
vibratory stimulation. This pattern of impairment is associated with significant limitations
to daily living [41]. In our patients, postural instability was indicated by decreased muscle
spindles in the trunk and postural control without vibratory stimulation. Therefore, the
difficulties associated with postural sway may be caused by greater ankle movements due
to an over-dependence on proprioceptive inputs as well as poor balance function.

As a component of motor control, proprioception plays a substantial role in postural
stability [42,43]. Muscle spindles in the triceps surae are typically in an elongated position,
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which increases their sensitivity when standing with the heels on the ground [44]. Postural
control that is mainly based on proprioceptive input from the ankle benefits from a similar
change in position [21]. In addition, local muscle vibration can excite muscle spindles and
increase the muscle firing rate [45]. There were studies that supported the notion that
proprioceptive function (alterations in postural control and decrease of muscle spindles
number in paravertebral muscles) is impaired in patients with sagittal imbalance [46,47].
Thus, it has been speculated that proprioception was involved in the control of stability
of the spine, with muscle spindles acting as a regulatory feedback mechanism [48,49].
Therefore, an interaction between muscle spindles and simultaneous muscle activation
may exist during proprioceptive control strategies in older patients with sagittal imbalance.
Postural instability in such patients parallels findings on proprioception in adults with
spinal deformity [22]. Previous studies have also demonstrated persistent alterations in
standing static balance after radiographic correction of these deformities, suggesting a
sensorimotor contribution to reduced postural stability despite postural realignment [16].
As a result of limitations in trunk motion due to poor proprioception among older patients
with sagittal imbalance, larger compensatory motion from the ankle is required to correct
posture when standing upright. This may occur because such patients tend to implement
ankle strategies to maintain balance. Furthermore, poor proprioception affecting the spinal
alignment will always have a negative effect on posture and balance control, leading to
postural disorders in response to the changes in muscle tension.

Our findings suggest that differences in proprioceptive control strategies between
older patients with sagittal imbalance and young adults are more detectable when the
eyes are closed. In addition, the postural task in the RPW and RMS differentiates better
the balance behaviors between older patients with sagittal imbalance and the younger
participants. This may be due to differences in balance control and proprioceptive input
of the ankle and trunk. Further investigation is required to understand the association
between vibratory stimulation and changes in proprioceptive control strategies.

Furthermore, our study’s novel finding was the significant relationship between pos-
tural control of the GS muscle and SVA in older adults with sagittal imbalance. Our data
suggested that the COP displacement of the GS at the proprioception decreased as SVA
increased. Drzał-Grabiec et al. reported a correlation demonstrating that the body posture
and the spinal alignment had an impact on the response from the balance [50]. In addition,
a previous study reported that changing the angle of kyphosis affected the dorsal and
calf muscle tension, contributing to the weakening of equivalent reactions [51]. In other
studies, it was reported that the mechanism that controls the stability of a complex struc-
ture, such as the spine, also suggests the involvement of proprioception and, specifically,
muscle spindles as a regulatory feedback mechanism [48,49]. Thus, the dependence on the
proprioceptive strategy of the lower limbs in older adults with sagittal imbalance could
be associated with a decrease in SVA. Further, increased SVA decreases the dependence
of proprioception reaction on lower limbs controls through a change in postural muscle
tension. This disproportion may indicate that sagittal imbalance also affects other mech-
anisms related to the control of COP displacement and suggests that further study of
interrelationships is warranted in the future.

The limitations of our study include the fact that we only focused on GS and LM
vibration, and our conclusions may not be generalized for the vibration of other muscles. In
addition, the difference in proprioceptive inputs with respect to the healthy older adults and
patients was not evaluated in this study. Assessing this could provide more information on
the possible influence of SVA. Furthermore, the significant differences in age between the
two cohorts in our study may warrant investigation of proprioceptive control strategies
due to vibration among older patients of similar age.
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5. Conclusions

Older patients with sagittal imbalance appear to demonstrate postural instability
and decreased trunk proprioceptive input compared with sex-matched younger controls.
Changes in GS sway were significantly greater in older patients with sagittal imbalance
than those in young adults. In addition, the older patients showed heavier reliance on
ankle strategies for maintaining balance when subjected to vibratory stimulation. These
findings suggest that abnormal postural alignment in older patients with sagittal imbalance
contributes to an impairment in postural stability with poor proprioception on the trunk.
Understanding the strategies used by such patients to maintain balance may assist in the
development of preventative measures to reduce their risk of falls.
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