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A B S T R A C T   

Machine learning (ML) refers to computational algorithms that iteratively improve their ability to recognize 
patterns in data. The digitization of our healthcare infrastructure is generating an abundance of data from 
electronic health records, imaging, wearables, and sensors that can be analyzed by ML algorithms to generate 
personalized risk assessments and promote guideline-directed medical management. ML’s strength in generating 
insights from complex medical data to guide clinical decisions must be balanced with the potential to adversely 
affect patient privacy, safety, health equity, and clinical interpretability. This review provides a primer on key 
advances in ML for cardiovascular disease prevention and how they may impact clinical practice.   

1. Introduction 

Artificial intelligence (AI) refers to computational systems that are 
able to perform tasks that normally require human intelligence and 
decision-making [1]. While traditional computer algorithms solve tasks 
by following instructions hard-coded by humans, ML is a subset of AI 
that enables computer algorithms to improve themselves based on 
experience [2]. Deep learning is a specific type of ML that can formulate 
complex feature representations by linking simple mathematical func-
tions together in an interconnected network, often called a neural 
network [3]. Neural networks were originally inspired by the biology of 
the human brain in which interconnected neurons send and receive 
signals. Neurons or nodes within artificial neural networks contain 
non-linear mathematical functions to control which signals are sent to 
subsequent layers of the model, which are adjusted during training to 
optimize for an outcome of interest (Fig. 1) [3]. Deep learning uses 
neural networks with many layers of artificial neurons that can learn 

highly non-linear patterns from data [4]. 
One way to further categorize ML is supervised and unsupervised 

learning [2,5]. In supervised learning, a model is trained using 
human-labeled input-output pairs to determine the outputs for unpaired 
inputs [6]. These algorithms need large datasets to produce meaningful 
predictions, which often require significant human time for data label-
ing. Unsupervised learning, in contrast, refers to algorithms that identify 
data organizing patterns or data dimensionality reduction without 
focusing on outcome prediction [7]. These and hybrid approaches, such 
as semi-supervised and self-supervised methods [8], can reduce the 
time-intensive data labeling phase and elucidate hidden structures 
within datasets, which may be especially useful in complicated datasets 
with missing labels such as electronic health records (EHR). 

Cardiology is a data-driven and evidence-based field that has been an 
early adopter of ML [9–11]. Numerous studies have demonstrated 
improved performance of ML compared to traditional risk assessments 
using well established cardiovascular disease (CVD) risk factors [12,13]. 
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Patient-specific information collected from the EHR, cardiovascular 
imaging, applications (apps), wearables, and sensors provide opportu-
nities for generating longitudinal cardiovascular data for early disease 
detection and management. Additionally, social determinants of health, 
which are among the most significant factors for reducing death and 
disability from CVD [14], can be analyzed by ML algorithms. We believe 

these innovations will drive a shift towards precision CVD prevention 
led by insights derived from big data, ML, and digital health technolo-
gies. In this review, we describe advances in ML as they apply to CVD 
prevention. 

Fig. 1. Machine learning overview. (A) Deep learning is a subset of machine learning (ML), which is a subset of artificial intelligence. (B) Architecture of a ML 
convolutional neural network (CNN) with two hidden layers. >3 layers qualifies as deep learning. (C-E) Logistic regression vs. CNN. Traditional cardiovascular risk 
estimates use logistic regression models, which excel when data is linearly separable (C) but not as well in complex situations (D). ML can generate more complex 
decision boundaries (E) [112]. 

Table 1 
Selected studies using machine learning for cardiovascular risk prediction.  

Study Dataset Model Inputs Outcomes Top predictors External Validation 

Alaa et al. [13] 423,604 UK Biobank 
participants 

104 lab variables, 369 clinical variables CVD events over 5 
years 

Age, smoking, walking pace No 

Kakadiaris et al. 
[12] 

6459 MESA participants 8 ACC/AHA risk calculator inputs “Hard” and All CVD 
events over 13 years 

N/A FLEMENGHO (1348 
White participants) 

Sánchez-Cabo 
et al. [113] 

4184 PESA participants 115 variables including demographics, 
systolic blood pressure, blood/urine tests, 
diet 

Subclinical 
atherosclerosis over 3 
years 

Age, Hba1c, total cholesterol to 
HDL ratio, leukocyte volume, 
and hemoglobin 

AWHS (1240 
participants) 

Ambale- 
Venkatesh 
et al. [15] 

6814 MESA participants 735 variables from imaging and 
noninvasive tests, questionnaires, 
biomarker panels 

CHD and all CVD over 
12 years 

CAC, TNF-α, Cardiac Troponin- 
T, N-tp-BNP 

No 

Weng et al. [16] 378,256 patients from UK 8 ACC/AHA risk calculator inputs and 
additional 22 variables (labs, past 
medical history, medications) 

All CVD over 10 years Age, sex, race, smoking No 

Kennedy et al.  
[114] 

114,000 US Veterans 
Health Administration 
patients 

Past medical history, medications, labs, 
vital signs 

CVA and CVD death 
over 5 years 

N/A No 

Dogan et al.  
[85] 

2295 FHS participants 4 genetic and epigenetic loci CHD in 5 years N/A No 

All studies involved asymptomatic adults free of CVD. 
FLEMENGHO - the Flemish Study of Environment, Genes and Health Outcomes. 
MESA - Multiethnic Study of Atherosclerosis. 
PESA - Progression of Early Subclinical Atherosclerosis. 
AWHS - Aragon Workers’ Health Study. 
FHS – Framingham Heart Study. 
ACC – American College of Cardiology. 
AHA – American Heart Association. 
CVD - cardiovascular disease. 
CHD - coronary heart disease. 
CVA - cerebrovascular accident. 
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2. Machine learning enhanced cardiovascular risk assessments 

Current evidence suggests ML outperforms traditional CVD risk 
prediction tools [12,13,15,16]. In the Multi-Ethnic Study of Athero-
sclerosis (MESA), Kakadiaris et al. developed an ML model with the 
same inputs as the American College of Cardiology (ACC)/American 
Heart Association (AHA) atherosclerotic CVD risk estimator [12]. The 
ML model had an Area Under the Receiver Operating Characteristic 
curve (AUROC) of 0.94 vs. 0.72 for the traditional calculator in pre-
dicting CVD events. Additionally, the ACC/AHA estimator recom-
mended statin therapy for 46% of the study population, despite 24% of 
hard CVD events occurring in patients not recommended statin treat-
ment. In contrast, the ML model recommended statin therapy to 11% of 
the cohort and only 14% of hard CVD events occurred in participants 
who were not recommended statin therapy. The ML model would have 
simultaneously prescribed fewer statin medications and missed fewer 
events than the ACC/AHA estimator, potentially leading to more tar-
geted therapy and enhanced CVD risk prediction [12]. Of note, the 
validation cohort for this model consisted of only non-Hispanic White 
participants due to low event rates, underscoring the need for validation 
in more diverse populations [12]. Still, in comparison to traditional risk 
estimators with fixed effect size estimates and assumed linear relation-
ships between variables, the strength of ML is its ability to detect com-
plex, nonlinear relationships and to iteratively improve its ability to 
model them with more data allowing for more precise risk estimates and 
fewer false alerts [17]. 

ML can integrate clinical data beyond traditional risk factors to 
incrementally improve predictive performance. In a prospective study of 
423,604 UK Biobank patients without baseline CVD, investigators 
created an algorithm which automatically selects and optimizes en-
sembles of ML pipelines for predicting clinical prognosis. Using the same 
inputs as the Framingham score, the ML model had a higher AUROC 
(0.744 ± 0.005) than the Framingham Score (0.724 ± 0.004) and a Cox 
proportional hazards model (0.734 ± 0.005) [13]. The addition of 104 
lab variables and 369 other clinical variables improved the AUROC of 
the ML model to 0.774 ± 0.005, in comparison to a Cox model with the 
same variables (0.758 ± 0.005) [13]. Using the all-variable model, the 
top three predictors were age, smoking, and walking pace, which were 
better predictors than traditional cardiovascular risk factors such as 
hypertension and dyslipidemia [13]. Limitations of the study include 
lack of cholesterol laboratory values (the BMI version of the Framing-
ham Score was used) and lack of racial/ethnic data. 

Another study in MESA explored risk estimation using a variety of 
ML model inputs including traditional risk factors and demographics, 
anthropometry, medication use, electrocardiogram (ECG), serum bio-
markers, and cardiac imaging. The ML model performed better than 
established risk scores with increased prediction accuracy (decreased 
Brier score by 10–25%). Coronary artery calcium (CAC) was the stron-
gest predictor of coronary heart disease and all CVD, while laboratory 
values such as tissue necrosis factor-α and N-terminal pro-Brain Natri-
uretic Peptide were among the top 5 predictors. The only traditional 
CVD risk factors in the top 20 predictors were age and smoking [15]. A 
summary of studies using ML to estimate cardiovascular risk is shown in 
Table 1. 

These results suggest that the addition of clinical data stored in the 
EHR may improve risk prediction beyond traditional risk factors. This is 
particularly likely in those cases where the model is developed specific 
to a healthcare system. To evaluate the generalizability of these models 
and their impact on clinical outcomes, external validation and clinical 
trials comparing ML to the standard of care are needed. 

3. Machine learning enhanced cardiovascular imaging 

Imaging data such as coronary computed tomographic angiography 
(cCTA) [18], CAC [15], and epicardial adipose tissue [19] have 
improved ML predictive performance and are often among the strongest 

correlated variables with CVD outcomes such as myocardial infarction 
and cardiac death [19]. While early studies included these inputs as 
human-calculated values, recent models have automated this process by 
implementing ML computer vision techniques on the raw images. A 
Stanford-based team published two ML models that automated CAC 
scoring for dedicated gated coronary CT scans and non-gated chest CTs. 
The gated-chest CT model showed near perfect agreement with con-
ventional manual scoring and reduced average scoring time with ML 
taking 3.5 s compared to manual scoring which required 261 s. Using 
CAC scores from paired gated-CT scans as the gold standard, a second 
model was trained to score CAC on non-gated chest CTs on an internal 
dataset and was externally validated in MESA. This model reported high 
sensitivity (80–100%) and positive predictive value (87–100%)[20] and 
is currently utilized clinically at a few US-based medical centers [21]. 

The application of this technology to CAC scoring, a leading diag-
nostic tool, is a powerful example of leveraging ML to advance pre-
ventive cardiology. ML can facilitate increased efficiency and access to 
CAC testing, particularly considering the information gain from non- 
gated CTs performed for other indications that also inform clinicians 
on a CAC score to improve CVD risk stratification. A future state of CVD 
preventive screening may automatically calculate CAC score, aortic 
valve calcification, epicardial adipose tissue, and other “radiomic” fea-
tures to predict CVD risk from routine chest CTs [22,23]. Despite the 
promise of ML models applied to routine testing, the challenges to 
consider include incidental findings and nonessential downstream 
testing. ML-derived imaging results need to be carefully evaluated and 
clinical oversight is required to guide recommendations for appropriate 
clinical decision-making. In general, the higher the clinical acuity, the 
more extensive the validation process of the ML algorithm will need to 
be, given the shorter amount of time available for human review. In this 
sense, image analysis in preventive cardiology may become the first field 
for ML integration into clinical cardiology practice. 

4. Machine learning enhanced cardiovascular wearables and 
sensors 

Most CVD prevention guidelines recommend the use of 10-year ab-
solute CVD risk estimates to guide therapeutic recommendations [24]. 
These assessments are largely driven by the age and sex of a patient; 
hence, most young patients are at low risk despite the majority going on 
to develop CVD in their lifetimes [25,26]. Since many risk factors and 
causes of CVD are well established and often begin decades before they 
manifest as an event, proposed alternative approaches are to use 30-year 
or lifetime risk assessments [27] and thereby prevent events by initi-
ating therapy as soon as the causes of disease are identified [28]. These 
approaches are based on primary prevention, but are limited by the 
nature of the data used to estimate risk. As CVD risk estimations advance 
in accuracy, future assessments will likely include personalized cardio-
vascular health data collected from consumer-grade wearable devices. 

Smart wearables are consumer-grade electronics that can be worn on 
the body as accessories such as watches, rings, and wristbands or 
embedded in clothing [29]. Data streams generated by these sensors 
may provide new insights into early detection of CVD, discovery of new 
CVD risk markers, and help facilitate primordial prevention. An esti-
mated 20% of US residents own smart wearables and the global market 
is expected to undergo a compound annual growth rate of 25% through 
2025 [30,31]. Additionally, novel loaner device programs have emerged 
to improve equitable access to technology. The iShare program, for 
example, provided a loaner Apple Watch, blood pressure monitor, and 
Apple iPhone with data access to patients who did not own smart 
technology to help them participate in a CVD health promotion program 
[32]. These efforts may be a first step towards long-term comprehensive 
health technology access and literacy. 

In the future, smart wearable technology will allow clinicians to 
monitor trends in cardiovascular health metrics and develop actionable 
insights informed by an ML model at an individual- and population-level 
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by collecting biometrics on heart rate and rhythm, physical activity, 
blood pressure, sleep, glucose, and more (Central Illustration). The 
volume, variety, and velocity of this data is suited for analysis by ML 
algorithms, which excel in analyzing large datasets to detect trends that 
enhance predictive power. While these parameters are associated with 
traditional cardiovascular risk factors, they may also help uncover new 
CVD predictive markers. In the next section, we cover biologic data that 
can be measured by smart wearables with regards to utility for CVD 
prevention. 

4.1. Heart rate and rhythm 

Heart rate is measured by calculating the time interval between beats 
detected using photoplethysomography (PPG) or ECG [33]. For PPG, an 
emitter on the back of the device sends a continuous pulse of light 
through the skin and a photodetector detects the variation in the in-
tensity of reflected photons because of microvascular changes in blood 
volume [33]. This can be used to detect subtle changes in heart rate 
trends over time, such as resting heart rate, heart rate variability, and 
recovery after exercise, all of which are associated with cardiovascular 
risk. Remote photo PPG, which can estimate pulse from microvascular 
changes detected on video, is a contactless approach which may see 
more widespread implementation in the coming decade [34]. Specific 
smartwatches and handheld devices also have single-lead ECG recording 
capability [35,36]. Based on these capabilities, ML enhanced by data 
from smart wearables may detect heart rate or ECG changes predictive 
of acute illness. Examples of ML-enhanced prediction include infections 
[37], arrhythmias [38], cardiac arrest [39], and thromboembolic events 
[40]. Heart rate metrics also have long-term prognostic utility for CVD, 
although these are not included in traditional risk assessments. For 
example, a high resting heart rate in populations free of CVD has been 
independently associated with increased risk of coronary artery disease 
and stroke [41]. Among 91 patients who were monitored using 
wrist-wearables in the 30 day post-discharge period after myocardial 
infarction, patients who were readmitted had elevated heart rates 
manifesting 3 days prior to readmission [42]. Low heart rate variability 
is independently associated with increased likelihood for myocardial 
ischemia, and the addition of heart rate variability to traditional CVD 
risk factors significantly improves the pretest probability for myocardial 
ischemia [43]. Conversely, higher heart rate variability during recovery 
from exercise has been associated with increased risk of cardiovascular 
mortality and all-cause mortality [44]. While most of these data are from 
single time checks during study visits, near-continuous PPG recording 
may present opportunities to further risk stratify and refine predictive 
metrics using ML, such as by monitoring changes in trends over time or 
capturing paroxysmal events. 

In addition to prediction of acute disease states, ML models using 
ECG data have also been used to estimate long-term cardiac mortality. In 
an analysis of 7067 participants in the Third National Health and 
Nutrition Examination Survey (NHANES III), Kim et al. assessed whether 
ML algorithms trained on demographic, clinical, and ECG data could 
predict long-term cardiac mortality. Multiple ML models only required 
demographic and ECG data to achieve comparable performance to the 
pooled cohort equation and additional clinical data did not significantly 
improve predictive performance, suggesting that the 12-lead ECG may 
contain most of the prognostic information that can be derived from 
traditional cardiovascular risk factors. Interestingly, important ECG 
features were clustered in inferior and lateral leads in this study [45]. In 
another study of 1558,415 patients where ML analysis of ECG was used 
to predict an individual’s age, those with ML-predicted age more than 8 
years of chronological age had a 1.79 higher hazard of mortality [46]. 
The prognostic abilities of the single-lead smartwatch ECG for CVD re-
mains to be evaluated. One study showed it is possible to detect left 
ventricular systolic dysfunction using asynchronous two-lead smart-
watch ECGs [47]. Availability of consumer facing six- and 12-lead ECG 
devices may further improve the scalability of such algorithms. 

4.2. Physical activity 

Physical activity is one of the most powerful interventions to reduce 
risk of CVD [48,49] and all-cause mortality [50]. ML risk prediction 
models that included metrics of physical activity, such as walking pace, 
have found them to be among the strongest predictors of CVD events, 
even above traditional risk factors like hypertension and diabetes [13]. 
Most early studies have assessed these metrics using retrospective 
questionnaires at clinic visits. A potentially more objective and repro-
ducible assessment of physical fitness could be cardiopulmonary exer-
cise testing (CPET) which is minimally utilized in CVD prevention [51], 
although recent work has shown the utility of ML for improving the 
interpretability of CPET results for clinical use [52]. 

In contrast, newer smart technologies cannot only measure physical 
activity in real-time but also document trends over time. Most wearables 
track physical activity using a three-axis accelerometer to measure 
linear acceleration and a gyroscope to measure angular motion. GPS and 
barometers are also included in many devices to track position and re-
cord distance covered during a workout. Energy expenditure calcula-
tions and their accuracies differ based on the activity via a combination 
of the accelerometer, GPS, and heart rate, as determined by PPG [53]. 
Wrist devices, for example, are more accurate at calculating energy 
expenditure during activities such as running and walking, but less so 
during higher intensity exercise [54] or for activities with less arm 
motion, such as cycling and resistance training [55]. Some wearables 
estimate VO2max based on heart rate during exercise vs. at rest [56]. 
Wearables also provide an opportunity to guide activity through smart 
device reminders, recovery scores based on biometric parameters, and 
real-time biometric feedback during exercise. 

Physical activity type, duration, and intensity may be particularly 
important for cardiac health [57], but it is unclear which wearable 
metrics are important for risk estimation. The added predictive value of 
device-measured activity metrics compared to previous methods and 
optimal monitoring timeframe are not established. While some wear-
ables use trends in physical activity over days to weeks, in addition to 
patterns in other metrics like heart rate and sleep, to calculate a recovery 
index score suggesting readiness to take on physical activity or stress, 
none of these devices are FDA-approved and should be interpreted with 
caution [58,59]. Currently, there is lack of consensus on specific vali-
dation criteria for device performance and most medical societies have 
not established standards for clinical use of digital health technologies. 
Clinical trials are necessary to determine the appropriate inputs for risk 
or recovery scores and to aid the development of clinical practice 
guidelines in this area. 

4.3. Blood pressure 

Hypertension has been recognized as a CVD risk factor for over half a 
century [60] and is a leading cause of global morbidity and mortality. 
Emerging methods of digital home-based blood pressure measurements 
may improve monitoring frequency, including nocturnally and during 
exercise which have been associated with poorer outcomes [61]. Studies 
have found low reliability of wrist blood pressure cuffs compared to 
upper-arm readings [62], but there is increasing interest in cuff-less 
methods. These use a variety of methods such as pulse transit time, 
pulse wave analysis, facial video processing, ultrasound, and volume 
control, some of which employ ML methods [63–65]. Unfortunately, 
variable accuracy between devices and lack of validation has precluded 
most societies from endorsing their clinical use [64,66]. Cuffless devices 
often need individual user calibration on a weekly to monthly basis and 
require different standards for validation than cuff devices. A recent 
randomized clinical trial among 2101 patients with hypertension that 
found no significant difference in blood pressure control or user satis-
faction over a six month period using a home blood pressure cuff 
compared to the same cuff paired with a smartphone app [67]. Overall, 
further work is required to determine the clinical utility of 
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digitally-enhanced blood pressure monitoring. 

4.4. Sleep 

The American Academy of Sleep Medicine and the Sleep Research 
Society recommend ≥7 h of sleep per night to promote optimal health 
[68]. Both short sleep (<7 h) and long sleep (>9 h) have been associated 
with increased risk of CVD, but ideal sleep duration varies between in-
dividuals [69]. Consumer sleep technologies (CSTs) use computer-based 
systems to measure and improve parameters of sleep, such as sleep 
stages, duration, quality, and wake-time. Due to their low cost, CSTs 
may soon achieve widespread availability and improve precision sleep 
medicine. Compared to the gold standard of polysomnography, in which 
electrodes are placed on the scalp to measure brain activity, most CSTs 
are peripherally-located wearables which use an accelerometer to 
measure motion and PPG for heart rate [70]. Some wearable CSTs 
include additional components such as oximetry, chest motion, and 
peripheral arterial tone [71]. The agreement of peripheral CSTs with 
polysomnography is strongest for 2-stage categorization of sleep vs 
wakefulness, whereas agreement for 4-stage sleep categorization ranges 
from 50 to 75% agreement [70]. 

Newer contactless CSTs employ a variety of methods. The Google 
Nest Hub, for instance, uses a sliding radar to measure motion and a 
microphone to detect sources of sleep disturbance (e.g. coughs and 
snoring), which are continuously analyzed by an ML model. The model 
was trained using over 10,000 labeled polysomnography sessions from 
MESA and the Sleep Heart Health Study (SHHS) [72]. In addition to 
increased user comfort of non-contactless methods, this could detect 
disorders such as obstructive sleep apnea (OSA). OSA is highly prevalent 
in the general population and associated with many forms of CVD but an 
estimated 85% of patients with clinically significant OSA remain undi-
agnosed [73,74]. CSTs may also help improve sleep with minimal user 
input. Embedded sensors in mattresses track heart rate, breathing, and 
movement, which are analyzed by an ML algorithm that adjusts the 
mattress temperature to optimize sleep quality using heated or cooled 
water [75]. These examples demonstrate how ML may be integrated into 
daily life, making silent adjustments to improve human experience and 
health. However, many have not been validated in clinical trials or 
cleared for use by the FDA, which remains a major hurdle to clinical 
adoption. 

4.5. Interstitial glucose 

Diabetes mellitus is the 7th highest cause of death in the US. Based on 
NHANES III, an estimated 28 million (10%) U.S. adults had diagnosed 
diabetes, 10 million adults had undiagnosed diabetes, and 114 million 
adults (46%) were prediabetic [76]. ML may enhance our understanding 
of diabetes by improving diagnosis, identifying new disease subtypes, 
modeling complex relationships with other comorbidities for cardio-
vascular risk, monitoring treatment response, and providing personal-
ized guidance for lifestyle behaviors or other treatments in real-time. 

Digital health tools may help improve diagnosis for the large pro-
portion of adults living with undiagnosed diabetes. For example, an ML 
model trained on smartphone-based PPG readings from 37,709 partici-
pants using the smartphone camera achieved a AUROC of 0.766 for 
detecting diabetes and 0.740 in a validation cohort of 7806 individuals, 
indicating a potential widely available non-invasive digital biomarker 
[77]. Furthermore, large strides in continuous glucose monitoring 
(CGM) have expanded tools available for diabetes management 
[78–80]. Newer wearable interstitial fluid sensors are even able to 
measure additional metabolites at the same time, such as lactate or 
alcohol [81]. As one example of ML-enhanced CGM, Bent et al. devel-
oped a dataset of 25,000 simultaneous interstitial glucose and smart-
watch readings in addition to a 10-day food log from 16 patients with 
prediabetic A1c% [82]. An ML model was created that determines an 
individual’s normal, high, and low blood glucose values based on one 

standard deviation from their mean [82]. They then trained another ML 
model to predict the glucose category based on 69 non-glucose input 
variables. The top predictors were the time of reading, sugar intake in 
last 24 h, hemoglobin A1c, carbohydrate intake in previous 2 h, sex, and 
physical activity in last 24 h [82]. This study highlights two key concepts 
enabled by ML: personalized glucose ranges rather than using stan-
dardized cut-offs and accurate prediction of abnormal blood glucose 
levels based on demographics and biometric data captured by digital 
health tools. This suggests a way digital health technology could help 
improve personalized management of diabetes by potentially antici-
pating factors leading to abnormal glucose levels based on real-time 
behaviors and making appropriate recommendations to avoid them. 

5. Machine learning-enhanced poly-omic risk assessments 

Multi-omics, cardiometabolics, and polygenic risk scores (PRS) are 
among the most promising future areas for ML risk assessments. Among 
the many insights they give into the pathophysiology of disease, they 
also provide an avenue to quantitate the known role of family history in 
CVD and identify higher-risk individuals long before the earliest stages 
of atherogenesis [83]. Omics approaches are still in their infancy due to 
their novelty and the need for further validation before implementation 
into routine clinical care. Despite this, studies have found improved 
prediction of coronary heart disease by PRS compared to traditional 
cardiovascular risk factors, even in adults aged 70 or older [84]. ML has 
been used in a few PRS studies. In one study, an ensemble of random 
forest ML models using four blood-based genetic and four epigenetic loci 
had a sensitivity of 0.70 for predicting incident coronary heart disease 
within five years, as compared to the Framingham risk score and 
ACC/AHA risk estimators which had sensitivities of 0.20 and 0.38, 
respectively [85]. The addition of a single nucleotide polymorphism 
associated with coronary artery disease (ID3 rs11574) to traditional risk 
factors improved ML model performance (AUROC 0.84) compared to 
the Framingham score (AUROC 0.72). These early findings may suggest 
the benefit of incorporating omics data into future ML-based CVD risk 
assessments. 

6. Road to clinical implementation: challenges for ML in CVD 
prevention 

Several recent discussion papers have reviewed challenges for 
implementation of digital health and ML in healthcare in great depth 
[86,87]. In the next section we focus on major implementation chal-
lenges and potential solutions with respect to CVD prevention. 

6.1. Data availability 

Despite the abundance of data collected by healthcare systems, 
medicine has several unique challenges compared to other data-driven 
industries where ML has thrived. The Health Insurance Portability and 
Accountability Act (HIPAA) requires national standards to protect sen-
sitive health information with rigorous, center-specific Institutional 
Review Boards (IRBs) to regulate how patient data is used. This 
importantly protects patient privacy but has unintentionally created 
fragmented data silos across the country. As such, most published 
healthcare ML models use locally-obtained datasets and lack external 
validation. The Tufts Predictive Analytics and Comparative Effective-
ness Cardiovascular Prediction Model Registry estimates 58% of car-
diovascular prediction models have never been externally validated 
[88]. Even fewer models have been evaluated prospectively. Out of 130 
FDA-approved ML-based devices, only 4 were evaluated prospectively, 
none of which included the 54 Class III high-risk devices, and only 37 
devices were evaluated at multiple sites [89]. Lack of a continuous 
method for rigorous re-evaluation over time can lead to overfitting, 
dataset shift, and poor performance when applied in the real world [90]. 
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6.2. Model development 

For ML to perform well in a clinical context, training data must be 
high volume, diverse, and reproducible. In many situations, cardiovas-
cular datasets only record traditional risk factors as binary variables; 
thus, relevant features may not be recorded at all or lack the granularity 
and volume required by ML to elucidate relevant relationships [91]. 
Data streams from digital health technologies may be the perfect match 
for the volume and granularity needed for ML. Furthermore, their 
ubiquitous nature may help overcome the fragmented nature of the U.S. 
healthcare system. However, uncoordinated data assembly and sharing 
practices can result in massive time for curation by humans for building 
ML models. 

A coordinated approach, with the goal to improve priority health 
needs, is required to record and store data on platforms that are uni-
versally accessible and with which all devices can interface. There are 
several methods under investigation to address these limitations, such as 
creation of large anonymized clinical consortiums for ML training, new 
technology that allows interfacing between different EHRs to facilitate 
model validation, open-source publication of computational processes 
and datasets, and more [87]. The federal National Artificial Intelligence 
Research Resource Task force (NAIRR) was established in 2021 to create 
a National Research Cloud that would facilitate broad access to data and 
computing resources to boost ML research. In addition to increasing ML 
research on a national level, this could also result in a broader range of 
research topics being investigated which may not have a clear imme-
diate financial benefit but rather substantial long-term returns, as has 
been the case with basic science that is mostly funded at the federal level 
[92]. The National Institute of Health (NIH) is also requiring researchers 
to include a data-management plan in grant applications by 2023 to 
eventually make all data publicly available [93]. 

6.3. Diversity and health equity 

Striving for health equity is a priority across healthcare. While ML 
may seem more objective than humans on the surface, biases present in 
data used for model training will be exponentially amplified in actual 
use. Recent examples from tech demonstrate the pitfalls of training ML 
models using data lacking representation of historically underrepre-
sented groups [94–96]. To address this, we must ensure diversity in 
medical datasets used to train ML models. Digital health technology may 
provide opportunities to reach new populations that traditionally have 
been underrepresented in medical research cohorts and in whom current 
risk assessment tools underperform. Further, there are now opportu-
nities for quantitatively measuring and correcting for biases in ML 
models, which is harder to do with fixed and premeditated rule-based 
calculators [90,97]. 

By leveraging the accessibility of mobile technology, a more 
streamlined, equitable healthcare system could be a reality; however, 
challenges remain, particularly in the era of the COVID-19 pandemic 
[98]. The Pew Research Center found that Black and Hispanic in-
dividuals have similar smartphone ownership to the general population 
[99]; however, reports have varied on whether their utilization of 
smartphones to access health information is more or less than White 
individuals [100,101]. In a survey of 926 respondents, most respondents 
were very concerned or somewhat concerned about AI’s unintended 
consequences, including misdiagnosis (92%), privacy breaches (71%), 
less time with clinicians (70%), and higher health care costs (68%) 
[102]. A higher proportion of respondents who self-identified as being 
members of underrepresented racial/ethnic groups indicated high levels 
of concern about these issues compared to White respondents [102]. 
Incorporating stakeholder input from varied groups in the development 
of digital health systems may help improve user engagement [103]. 
Devices, especially wearables and sensors, must be optimized for all 
skin-colors and body types [104]. With PPG, for example, there are ef-
forts to implement dynamic light intensity at the microprocessor level 

which will allow individuals of darker skin tone to transmit the same 
average number of photons as individuals with light skin through the 
blood vessels. Another approach is implementing multi-wavelength 
techniques and opto-mechanics to measure the amount of melanin in 
the skin and adjust the algorithms accordingly [105]. Considerable ef-
forts are being dedicated to address these priority needs, such as through 
projects funded by the AHA Strategically Focused Research Network on 
Health Technologies and Innovation [106]. 

6.4. Integration with clinical systems 

Digital health technology and ML are potentially transformative 
tools, but interoperability is key to success in clinical care delivery. 
While ML can enhance screening and risk assessments, it must seam-
lessly integrate into clinical pathways that have been independently 
proven to mitigate those risks, rather than new workstreams for 
healthcare teams. Early clinical implementation success stories exem-
plify this, such as ML-augmented detection of diabetic retinopathy [107] 
or CAC [20]. In contrast, any ML approach that requires a new clinical 
pathway, rather than enhancing an existing one, will need rigorous 
scientific evaluation and testing prior to considering implementation 
[91]. Clinical trials that fail to show improved outcomes using digital 
health interventions compared to the standard of care should be ex-
pected as the true utility of various interventions are determined [67]. A 
negative trial with a particular device does not rule out the possibility 
that the same outcome may be improved with a different device or 
software. Amidst the present arms race of digital health interventions 
competing for footholds in the healthcare landscape, inter-device per-
formance will also need to be validated. 

The FDA has issued a statement on steps to advance digital health 
policies with a proposed regulatory framework for ML-based software as 
medical devices [88]. Development of a ML model and providing proof 
of concept studies would underpin a successful IRB submission to 
conduct clinical trials to prove the safety and efficacy of these systems in 
a clinical environment [88]. Evaluating performance of ML models at 
multiple clinical sites with diverse populations and encouraging pro-
spective head-to-head clinical trials against the standard of care will 
help ensure model performance and safety [89]. Additionally, algo-
rithms should integrate with clinical pathways in ways that optimize 
and enhance workflows rather than contributing to alarm or pop-up 
fatigue [87]. 

6.5. Building clinician and patient trust 

Even if models are effective, clinician and public trust must also be 
earned. Giving individuals control over their own health data may be 
one way to increase participation and interoperability, which is pro-
moted by laws such as the 21st Century Cures Act, but more needs to be 
done to address historic breaches of trust related to over-surveillance 
and cybersecurity failures [86]. Clinicians are trained to seek clear 
diagnostic labels, whereas ML may look at data as a continuum of 
phenotypes and arrive at conclusions that are not compatible with the 
traditional medical schema. While we have metrics to evaluate model 
performance, it may be difficult to interpret how a model arrived at its 
predictions even if they are highly accurate, leading to the moniker of 
ML as a black box [108]. A survey found that 31% of nonclinical re-
spondents were very uncomfortable and 40.5% somewhat uncomfort-
able with receiving a diagnosis from a ML model that was accurate 90% 
of the time but incapable of explaining its rationale [102]. Considerable 
efforts are being dedicated to develop methods for interpretation and 
visualization of model features which may help gain the trust of clini-
cians [109]. We believe that ML will enhance rather than replace the 
clinician’s ability to make data-driven decisions together with the pa-
tient. In order to achieve this, education to better understand ML and its 
limitations should be integrated with clinical training so clinicians can 
serve as effective communicators and patient advocates [110]. Finally, 
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for clinicians to fully embrace ML algorithms into clinical practice, 
relevant regulatory and legal frameworks must be in place to delineate 
shared responsibilities and liabilities between the ML algorithm and the 
clinician. While the current legal framework incentivizes physicians to 
minimize the use of ML/AI to avoid liability [111], clinicians should 
take an active role in shaping the regulatory and legal environment as it 
is expected to evolve considerably in the coming years. Proposed chal-
lenges and solutions for building and implementing a successful ML 
model are outlined in Fig. 2. 

7. Conclusions 

ML has the potential to improve preventive care for CVD, as 
demonstrated through models that improve CVD risk prediction using 
traditional risk factors, clinical and laboratory values, imaging, wear-
able and sensor data, and omics. In coming years, we will likely see ML 
integrated within current healthcare systems and new systems built 
from the ground up based on these technologies. This gives us an op-
portunity to rethink our values and restructure healthcare in a way that 
improves patient outcomes, increases value of care, and is more equi-
table. At this early stage of ML in preventive care, it is incumbent upon 
us to set frameworks now that will guide us into the upcoming decades. 
We need to ensure ML models are trained and validated on diverse 
datasets, develop standardized practices for data sharing and rigorous 
re-evaluation of models, promote interoperability, and give individuals 
control of their own health data. Additionally, clinicians need to un-
derstand when ML can and cannot be applied and interpret model rec-
ommendations in the full clinical context of each patient. For these 
reasons, rather than replacing clinicians, ML will be an additional tool in 
the clinical armamentarium to enhance human-led decision-making and 
delivery of care. Collaboration between all stakeholders, including cli-
nicians, researchers, patients, and industry partners, is essential to 
increasing trust in ML, digital health, and shaping the path forward for 
CVD prevention. 
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