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Abstract

Insights into the evolution of ancestral complexes and pathways are generally achieved through careful and time-intensive
manual analysis often using phylogenetic profiles of the constituent proteins. This manual analysis limits the possibility of
including more protein-complex components, repeating the analyses for updated genome sets or expanding the analyses to
larger scales. Automated orthology inference should allow such large-scale analyses, but substantial differences between
orthologous groups generated by different approaches are observed. We evaluate orthology methods for their ability to
recapitulate a number of observations that have been made with regard to genome evolution in eukaryotes. Specifically, we
investigate phylogenetic profile similarity (co-occurrence of complexes), the last eukaryotic common ancestor’s gene
content, pervasiveness of gene loss and the overlap with manually determined orthologous groups. Moreover, we compare
the inferred orthologies to each other. We find that most orthology methods reconstruct a large last eukaryotic common
ancestor, with substantial gene loss, and can predict interacting proteins reasonably well when applying phylogenetic
co-occurrence. At the same time, derived orthologous groups show imperfect overlap with manually curated orthologous
groups. There is no strong indication of which orthology method performs better than another on individual or all of these
aspects. Counterintuitively, despite the orthology methods behaving similarly regarding large-scale evaluation, the obtained
orthologous groups differ vastly from one another.
Availability and implementation The data and code underlying this article are available in github and/or upon reasonable
request to the corresponding author: https://github.com/ESDeutekom/ComparingOrthologies.
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Introduction
Gaining insight into the evolution of eukaryotic pathways and
protein complexes is often obtained by careful and intensive
manual efforts of inferring orthologous groups (OGs), often using
phylogenetic profiles [1–4]. The reconstruction of the evolution
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of these pathways is changing our view of eukaryotic genome
evolution. With the increase of genomic data, specifically of
divergent eukaryotes, the pervasiveness of gene loss became a
clear pattern for genetic variation [5–7] that has been observed
in many eukaryotic functional pathways, protein complexes and
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metabolic pathways [1–4, 8, 9]. From these manual reconstruc-
tions, it is becoming more apparent that the loss of parts of these
complexes or pathways between the last eukaryotic common
ancestor (LECA) and extant species is mostly nonrandom, as
whole (sub) complexes are often co-lost or, at least, co-absent.
A final theme in these studies is that more and more processes
and pathways are inferred to have likely been present in LECA,
and thus, we are faced with an ever-expanding LECA [10].

In addition to the insights offered for the study of specific
pathways, large scale orthologies should provide benefits that
overcome the limits in case studies. Manually curated OGs and
phylogenetic profiles are laborious and don’t scale well when
new or updated genomes become available. The development of
accurate computational methods to automatically infer ortholo-
gies to the same degree as manual analysis is challenging since
the orthology inference algorithms need to take into account
complex histories of genes, such as duplications, losses and
gains of genes and/or their domains and horizontal gene trans-
fer [11–14]. Readily available curated orthology databases are
often very useful for more specific evolutionary questions, e.g.
TreeFam database containing mainly animal gene families [15]
or OrthoDB containing mainly vertebrate, arthropod, fungi, plant
and bacterial gene families [16]. For other evolutionary ques-
tions, these databases are not always practical, as the species
covered in these databases might not be suitable for a particular
evolutionary question, e.g. due to (limited) taxonomic range or
over/under-sampling of species.

In an effort to progress this field, a large group of researchers
has come together to work on a collaborative quest for orthologs
(QfO) and have derived a suite of benchmarking tools to deter-
mine the performance of orthology methods, both old and new,
in a systematic manner [17]. The QfO Benchmarking suite is a
very powerful way to objectively evaluate orthology methods
in a generic way and has thereby paved the way for advance-
ment in the field of orthology. QFO focusses on a single metric,
namely how well an orthology method can recapitulate OGs in a
gold standard fixed set of reference proteomes. The benchmark
results of orthology methods thus depend on this reference set.

Complementary to the QFO, we here investigate different
orthology inference methods and how well they can recapitulate
a number of observations made regarding genome evolution in a
large diverse set of eukaryotic genomes. We specifically investi-
gate loss patterns and numbers, co-occurrence and LECA gene
content. We expand our analysis by investigating qualitative
differences between the obtained orthologies and their inferred
OGs, and how they capture high-quality manually curated OGs.

We find that most orthology methods reconstruct a large
LECA, with substantial gene loss, and can predict interacting
proteins reasonably well when applying phylogenetic co-
occurrence. However, derived OGs show imperfect overlap with
manually curated OGs. There is no strong indication of which
orthology method performs better than another on either or
all of these aspects. Counterintuitively, despite the orthology
methods behaving similarly regarding large scale evaluation,
the obtained OGs differ vastly from one another.

Methods and materials
Inferring (LECA) orthologs in a large-scale dataset

To investigate different automated orthology methods, we
inferred orthologous groups (OGs) with 167 proteomes (2
865 661 sequences) from a diverse set of eukaryotes ([18],
Supplementary Figure 1 and Supplementary Table 1). Since we

have a large set of proteomes, the orthology inference methods
used in this study were chosen based on reasonable computa-
tional time, ease of parallelizing the process on multiple CPU’s,
ease of projection on our set of proteomes and development
activity. Also, the methods must be able to infer OGs of genes:
multiple orthology inference methods we found have pairwise
species comparisons, and not the multispecies comparisons
that give OGs. Table 1 lists the orthology inference methods
and databases chosen for this study and a brief description of
each. There are other orthology inference methods that were
considered [19–22], but due to various reasons were not used in
this study. They are listed in Supplementary Table 2 with a short
description.

The eukaryotic eggNOG [23] hmm profile database (version
4.5.1) was used to annotate our eukarya dataset with hmmsearch
(version 3.2.1|June 2018 in HMMER 3.1b2 package February 2015)
and a hit cut-off e-value of 10−3. Additionally, the eggNOG pro-
tein database (version 4.5.1) was used to annotate the eukarya
dataset with DIAMOND and a hit cut-off e-value of 10−3. For
both strategies, we used the emapper annotation tool (version
emapper-1.0.3) provided by eggNOG. We wanted to see if there
exist any (large) differences between these strategies.

We applied Orthofinder (version 2.1.2) [24] with default val-
ues using both all-vs-all BLAST (hit cut-off e-value 10−3) and
DIAMOND (hit cut-off e-value 10−3) as sequence aligners. We
chose DIAMOND as a high-throughput aligner that is multiple
orders of magnitude faster than BLAST [25]. Also, here we wanted
to see if there exist any (large) differences between the alignment
strategies.

We additionally used Broccoli (version 1.0) [26] with default
parameter settings. SonicParanoid (version 1.3.0) [27] was used
with default parameter settings in the sensitive mode (MMseqs2
sensitivity parameter is set to s = 6.0 by SonicParanoid), which is
suggested for more distantly related species such as our diverse
set of eukaryotes. Since we were not able to get SonicParanoid
running on our device, we obtained the results through per-
sonal communication with the authors. SwiftOrtho [28] was run
using all-vs-all BLAST (hit cut-off e-value 10−3) and the default
parameter settings.

In order to investigate loss patterns for each orthology and
to manage the amount of orthogroups in further analysis steps,
following the orthogroup inference by each method, we used the
Dollo parsimony approach [29–31] with additional strict inclu-
sion criteria [18] as a heuristic to infer orthogroups that were
likely present in LECA. Briefly, the Dollo parsimony method
assumes that genes can be gained only once, and losses are
minimized. To be called a LECA OG, the genes belonging to the
OG must be in at least three eukaryotic supergroups distributed
over the Amorphae and Diaphoretickes (previously opimoda and
diphoda) species [32].

Additionally, we used Panther ancestral genes from the
Ancestral Genomes Resource database [33] that has ancestral
genes up to the Last Universal Common Ancestor. Gene trees
and corresponding multiple sequence alignments were obtained
through personal communication with the authors. We acquired
eukaryotic ancestral genes by traversing the gene trees with an
inhouse script using the ete3 package and obtaining genes in the
eukaryotic ancestral nodes, the leaves of these ancestral nodes
we define as LECA genes. Additionally, we followed the same
criteria for the other orthologies above to select LECA genes
and require inclusion of at least three eukaryotic supergroups
distributed over both Amorphae and Diaphoretickes species to
avoid including possible issues with in/outparalogy resulting
from erroneous tree inference. We trimmed the provided
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Table 1. Orthology inference methods and databases used in this study

Tool/Dataset Prediction type Description and notes

Ancestral Panther http://ancestralgenomes.org Database Ancestral genomes dataset contains reconstructed
ancestral genomes based on gene family trees from the
PANTHER database, from which HMM profiles were built.

Broccoli https://github.com/rderelle/Broccoli De novo prediction K-mer preclustering to simplify proteomes, followed by a
similarity search (DIAMOND) and phylogenetic analysis
(FastTree2). Orthologous groups are inferred using a
machine learning algorithm, LPA. Extremely fast when run
on a large dataset.

EggNOG (DIAMOND and hmmer http://eggnog5.embl.
de/#/app/home

Database Manually curated sequence sets ran with (1) seed ortholog
assignments (DIAMOND) and (2) HMM profile searches
(hmmer).

Orthofinder (DIAMOND and BLAST) https://github.com/
davidemms/OrthoFinder

De novo prediction Uses both (1) DIAMOND or (2) BLAST as an aligner. Has a
sequence length and phylogenetic distance normalized
bit-score cut-off between pairs of genes, which function as
edge weights in the orthogroup graph. Clustering of genes
is done with the MCL method.

SonicParanoid http://iwasakilab.bs.s.u-tokyo.ac.jp/soni
cparanoid/

De novo prediction Uses MMseqs2 as an aligner. The algorithm of InParanoid
is used as a backbone, with changes to the core algorithm
that reduce the execution time and increase the usability
of the tool. Relies on cumulative alignment score of groups
and avoids using thresholds based on confidence score
between pairs of genes. Clustering of genes is done with
the MCL method.

SwiftOrtho https://github.com/Rinoahu/SwiftOrtho De novo prediction Taking the same approach as OrthoMCL for normalized
bit-score cut-off between pairs of genes, which function as
the edge weights in the graph. Clustering of genes is done
with the MCL method. SwiftOrtho is optimized for speed
and memory usage when applied to large-scale data.

multiple sequence alignments with an inhouse script using the
biopython package to remove empty columns that were left
after obtaining LECA genes. Next, we made hmm profiles from
the multiple sequences alignments (hmmbuild 3.2.1 | June 2018
in HMMER 3.1b2 package February 2015) (http://hmmer.org/) that
were subsequently aligned to our eukarya set using hmmsearch
(version 3.2.1|June 2018 in HMMER 3.1b2 package February 2015)
with a cut-off e-value of 10−3.

Measuring co-occurrence with phylogenetic profiles
and (non)interacting proteins

For all orthologies, we constructed phylogenetic profiles by
defining the presence (1) and absence (0) of all orthologs in the
167 species for a given orthology. For evaluating (non)interacting
proteins, we obtained multiple protein interaction datasets. For
interacting proteins, we used the human BioGRID interaction
dataset that contains physical interactions between proteins
[34] (version 3.5.172 May 2019). We filtered this set to obtain
pairs found in at least five independent publications (PubMed
ID’s) as a measure of how thoroughly these proteins were
investigated, and how amenable they are to high-throughput
measurements.

We defined a pseudo negative interaction set from BioGRID
by taking pairs of the proteins that were found to be interacting
at least five times but not with each other. We applied these
criteria so that the negative set only contains proteins that were
found in other interactions and thus exclude the possibility of
the interaction not being observed due to a myriad of technical
reasons. Additionally, we used a previously compiled negative

interaction dataset [35] and cross referenced this set with inter-
actions reported in BioGRID to remove recently found interacting
proteins. Finally, we defined a random interaction set from pairs
of random OGs. Only OGs that contained a human protein were
included. Since the positive and negative sets can contain an OG
participating in multiple (non)interaction pairs, to enable similar
properties in this random set, OGs were drawn with replacement
and cannot be paired with themselves, or form the same pair
multiple times.

To evaluate the (dis)similarities between phylogenetic pro-
files of (non)interacting proteins, we calculated the distances
between profiles of (non)interacting OGs using 13 distance and
correlation measures (Table 2). The correlation measures were
converted to distances (1-correlation). Distance measures that
had values other than between 0 and 1 were converted by
dividing by the maximum value found for that distance. We
chose the cosine distance and the pseudo negative set that had
the best predictive power for further analysis (see Results and
Supplementary Figure 2).

Additional to the distance between the phylogenetic profiles
of interacting proteins within a method, we calculated the cosine
distances between phylogenetic profiles of orthologous groups
of different orthology methods. The groups compared are the
ones that mapped back to the same human gene, which ideally
should be a similar/the same OG.

Comparing against manually curated orthology sets
and all-vs-all inference methods

To benchmark the automatically inferred OGs against a
set of high quality OGs, we took manually curated sets of
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Table 2. Different distance (D) or correlation (C) measures used to
calculate the distances between phylogenetic profiles of OGs

Distance or correlation
measure

Values interval Conversion

Braycurtis [0,1] –
Cityblock (Manhattan) [0,∞] D / max(D) = D
Cosine [0,1] –
Dice [0,1] –
Euclidean [0,∞] D / max(D) = D
Jaccard [0,1] –
Kendalltau [−1,1] (1-C) / 2 = D
Kulsinski [0,1] –
Rogertanimoto [0, 1] –
Russellrao [0,1] –
Sokalmichener [0,1] –
Spearman [−1,1] (1-C) / 2 = D
Yule [0,∞] D / max(D) = D

Table 3. Manually curated OGs

Complex/Pathway Number
of OGs

Study/Reference

Intraflagellar transport
complex

26 [1]

Kinetochore 91 [2, 4]
TBP-associated factors 8 [3]

protein complexes constructed previously by members of
our lab and mapped them to our latest dataset version. The
manually curated orthology set contains a total of 125 OGs
(Table 3).

We used two cluster overlap measures to compare the over-
lap between the manually curated and automatically inferred
OGs. The F-Grand K-Clique Score (FGKCS) [36] matches cliques
of (in our case) OG members within the set of all possible
cliques between OGs from automated methods and our man-
ually defined set of OGs and determines the performance using
the F-Grand metric.

The Adjusted Rand Score (ARS) [37], roughly, by counting how
many pairs in each cluster occur together in the same cluster
between methods and is adjusted for chance (and not on over-
lap/intersection like Jaccard similarity index). Because the ARS
focusses on pairwise agreement between clusters, methods that
define and/or generate singleton clusters (orthologous groups of
size 1) are penalized more than methods that do not. To avoid
over-penalizing, we only compared LECA orthologous groups,
thus removing singleton clusters from the analysis.

To better understand how ARS and FGKCS compare to actual
cluster similarity between the inferred and manual OGs, we
first stepwise shuffled a percentage of labels for one automated
orthology definition and compared it with the same but unshuf-
fled definition. We measured the relationship of ARS and FGKCS
compared to the OG similarity as the percentage of unshuffled
members.

To visualize how the manually curated OGs were represented
in the automatically inferred OGs, we looked at the number of
proteins overlapping between each manual OG and automati-
cally inferred OGs. We divided this overlap number by the total
amount of proteins in the manual OGs. This in turn gave us
a matrix of overlap fractions that could be visualized for each

manually versus automatically inferred OG. We additionally cal-
culated the percentage under- and oversplit sequences. We did
this by counting the amount of sequences that were not in the
OG containing the most sequences (under the assumption that
this OG is the correct one) per row (oversplitting) or column
(undersplitting). This number we divided by the total amount of
sequences in this row or column. We calculated the assignment
of the manual OGs by taking the total amount of sequences
assigned from the manual OGs to the automatically inferred
LECA OGs and divided it with the total amount of sequences in
the manual OG set (i.e. 5852).

Results and discussion
Comparison between orthology methods shows similar
behavior after inferring LECA orthologous groups

To investigate different orthology methods and how well they
recapitulate a number of observations regarding genome evo-
lution, we first inferred orthologies on a diverse set of 167
eukaryotic proteomes [18] using eight different inference meth-
ods. Supplementary Table 3 shows an overview of the statistics
of every orthology inference method and their complete set of
inferred orthologous groups (OGs).

In the original orthology definition, Fitch [38] described that if
the history of a single gene is as the history of the species, they
should be called orthologous, i.e. they are a single gene in the
ancestor of the two species and resulted from a speciation there
rather than a duplication earlier. Extrapolated for eukaryotic
species this should in principle imply that an inferred orthology
relation for a set of diverse eukaryotes should equate to the pres-
ence of a gene in LECA. However, despite labelling themselves
as orthology methods, most methods do not explicitly perform
an analysis to ascertain that each inferred OG indeed represents
an ancestral presence. Hence, in addition to inferring the OGs
with the methods as is, we estimated LECA OGs using a slightly
more strict extension (see Methods and Materials) of the Dollo
parsimony method [29–31] and calculated their (independent)
loss to extant species.

Except for the outlier values of Ancestral Panther and
SwiftOrtho, the inferred orthologies are similar between the
methods while comparing the statistics for inferred LECA OGs
(Figure 1). The high amount of automatically derived LECA
OGs is consistent with previous large-scale studies [30, 33]
and the observation from multiple manual analyses where
individual OGs are found to be in fact in LECA OGs [39]. The
inferred retained LECA OGs for each species also follow a similar
pattern in the different methods (Supplementary Table 4 and
Supplementary Figure 3).

To evaluate the selection criteria of LECA OGs on the results
presented above, we additionally inferred LECA OGs using less
stringent two supergroup and more stringent four supergroup
criteria (Supplementary Figure 4). The behavior of the different
methods is highly similar to that of the three supergroup cri-
terium, same for the logically higher number of OGs with the
two supergroup criteria and lower number of OGs with the four
supergroup criteria.

Independent loss distributions behave relatively similar
between orthologies (Figure 2), with little differences in median,
means and standard deviations (Figure 1), except for Ancestral
Panther, SonicParanoid and SwiftOrtho. Ancestral Panther
reports the lowest number of LECA OGs, but the median OG size
is the highest of all the methods (Figure 1), indicating that the
Panther OGs are very inclusive. This in turn results in a broader
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Figure 1. Comparison of different orthology methods after inferring LECA OGs.

Shown are the statistics of the number of LECA OGs, size of the OGs and

independent loss measures. Grey dotted line shows the median value of a given

metric. The vertical lines in the mean size OGs and mean independent loss OGs

are standard deviations.

distribution of independent loss, and thus higher median loss,
for these OGs. SwiftOrtho reports the highest number of LECA
OGs, with a smallest median OG size (Figure 1), indicating
SwiftOrtho is very strict. This inflates the independent loss
distribution, giving SwiftOrtho the highest independent loss
off all the methods.

Nevertheless, the number of independent loss is high for
all inferred orthologies, as is expected [30, 31]. The number of
independent loss has been shown to be influenced by gene
prediction problems causing falsely inferred gene absences
[18], where a suspicious absence can often be found back in
the DNA. However, this is likely an equally big problem for
all methods, since many orthology methods require predicted
proteomes and cannot run on DNA/six frame translated
DNA.

Figure 2. Loss distributions of LECA OGs estimated from different orthology infer-

ence methods. Except for Ancestral Panther, SonicParanoid and SwiftOrtho, the

loss distributions show similar patterns. For eggNOG hmm versus Orthofinder

BLAST/Broccoli and eggNOG DIAMOND versus Orthofinder DIAMOND, there

is no significant difference between distributions (Kruskal–Wallis H test

P-value >0.001).

Co-occurrence of interacting proteins is predicted
similarly and fairly well by most of the orthology
methods

Independent gene loss is not random [5]. In fact, there are
countless observations that co-occurring (or co-lost) proteins
tend to interact [1–4, 40]. This creates an additional opportunity
for evaluating orthology methods, namely how well different
methods can predict co-occurrence of interacting proteins. This
metric is also of great relevance for phylogenetic profile methods
[40]. For this reason, we calculated distances between phylo-
genetic profiles of LECA OGs for every method and assessed
how well protein–protein interactions were predicted by that
method. These evaluations will identify orthology methods that
are able to capture a high(er) degree of co-occurrence between
interacting proteins and that are more capable of identifying
‘functional’ orthologous relationships over an arbitrary set of
species.

We used the human BioGRID protein interaction dataset
[34] as a positive interaction set, and constructed a negative
interaction set from BioGRID by selecting proteins that are
well studied (i.e. detected to be interacting at least with
five other proteins) but have not been detected to interact
with each other (zero interactions in BioGRID). We tested 13
distance measures (Table 2). For all distances, we observed a
clear signal for both the positive and negative interaction set
(Supplementary Figure 2 and Supplementary Figure 5), with a
weaker signal for SwiftOrtho. The cosine distance had the best
area under the curve (AUC) values compared to the other dis-
tances measured for most methods (Supplementary Figure 2).
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Figure 3. ROC plot comparing the predictive power of co-occurrence of inter-

acting proteins from different orthology inference methods, using the cosine

distance. The legend additionally shows the AUC values for each curve and the

confidence intervals (bootstrap n = 1000).

There is no large difference in the predictive power for
co-occurrence of interacting proteins from the different
orthology inference methods (Figure 3). Orthofinder BLAST
has a marginally higher AUC value than the other meth-
ods. SwiftOrtho has noticeable lower predictive power for
co-occurrence.

Our ability to predict protein–protein interactions by phy-
logenetic profiling (as measured by AUC) is corroborating a
more elaborate phylogenetic profile method dedicated paper
[41], combining phylogenetic profiles in conjunction with the
MinHash technique. Most importantly, most orthology methods
successfully recapitulate the observation that loss is not random
but co-occurs between interacting proteins.

A logical (and desirable) explanation for the similar perfor-
mance between methods would be that human proteins are
assigned similar phylogenetic profiles across different methods.
However, when comparing OGs mapped to the same human
protein, the phylogenetic profiles generated from the OGs by
the different methods differed substantially from each other
(Supplementary Figure 6.).

OGs inferred by different methods show imperfect
overlap in between methods and manually curated OGs

From previous work [1–4], we collected a set of 125 manually
curated OGs at LECA level (Table 3). The comparison to manually
curated OGs aligns our evaluation with other evaluation strate-
gies, such as quest for orthologs, while the comparison of the

inferred OGs to one another gives us a view of how similar the
OGs are to each other.

The comparison of the inferred OGs with the manually
curated OGs shows overall an imperfect, but decent, overlap
for all methods (Figure 4 for Adjusted Rand Score (ARS), and
Supplementary Figure 7 for F-Grand K-clique Score (FGKCS)).
The overlap between the manual set against all inferred OGs
is very high (mean ARS of 0.85) compared to the all-vs-all
comparisons (mean ARS of 0.52) between the inferred OGs. This
is due to the fact that the manual OG set is a smaller subset
of sequences and thus more easily included wholly into the
inferred larger OGs and also because errors in the inferred OGs
are measured one-sided to the manual OGs, compared to the
all-vs-all comparison where errors are measured two-sided.
To understand how the ARS relates to actual OG similarity
between the manual and automatically inferred OGs, see
Supplementary Figure 8. (Supplementary Figure 9 for FGKCS).

An important and rather problematic observation is that
the comparison between the inferred OGs of different methods
shows there is low overlap, or little consistency, between the
methods. As expected, similar methods have similar OGs
(eggNOG hmm versus eggNOG DIAMOND and Orthofinder
BLAST with Orthofinder DIAMOND). Nevertheless, even between
these methods, there is still a considerable difference. To
evaluate if some of the OGs were consistent between the
methods, we collected OGs that overlapped with 100% of
their sequences. Also here, there is little overlap between the
methods (Supplementary Figure 10 and Supplementary Table 5),
indicating that most OGs are difficult to annotate consistently
(e.g. due to many duplications). It is important to uncover which
types of errors are made in each automated method.

Representation of the manually curated OGs in
automatically inferred OGs—where are the differences?

In order to investigate what types of errors are made by the
different orthology methods, we wanted to see how the vari-
ous manually curated OGs are represented in the inferred OGs.
Although manually curated OGs are not always perfect, nor their
inference without any caveats [14], this issue at this time is
unsolvable and also counts for automated methods. Manually
curated OGs are the most reliable at the moment.

We visualized the fraction of proteins per manual OG over-
lapping with matching proteins assigned to the inferred OGs of
the different methods to the total amount of manual proteins
in a given manual OG (Figure 5). Multiple grid points in the
same column mean that multiple manually curated OGs are
contained within a single automatically inferred OG, indicating
an undersplitting in the orthology inference, due to for instance
unrecognized (pre-LECA) (out-)paralogs [14]. A clear example of
undersplitting is Cdc20 and its outparalog Cdh1 arising from
a, by most of the methods unrecognized, pre-LECA duplication
[4] that as a consequence are consistently lumped together in
the automated orthology inference methods in various degrees
(Figure 5 and Supplementary Figure 11). The same applies for the
mitotic kinases Aurora and Plk.

Multiple grid points in the same row of Figure 5 means that
a single manually curated OG is contained within multiple
inferred OGs, indicating an oversplitting in the automated
orthology, due to for instance misclassification, unrecognized
homology, or lineage specific duplications (in-paralogs) [14]. A
few examples of oversplitting are of the OGs Aurora, Cdc20, Plk,
Sgo, Survivin (Figure 5) and MadBub (Supplementary Figure 11),
which are consistently fragmented to a higher degree in most

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa206#supplementary-data
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Figure 4. All-against-all comparisons of the different orthology methods and the manual set using the (Adjusted Rand Score) ARS. An ARS of zero would indicate that

two OGs vary at a level that would be expected by chance, while an ARS of 1 is a perfect OG overlap.

Figure 5. Heatmap showing the fraction of overlap of the clusters between the manually curated OGs (only examples are labelled) and the inferred OGs from, in this

case, Orthofinder BLAST as example. The manually curated OGs (y-axis) are sorted from the highest to the lowest overlap with an Orthofinder OG (x-axis), creating

a diagonal (dark purple). The nondiagonal part (lower right corner) is clustered with the weighted clustering method. On the left side of the diagonal, there are clear

examples of undersplitting of the manually curated OGs. To the right of the diagonal (lower right corner), there are clear examples of oversplitting or misclassifications.

The colorbar shows the fraction of overlap between the manual OG sequences and the automated OG sequences.

automated orthologies (Supplementary Table 6). These proteins
have elevated copy numbers, due to possibly recurrent dupli-
cations (and subfunctionalization) [2]. Although not apparent in
our set, loss, gain or misprediction of protein domains could also
cause oversplitting.

The bulk of the automated OGs assigned correctly to the
manually curated OGs (diagonal with dark purple grid points
(Figure 5). Although, under- and oversplitting can be seen
in different degrees between the methods. To compare the
degree of under- and oversplitting of the manual OGs between

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa206#supplementary-data
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Figure 6. Degree of under- and oversplitting of the manual OGs in the different

orthology methods. The methods are sorted from the highest (top) to the lowest

(bottom) assignment of the manual OG sequences in the automated orthologies.

automatically inferred orthologies we calculated the percentage
of sequences that are under- and oversplit in the different
methods (Figure 6). This shows that, overall, SwiftOrtho has the
least undersplitting, but has the lowest assignment and most
oversplitting of all the methods. This is in line with their claim
that SwiftOrtho is a high precision and low recall method.

EggNOG hmm and eggNOG DIAMOND have the least under-
splitting and Orthofinder DIAMOND the least oversplitting.
These values indicate that eggNOG is good at recognizing more
distant homology, while Orthofinder DIAMOND is better in
correctly classifying orthologs and detecting recent duplication,
but the numbers between the methods are fairly similar. Looking
at the total amount of manual OG sequences that are assigned
to a LECA OG in the automatically inferred orthologies, we see
that Ancestral Panther has the highest percentage of manual OG
sequence assignment.

Conclusions and outlook
Orthology prediction is difficult, but pivotal, in comparative
genomics. Many methods and tools have been developed to
capture orthologous relationships between genes as accurately
as possible. We evaluated several orthologies created by auto-
mated orthology methods with different underlying algorithms
for their ability to capture a number of key observations on
eukaryotic genome evolution.

We show that co-occurrence of interacting proteins is pre-
dicted similarly well by all orthology methods that were tested
and most are similar in behavior when determining gene loss
patterns in eukaryotic evolution. However, they show imper-
fect overlap with manually curated OGs. Important to note is
that, although all orthology inference methods used in this
study are similar when describing general patterns in eukary-
otic genome evolution, they show large differences among the
inferred orthologies themselves.

Different methods can provide more optimal solutions
compared to others when studying different evolutionary
scenarios, such as coevolution, grouping more distant orthologs

or more recent duplications. However, many challenges remain
in orthology inference, both biological (orthology versus
paralogy) and practical (data increase and computational
resources), all of which we have experienced throughout this
study.

Nevertheless, our results show that (automated) orthology
methods show similar behavior with respect to large-scale evo-
lutionary observations, such as loss patterns, but caution is
warranted when looking at the smaller scale, such as single OGs
of interest.

Automatic and manual orthology methods are complemen-
tary. Leveraging this complementarity could improve compara-
tive genomics in the near future. This means that (orthology)
databases should aim to provide OG assignments in a convenient
way to accommodate manual analyses and vice versa to be able
to use manual assigned OGs as seeds in automated orthology
analyses, or to guide development of orthology inference tools.

Key Points
• We compared multiple orthology inference methods

by looking at how well they perform in recapitulat-
ing multiple observations made in eukaryotic genome
evolution.

• Co-occurrence of proteins is predicted fairly well by
most methods, and all show similar behavior when
looking at loss numbers and dynamics.

• All the methods show imperfect overlap when com-
pared to manually curated orthologous groups and
when compared to orthologous groups of the other
methods.

• Differences are compared between methods by look-
ing at how the inferred orthologies represent a high-
quality set of manually curated orthologous groups.

• We conclude that all methods behave similar when
describing general patterns in eukaryotic genome evo-
lution. However, there are large differences within the
orthologies themselves, arising from how a method
can differentiate between distant homology, recent
duplications or classifying orthologous groups.

Supplementary data

Supplementary data mentioned in the text are available to
subscribers in BRIBIO online.
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