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Abstract

Current standard methods for kinetic and genomic modeling cannot provide deep insight into metabolic regulation. Here,
we developed and evaluated a multi-scale kinetic modeling approach applicable to any prokaryote. Specifically, we
highlight the primary metabolism of the cyanobacterium Synechococcus elongatus PCC 7942. The model bridges metabolic
data sets from cells grown at different CO2 conditions by integrating transcriptomic data and isozymes. Identification of the
regulatory roles of isozymes allowed the calculation and explanation of the absolute metabolic concentration of 3-
phosphoglycerate. To demonstrate that this method can characterize any isozyme, we determined the function of two
glycolytic glyceraldehyde-3-phosphate dehydrogenases: one co-regulates high concentrations of the 3-phosphoglycerate,
the other shifts the bifurcation point in hexose regulation, and both improve biomass production. Moreover, the regulatory
roles of multiple phosphoglycolate phosphatases were defined for varying (non-steady) CO2 conditions, suggesting their
protective role against toxic photorespiratory intermediates.
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Introduction

Cyanobacteria are a monophyletic group of oxygenic photo-

trophs in the phylum Bacteria. Recently, these prokaryotes have

received increasing attention in applied research. Cyanobacterial

production of bioenergy, such as hydrogen [1] or butanol [2], has

been shown, and large-scale projects are believed to become part

of sustainable and environmentally friendly bio-production in the

future [3]. It is the computational biology which plays a key role in

planning the cyanobacteria-based bio-production as well as in data

evaluation and the understanding of cellular processes in

cyanobacteria. However, some processes such dynamics of

metabolic regulation, have been analyzed in-depth studies and

methods analyzing the dynamics of metabolic regulation are

missing. This deficiency may have been caused by a desire for

analyzing the whole metabolic network, which was, and still is, a

limiting factor for kinetic modeling. Consequently, genome-scale

modeling has become a standard method for analyzing and filling

the gaps in our knowledge of cyanobacteria metabolism and

prokaryotes in general.

Most genome-scale models have used the model cyanobacteri-

um Synechocystis sp. PCC 6803 [4,5]. These models are useful in

understanding cyanobacterial metabolism, especially the function-

al consequences of unknown pathways, ‘‘what if’’ analyses, day-

night transition, and comparisons of multiple scenarios [6,7].

However, genome-scale modeling has limitations. It cannot

address the dynamics of metabolic regulation and the role of

isozymes. It also suffers greatly from errors in the gene annotation

and contains gaps that require additional input obtained from

other organisms. Finally, genome-scale models are designed for

maximal efficiency, whereas real systems are designed for

sustained propagation in changing environments, which may lead

to suboptimal metabolism. To overcome these problems, alterna-

tive approaches are needed.

Our preliminary study showed that a combination of genome-

scale and kinetic models improves the model accuracy by

implementing minor sink reactions for adjacent pathways [8].

However, the problem of unconstrained parameter estimation

remains. A possible method to constrain the model is integrating

transcriptomic and possibly other ‘‘omics’’ data. Since this

approach does not work well for genome-scale modeling [9], the

remaining option was to use multi-scale kinetic modeling. A pilot

analysis of multi-scale kinetic modeling suggested that the key

elements in the metabolic regulation of prokaryotes are isozymes.

This analysis [10] explained the specific roles and possible

evolution of phosphoglycerate mutases (PGMs). However, PGMs

have a cardinal position in metabolism, and it is unknown whether

this method is applicable for other, non-prominent isozymes.

This work aimed to present a multi-scale kinetic model of

primary carbon metabolism for the model cyanobacterium

Synechococcus elongatus PCC 7942 (hereafter referred to as

Synechococcus 7942) and show its capabilities for explaining the

metabolic and redox regulation of primary carbon metabolism.

The model is constrained by metabolic and transcriptomic data,
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energy and redox levels (ATP/ADP, NADPH/NADP+, and

NADPH/ATP ratios), CO2 level, and growth rate. First, the

model was evaluated regarding whether it robustly mimics the

experimental data. We then focused on the following questions: 1)

Can we reliably predict cellular metabolic concentrations; 2) What

is the role of isozymes and their position in the network; and 3)

How is photorespiration integrated into the primary carbon

metabolism system?

Materials and Methods

The presented multi-level kinetic model is based on Michaelis-

Menten kinetics. The scheme of employed model is presented on

Figure 1. A list of reactions, including Vmax parameters and

transcriptomic weight factors, is available in the file S1. The model

versions for high and low CO2 are available in Model S1 and

Model S2 in SBML L2V4 (XML). The model was developed, and

simulations were executed using the SimBiology toolbox of

MATLAB (Mathworks Inc.). The routine employed for parameter

estimation was a hybrid genetic algorithm (ga_hybrid, Mathworks

Inc.).

Relative transcriptomic and metabolomic data of Synechococcus
7942 cells grown at high CO2 (5% CO2) and low CO2 conditions

(0.038% CO2) were taken from a previous study [11]. The

consideration of two environmental conditions was necessary to

understand and implement the changes in transcriptomic level of

isozymes in the model and was essential for constraining the model

by doubling the amount of metabolic data. To investigate the

transitory phase of CO2 acclimation, we included a metabolic

dataset for cells shifted from high to low CO2 conditions for 3 h

(these unpublished data can be found in Table S1). These new

data were obtained as described before [11].

The cellular concentration of 3-phosphoglycerate (3PGA) was

recalculated compared with our previous study [10] using our own

data. This change was a consequence of a self-validating process to

improve multi-scale modelling, which predicted different levels of

3PGA. We found 361.6 mM 3PGA in the total cell volume.

Assuming that approximately 60% of cyanobacterial cells repre-

sent the osmotic free accessible cytoplasm, 3PGA levels were

calculated to be 562.7 mM in high CO2 grown cells. The

developed model uses the mean value of 5 mM, which is validated

by biomass efficiency estimation (Fig. 2). The concentrations of

other metabolites were recalculated based on measured ratios

relative to 3PGA [11] for the purpose of modeling.

Results and Discussion

Model description and validation
Presented multi-level kinetic model includes all enzymatic steps

of the Calvin-Benson cycle, photorespiration, glycolysis, and

simplified carbohydrate synthesis (Fig. 1). The model also includes

sink reactions, e.g., Sink4 for tricarboxylic acid cycle (Fig. 1),

representing the adjacent pathways and allows for the estimation

of biomass production under changing CO2 conditions.

In general, the multi-scale kinetic model describes more than

one layer of cellular function. To describe changing metabolic

states under different environmental conditions within a model,

information about changes in the amount of enzymes is necessary.

Instead of proteomic data, which do not reflect all primary

metabolism enzymes in a cyanobacterial cell [12], transcriptomic

data were used to bridge the different steady states of enzyme

abundances with corresponding metabolic levels. We assume that,

in the case of prokaryotes, a change in gene expression in steady

state is equal to change in enzyme activity which neglects possible

impact of post-translation or other modifications. This assumption

has been supported by a silencing experiment employed on 14

genes of another prokaryote, Escherichia coli. In this experiment

[13], mRNA levels were reduced by at least 60% and,

consequently, activities of corresponding enzymes decreased by

at least 60%. In the case of reactions included in the presented

model, genes for enolase, phosphoglycerate kinase and glucose-6-

phosphat isomerase were silenced by 92%, 79% and 90% and

respective enzyme activities decreased by 82%, 75% and 95%

[13]. Taking in account the standard deviation of performed

measurements [13], the possible differences between the change in

gene expression and enzyme activity are between 0 and 16.3%.

Multi-scaling improves the accuracy of parameter fitting

enormously because, compared with traditional kinetic modeling,

it fits metabolic data for more than one steady state with the same

kinetic parameters. In our case, we analyzed metabolic changes in

cells of Synechococcus 7942 cultivated at high and low CO2

conditions. The model focuses on the major routes of primary

carbon metabolism in Synechococcus 7942, as well as other

phototrophic organisms that perform oxygenic photosynthesis.

The model has been validated for growth rate, metabolic,

transcriptomics, redox and energy levels under two growing

conditions: high and low CO2. The model validation on energy

charge assumes the same ATP ? (ADP+ATP)21 ratio in high and

low CO2, and was maintained in a narrow range 0.74–0.78 as

proposed before [14]. The simulated redox level as NADPH ?

(NADPH+NADP+)21 ratio in high and low CO2 corresponds with

measured data (Burnap, personal communication) and reached

level 0.33 for high CO2 and 0.43 for low CO2. The employed

mean values for transcriptomic changes implies robustness of the

whole system to parameter change and thus against the

environmental changes. Finally, as shown in Table 1, the

comparisons of the simulated and experimental values for the

selected metabolites in cells under both high and low CO2

conditions correspond with each other.

The employed systems biology workflow for identification of

kinetic parameters has several steps. The first step is a search for

various sets of kinetic parameters matching the metabolic data

from cells grown at high CO2. Next step includes a switch from

high to low CO2 and applying the mean values of measured

transcript changes as weight factors for each Vmax estimated for

high CO2. The third step simulates a transition to steady state in

low CO2 and evaluates the match with experimental data from

cells grown at low CO2. If no match is found after hundreds of

parameter estimation runs, the model is re-evaluated and missing

reaction(s) or regulatory steps, e.g., izoenzyme, are implemented.

Finally, if the match is found, it is the first step for the model

validation, followed by comparing calculated and measured

energy and redox levels and growth rate ratio between high and

low CO2 states.

Prediction of cellular metabolic concentration at different
CO2 conditions

Different levels of CO2 greatly impact metabolic concentrations

[11,15] and gene expression [16,17,18]. However, it is difficult to

explain what regulates specific metabolic concentrations in cells

exposed to a changing environment without a systems biology

approach. To answer this question, we first asked whether it was

possible to predict and explain the absolute metabolic concentra-

tion of 3-phosphoglycerate (3PGA), the key metabolite in primary

carbon metabolism (Fig. 1). The flux of 3PGA between the

Calvin-Benson cycle and glycolysis is regulated by isozymes

phosphoglycerate mutases (PGMs). Since we have shown that

one-isoenzyme scenario cannot keep the balance between 3PGA

Isozymes in Prokaryotes
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and 2PGA [10], the prerequisite for such analysis is the

implementation of PGM 1, 2, and 3 into the model.

We focused on a broad range of 3PGA concentrations around

the measured levels (see Materials and methods). We calculated

concentrations of other metabolites based on measured relative

ratios [11] for each particular concentration of 3PGA within the

chosen range. Then, we applied redox (NADPH) and energetic

(ATP) constraints and ran the parameter estimation to fit the

metabolic dataset in high CO2 and checked whether the following

simulation in low CO2 matched the changes in metabolome as

well. In the case of positive result, we stored the result and

repeated it many times in order to get the highest biomass

production. The final step was a search for any trend allowing to

predict the absolute concentration of 3PGA. We note that the

biomass production in the model means the accumulation of

carbon atoms in sinks, i.e., pyruvate has 3 carbons so it contribute

less than ribulose with 5 atoms; the nitrogen metabolism is not

included in the model but it is not a limiting under our growth

conditions [11].

Figure 1. Scheme of primary carbon metabolism encoded as a kinetic model of Synechococcus elongatus PCC 7942. The model includes
the Calvin-Benson cycle, glycogen synthesis, photorespiratory pathways, glycolysis, and sink reactions (representing the adjacent pathway and
calculation of biomass production). Three reactions catalyzed by isozymes include phosphoglycerate mutases (green), glyceraldehyde-3-phosphate
dehydrogenases (blue), and phosphoglycolate phosphatase (red). Reversibility of a particular reaction is indicated by two small arrows. For further
details, see File S1. Purple color shows involved enzymes: RuBisCO-ribulose-1,5-bisphosphate carboxylase oxygenase, PGK-phosphoglycerate kinase,
GAP-glyceraldehyde 3-phosphate dehydrogenase, TPI-triose phosphate isomerase, ALDO-aldolase, FBPase-fructose-1,6-bisphosphatase, PFK-
phosphofructokinase, TKT-transketolase, SBPase-sedoheptulose-1,7-bisphosphatase, RPI-phosphopentose isomerase, PPE-phosphopentose epimer-
ase, PRK-phosphoribulokinase, GPI-glucose-6-phosphat isomerase, PGPase-phosphoglycolate phosphatase, GOX-glycolate oxidase, SGAT-serine-
glyoxylate transaminase, HPR-hydroxypyruvate reductase, GLYK-glycerate kinase, AGT-alanine-glyoxylate transaminase, TSS-tartronate
semialdehyde synthase, TSA-tartronate semialdehyde reductase, SHMT-serine hydroxymethyltransferase, GLOX-glyoxylate oxidase, PSAT*-
phosphoserine transaminase (3-phosphoglycerate dehydrogenase is, for simplicity, not implemented).
doi:10.1371/journal.pone.0105292.g001
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Comparing all acquired data from high and low CO2 revealed a

clear trend. Increasing cellular 3PGA concentrations have a

positive impact on biomass production at both CO2 conditions

and reveal a clear trend and a connection between 3PGA

accumulation and biomass production, as shown on Figure 2.

Furthermore, the reduction of 3PGA below the threshold level of

2.5 mM resulted in dramatically decreased biomass production

(Fig. 2). This interdependence explains why 3PGA is tightly

regulated to maintain specific concentrations under varying CO2

conditions [10]. Lower 3PGA levels slow down the growth and

higher levels have no (high CO2) or a negligible impact on growth

rate (low CO2). Taken together, the model predicts the absolute

concentration of 3PGA at the level providing the highest biomass

production. This conclusion is supported by experimentally

estimated concentrations of 3PGA, which are positioned on both

calculated curves at the very beginning of the saturated region

(Fig. 2).

Role of glyceraldehyde-3-phosphate dehydrogenases in
metabolic and redox regulation

In addition to PGM, there is another isozyme in primary carbon

metabolism, glyceraldehyde-3-phosphate dehydrogenase (GAP).

GAP catalyzes the conversion between glyceraldehyde 3-phos-

phate (G3P) and glycerate 1, 3-bisphosphate (Fig. 1). Compared

with PGM, which has a cardinal position [10] in the metabolic

crossroad between the Calvin-Benson cycle and glycolysis in

cyanobacteria (Fig. 1), GAP is localized in the linear part of the

reaction chain (Fig. 1). Thus, we investigated the role of GAP in

this ‘‘non-prominent’’ position.

In most cyanobacteria, three genes encoding for GAP isozymes

(gap1, gap2, and gap3) have been annotated. NAD-dependent

GAP1 (synpcc7942_0245) was reported to primarily act as a

glycolytic enzyme, whereas GAP2 operates within the Calvin-

Benson cycle [19]. The role of GAP3 (gene synpcc7942_1742) has

not yet been identified [20]. Due to sequence similarity, we have

concluded that gap1 and gap3 encode isozymes responsible for

glycolytic glucose conversion. Our model analysis of glycolytic

GAPs showed that a simulated double knock-out of GAP1 and

GAP3 significantly impacts biomass production, leading to a

24.3% decrease of biomass in ambient air but only a 4% decrease

in the high CO2 condition. Interestingly, the simulated knock-out

of either GAP1 or GAP3 had negligible (approximately 2%)

impact on biomass production in ambient air. This finding

corresponds well with the fact that GAP3 is missing in some

cyanobacteria (e.g., Synechocystis sp. PCC 6803). Thus, we focused

on the role of the Synechococcus 7942 GAP3.

Our pilot analysis showed that GAP3 also has a negligible

impact on its substrate and product. The common approach for

identifying the function of any enzyme is a sensitivity analysis to

reveal which metabolites are sensitive to changes of a particular

enzymatic activity [21]. However, this method is not applicable for

isozymes in prokaryotic cells because the system is not sensitive to

small changes in GAP3 activity due to the influence of GAP1 and

vice-versa. To determine which part of metabolism is sensitive to

GAP3 activity changes, we varied the parameter space of the

model to match data in the high CO2 condition and analyzed the

impact of different parameter sets on the system behavior in the

low CO2 condition. We have previously shown that this method is

Figure 2. Simulated impact of 3PGA concentration on biomass production in Synechococcus 7942 cells grown under high and low
CO2 conditions. Black circles indicate simulated data for high CO2, and the green circle indicates the experimental measurement. Black
squares indicate simulated data for low CO2, and the green square indicates the experimental measurement. The dotted arrow indicates the
slope between the linear and saturated regions. The blue line (measured) and blue triangle (simulated at the experimental level of 3PGA)
represent the growth ratio of high and low CO2. The first circle corresponds to the first square, the second circle corresponds to the second square,
etc., representing the coupled data describing a shift from high to low CO2.
doi:10.1371/journal.pone.0105292.g002
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able to reveal trends in iso-enzymatic regulation [10]. In

comparison to our previous work with PGMs, a trend was not

directly visible after plotting the results. We note that this is not a

problem of employed method but a consequence of different roles

of particular isozymes in different location in metabolism. In order

to see the trend in this case, it was necessary to arrange the data

from the lowest to the highest value (Fig. 3).

This analysis identified one group of metabolites, the hexoses,

that was sensitive to GAP changes, whereas most of the

metabolites tested were insensitive to GAP changes (Fig. 3). For

simplicity, concentrations of fructose 6-phosphate (F6P), glucose 6-

phosphate (G6P), and fructose 1, 6-bisphosphate (FBP) were

summed as hexoses, and individual curves of F6P, G6P, and FBP

yielded practically identical trends. The bifurcation point (sudden

qualitative change in behavior) can be clearly observed in both

scenarios. However, the addition of GAP3, i.e., cooperation of two

glycolytic GAPs, shifts its position and allows a perfect match with

the experimental data (Fig. 3). Since no regulatory impact on

other metabolites was observed, this result suggests a specific role

of GAP3 in metabolic regulation of hexose levels to improve the

control over carbohydrate synthesis, especially under changing

environmental conditions. Finally, this result also implies that our

‘‘trend search method’’ is applicable to isozymes other than

PGMs.

Moreover, we also found indications that the isozymes GAP1

and GAP3 influence the redox level in Synechococcus 7942. The

NADPH/NADP+ ratio was 50% in cyanobacterial cells at high

CO2 and increased to 75% at low CO2 conditions (Robert

Burnap, Oklahoma State University, USA, personal communica-

tion). We tested whether the lower flux of NADPH due to cyclic

electron transport around photosystem I at low CO2 [22,23] could

explain this difference, but the result was negative. We note that

decreased NADPH production due to cyclic electron transport

around photosystem I at low CO2 remains implemented in the

model. Furthermore, the test scenario revealed that neglecting the

possible NADH regulation of GAP1 and 3 does not allow for the

aforementioned measured changes in the NADPH/NADP+ ratio.

However, it is possible that the two glycolytic GAPs do not

exclusively use NADH but could be NADPH-dependent in the

non-compartmented cyanobacterial cell [24]. Assuming NADPH-

dependence for these two GAPs not only perfectly matched the

changing NADPH/NADP+ ratios under both CO2 conditions

(Fig. 4, black arrow) but also reflected the 3:2 ratio for ATP/

NADPH production known for photosynthetic organisms [25,26].

Taken together, the model predicts that the 25% increase of

reduced NADPH under ambient air is primarily caused by

glycolytic GAPs as a result of 3PGA accumulation in cells at

ambient air conditions (Fig. 2).

How is photorespiration integrated into primary carbon
metabolism?

Photorespiratory metabolism converts the toxic oxygenase

reaction product of Rubisco, 2-phosphoglycolate (2PG), back into

the Calvin-Benson cycle intermediate 3PGA. Despite the occur-

rence of an active CO2 concentrating mechanism, photorespira-

tion is essential for cyanobacteria under ambient air conditions

[15]. However, the reason for the essential nature of photorespi-

ration among cyanobacteria is difficult to understand because its

overall rate is low [7,27], and glycolate is believed to be excreted

from cyanobacterial cells [28]. The inclusion of photorespiration

into our model of primary carbon metabolism allowed the analysis

of its role in and implementation into overall metabolism in silico.

First, the role of isozymes of 2PG phosphatase (PGPase) was

analyzed. In contrast to PGM and GAP isozymes, which perform
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Figure 3. Impact of single GAP1 and dual GAP 1,3 regulation on metabolic levels cells of Synechococcus 7942. Match between
simulated and measured data in low CO2, depending on the estimated kinetic parameters (Vmax, km, and keqvalues) in high CO2 for GAP1 (red color)
and GAPs1,3 (green color). HEX represents the mean value of sum of F6P, FBP, and G6P; their values were nearly identical, and this simplification
was made to minimize the number of curves in one figure without losing any information. The black lines indicate 625% difference region around
the hypothetical perfect match value. Note: Parameter estimations are independent (similar to repeating experiments). However, to see the trend, the
data were arranged from the lowest to the highest value. Every point represents many repetitions in parameter estimation that give the same result,
which should identify all combinations and thus implies the existence of bifurcation behavior.
doi:10.1371/journal.pone.0105292.g003

Figure 4. Homeostasis of ATP and NADPH in Synechococcus 7942 cells under changing CO2 conditions. The upper left corner shows the
match between the simulated (black line) and experimental values (solid square) of the ATP ? (ADP+ATP)21 ratio at both high and low CO2. The
lower left section indicates the NADPH ? (NADPH+NADP+)21 ratio: grey circle for low CO2; grey asterisk for high CO2, grey dotted line for
simulation in low CO2, with neglecting NAD co-regulation in the reaction catalyzed by GAPs, grey line for simulation in low CO2 with NAD replaced
by NADPH in a reaction catalyzed by GAPs. The right section shows the measured and simulated ratio of ATP/NADPH production.
doi:10.1371/journal.pone.0105292.g004
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an important role in steady state metabolic regulation, the

estimated level of photorespiration in cells grown at high or low

CO2 steady states is not sensitive to the presence of putative

PGPase (Fig. 5). It was unclear why two PGPases are needed to

perform the photorespiration. Uncertainty regarding annotated

putative PGPases (annotated PGPase synPCC7942_2613, putative

PGPase synPCC7942_0217) makes this question even more

interesting. Regarding the role and number of PGPases, it should

be noted that the substrate 2PG of PGPase inhibits certain

enzymes of the Calvin-Benson cycle [29]. Hence, it is essential to

reduce the concentration of 2PG.

Thus far, only steady states at high and low CO2 have been

considered. Thus, we analyzed additional transcriptomic [11] and

metabolic (Table S1) data from the transition phase (3 h after shifts

from high to low CO2). Assuming the activity of only one PGPase

was able to match the level of 2PG but resulted in a gradual

increase of photorespiration (Fig. 5, black). However, matching

the level of 2PG with the combined action of two PGPases induced

a transient spike in the photorespiratory level (Fig. 5, gray). In

other words, one PGPase predicts a gradual increase of

photorespiration, while two PGPases suggests a significant increase

in Rubisco oxygenase activity after shifting to low CO2 conditions.

Since it is has been shown that 1) the photorespiratory flux

particularly increases during the transition phase of shifts from

high to low CO2 [27] and 2) cyanobacteria stop growing during

the transition phase [11], it can be concluded that one PGPase is

not able to efficiently remove the toxic 2PG in the transient state,

i.e., under changing conditions. Thus, our analysis of iso-

enzymatic regulation validates the annotation for more than one

putative PGPase and explains the need for two PGPases.

Finally, our analysis supported the notion that cyanobacteria,

similar to other oxygenic phototrophs, perform better with lower

or even no photorespiration. However, it is unclear why all

cyanobacteria harbor the genomic capacity for photorespiration

and do not release the low levels of photorespiratory glycolate

from the cell. If we take our estimation of photorespiration [27] to

be approximately 4.5% of the overall capacity of RuBisCO, we

can directly calculate the costs of cutting photorespiration out of

metabolism. The decrease in biomass production at low CO2

conditions (ambient air) was 11.3% without active photorespira-

tory pathway. This lower productivity is partially due to losing

organic carbon in the form of glycolate and partially by

rebalancing metabolism, namely the phosphoserine pathway.

However, the 11.3% calculated biomass decrease is valid only

for ATP non-limited systems and can increase to 18% under ATP-

(light)-limiting conditions in the natural environment. This growth

reduction may partially explain why all cyanobacteria kept the

photorespiratory pathway in addition to its role of detoxifying

critical intermediates, such as 2PG.

Conclusions

The main goal of this work is to show the diversity of iso-

enzymatic regulatory roles in prokaryotes and to show how to

decipher the functions of particular isozyme. The essential part for

such analysis is combining metabolic and transcriptomic data

within the multi-level kinetic model. In our study we have focused

on Synechococcus 7942 cultivated at high and low CO2 conditions

and two isozymes from central carbon metabolism, glyceralde-

hyde-3-phosphate dehydrogenase and 2PG phosphatase. The

heterogeneity of their roles includes boosting the glycolytic flux,

Figure 5. Photorespiratory level in Synechococcus 7942 cells at changing CO2 levels. PGPase–2-phosphoglycolate phosphatase, pPGPase–
putative PGPase. Photorespiratory level– the percentage of RuBisCO capacity used by its oxygenase activity. Figure represents two scenarios of the
same high R low CO2 transition. Two steady states and one transient state are shown.
doi:10.1371/journal.pone.0105292.g005
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tuning the hexose regulation and protection against toxic substrate

in changing environment. Finally, we also showed that complex

model is able to predict the absolute concentration of metabolites,

in our case shown for the first stable molecule of carbon synthesis,

3-phosphoglycerate.

The presented multi-level kinetic model introduces a new

methodology identifying the iso-enzymatic regulation which will

be employed for main cyanobacterial model organism, Synecho-
cystis sp. PCC 6803, and eventually for other prokaryotes. Starting

with Synechococcus 7942 reduces a risk of errors for more

‘‘prominent’’ species, cross-validate the gene annotation between

species, double amount of processed metabolic and transcriptomic

data and enable to explain the difference between both species,

and eventually among other cyanobacteria and bacteria.

Finally, it might be possible to partially validate the model-based

prediction by knocking down certain isozyme and making a

metabolic and transcriptomic screening for at least two different

conditions. Moreover, the model predicts changes in the level of

metabolites, which are currently not quantified by the GC-MS-

based metabolome protocol. Efforts to quantify those metabolites

by alternative methods would represent another strategy for future

model validation.
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