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Abstract. Gastric cancer (stomach cancer) is the fifth 
most common malignancy and the third leading cause of 
cancer-associated mortality worldwide. Identifying gastric 
cancer patients at an early and curable stage of the disease 
is essential if mortality rates for this disease are to decrease. 
A non-invasive blood-based test that is an indicator of gastric 
cancer risk would likely be of benefit in identifying gastric 
cancer patients at an early stage, and such a test may enhance 
clinical decision making. This study identified a four‑gene 
expression signature in peripheral blood samples associated 
with gastric cancer. A total of 216 blood samples were 
collected, including those from 36 gastric cancer patients, 
55 healthy controls and 125 patients with other carcinomas, and 
gene expression profiles were examined using an Affymetrix 
Gene Profiling microarray. Blood gene expression profiles 
were compared between patients with stomach cancer, healthy 
controls and patients affected with other malignancies. A 
four‑gene panel was identified comprising purine‑rich element 
binding protein B, structural maintenance of chromosomes 
1A, DENN/MADD domain containing 1B and programmed 
cell death 4. The four-gene panel discriminated gastric cancer 
with an area under the receiver-operating-characteristic curve 
of 0.99, an accuracy of 95%, sensitivity of 92% and specificity 
of 96%. The non-invasive nature of the blood test, together 
with the relatively high accuracy of the four-gene panel may 
assist physicians in gastric cancer screening decision making.

Introduction

Although the incidence of gastric cancer is on the decline, it is 
the fifth most common malignancy and the third leading cause 
of cancer-associated death worldwide, with 952,000 new cases 
diagnosed and 723,000 deaths occurring in 2012 (1). In China, 
gastric cancer ranks as the third most common cancer overall 
in incidence and mortality, with an even higher prevalence 
in rural areas (2). Gastric cancer patient survival critically 
depends on the stage at which the malignancy is diagnosed. 
The 5-year survival rate of early stage gastric cancer patients 
who have undergone resection is excellent, whereas survival is 
poor for patients with advanced disease (3,4). However, most 
gastric cancer patients are diagnosed only after their cancer 
has reached later stages, resulting in poor prognosis due to a 
high rate of relapse after gastrectomy (5). Thus, identifying 
gastric cancer patients at early and curable stages of the disease 
is essential for decreasing gastric cancer mortality.

Several screening techniques have been developed to 
facilitate detection of gastric cancer, including barium-meal 
photofluorography, gastric endoscopy and the serum pepsinogen 
test. Although it has been shown that these techniques are 
helpful for gastric cancer screening, none of these have become 
a standard or routine screening test due to the potential risks 
and inconvenience associated with these procedures (6-8). For 
example, the barium-meal photofluorography test requires 
dietary restriction and radiation exposure, and gastric 
endoscopy may result in perforation, cardiopulmonary events, 
aspiration pneumonia and bleeding (9). In addition, the serum 
pepsinogen and the barium-meal photofluorography tests 
are commonly plagued with false-positive results in clinical 
practice (9). Furthermore, the availability of endoscopic 
instruments and medical expertise required for mass screening 
remains limited, especially in rural areas (10). Thus, the 
challenge remains to develop a convenient, non-invasive and 
accurate test for detecting early stage gastric cancer.

Gene signatures or biomarkers have shown great potential 
in clinical applications such as disease detection, prognosis 
and targeted therapy. Peripheral blood includes immune cells, 
which dynamically respond to various physiological conditions 
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such as lesions and cancers occurring in the body (10). In 
particular, blood-derived RNA biomarkers are emerging as 
potentially important tools in the screening and early detec-
tion of various diseases. RNA-based biomarker technology 
is based on the Sentinel Principle® (11), which suggests that 
information regarding the current state of health or disease of 
an organism is conveyed in the blood via interactions between 
circulating blood cells and the cells, tissues and organs of 
the body. Blood cells therefore act as sentinels that indicate 
the status of health or disease in the body. As blood samples 
may be readily obtained and with little discomfort to patients, 
biomarkers derived from blood RNA provide an alternative to 
tissue biopsies for the diagnosis and prognosis of disease.

Over the past decade, the gene expression pattern of 
blood cells as a valuable resource for biomarker identification 
and pharmacogenomics has been investigated. It has been 
demonstrated that RNA profiling in whole blood may be used 
to develop molecular signatures of disease across a broad 
spectrum of pathology (12‑15). Blood mRNA expression 
profiles may identify a variety of non‑hematologic disorders, 
such as heart failure (16), cancer (17‑21), inflammatory bowel 
disease (22,23) and psychiatric disorders (24-26).

The present  study a imed to ident i fy gast r ic 
cancer-associated expression signatures by generating and 
analyzing gene expression profiles of whole blood from gastric 
cancer patients and corresponding controls.

Materials and methods

Ethics. This study was approved by the Ethics Committee 
of the Second Hospital of Anhui Medical University 
(IRB no. KY201405). Sample acquisition for identifying 
gastric cancer-specific genetic signatures was conducted 
between March 2014 and February 2015 at the Second 
Hospital of Anhui Medical University. All 216 participants 
including 36 gastric cancer patients, 55 healthy controls and 
125 non-gastric carcinoma patients were enrolled and provided 
written informed consent.

Study population. A total of 36 blood samples from gastric 
cancer patients were obtained from 27 male and 9 female adult 
patients (age range, 21-89 years; mean age, 63±10 years) and 
were collected before the patients had undergone any form 
of treatment including gastrectomy, radio/chemo-therapy 
or surgery. Patients enrolled for gastroendoscopy donated 
blood before the gastroendoscopy and were categorized 
after pathological examination. Healthy control samples 
comprised 55 blood samples from subjects with no pathology 
at gastroendoscopy (30 males and 25 females; mean age, 
31±9 years). In addition, 125 blood samples from patients with 
non-gastric carcinomas (91 males and 34 females; mean age, 
56±12 years) were collected before any form of treatment and 
were categorized after pathologist reports were reviewed. The 
non-gastric carcinomas included 33 lung cancers, 30 liver 
cancers, 21 prostate cancers, 20 nasopharyngeal carcinomas, 
12 breast cancers, 8 oral cancers and 1 colorectal cancer.

Blood collection, RNA isolation and RNA quality control. 
Peripheral whole blood (2.5 ml) was collected in PaxGene 
Blood RNA tubes (PreAnalytix GmbH, Hombrechtikon, 

Switzerland). Total RNA was then isolated as described 
previously (11). RNA quality was accessed using 2100 
Bioanalyzer RNA 6000 Nano Chips (Agilent Technologies, 
Inc., Santa Clara, CA, USA). All the samples for microarray 
analysis met the following quality criteria: RNA integrity 
number ≥7.0 and 28S:18S rRNA ≥1.0. RNA quantity was 
determined by a NanoDrop 1000 UV-Vis spectrophotometer 
(Thermo Fisher Scientific, Inc., Waltham, MA, USA).

Microarray hybridization. Whole blood RNA from the 
216 samples, including 36 gastric cancer, 55 healthy controls 
and 125 non-gastric carcinomas, was analysed by microarray 
hybridization in accordance with the manufacturer's protocol 
for Gene Profiling Array cGMP U133 P2 (Affymetrix; 
Thermo Fisher Scientific, Inc.). A total of 200 ng of each RNA 
sample was used for cDNA synthesis (GeneChip 3'IVT PLUS 
Reagent kit; Thermo Fisher Scientific, Inc.) and hybridization 
using the accessory reagents of the Affymetrix microarray, 
according to the manufacturer's protocols. Gene expression 
profiles of RNA samples were processed using Affymetrix 
Expression Console software (version 1.4.1; Affymetrix; 
Thermo Fisher Scientific, Inc.) and normalized by the MAS5 
normalization method (27), in which the global signal inten-
sity value was adjusted to 500 for each microarray to make it 
possible to compare the profiling variations among microar-
rays (27).

Microarray data analysis. To identify candidate genes for 
gastric cancer, probe sets were selected from 54,675 probe sets 
on the Affymetrix Gene Profiling cGMP U133 P2 microarray, 
according to criteria of reliability, repeatability and linearity. 
A total of 4,303 probe sets were selected for further analysis, 
which presented in all the samples with intensities ranging 
from 100 to 10,000. These probe sets were also present within 
the MAQC list for Affymetrix U133 P2 microarray, as reported 
by the MAQC Consortium (28) and were repeatable within 
±15% in whole blood technical replicates (unpublished data). 
All microarray procedures were performed by our laboratory 
at the National Engineering Center for Biochip at Shanghai 
(Shanghai, China).

A total of 216 samples was divided into a training set of 
31 gastric cancer, 33 controls and 99 non-gastric carcinoma 
(163 samples) and a test set of 5 gastric cancer, 22 controls 
and 26 non-gastric carcinoma (53 samples), which were used 
to generate and to validate a predictive model of gastric 
cancer. The methodology for data mining was based on 
the self-training logistic regression algorithm developed 
and reported previously (12,29,30). The area under the 
receiver-operating characteristic (ROC) curve (AUC) was 
calculated to characterize the ability of each probe set 
to distinguish gastric cancer from healthy controls and 
non-gastric carcinomas. First, of the 4,303 probe sets, the top 
60 probe sets exhibiting the highest correlation coefficient 
values when compared with gastric cancer (calculated using 
the CORREL function of Microsoft Excel 2010 software) 
were selected as the primary probe sets. Subsequently, 
another 60 probe sets (of the 4,303 probe sets) exhibiting high 
correlation coefficient values with the primary 60 probe sets 
were selected as secondary probe sets. A total of 60 primary 
and 60 secondary probe sets were paired one-by-one to 
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achieve a data matrix containing a possible 14,280 pairs of 
probe sets. The pair combinations were then generated from 
the 14,280 pairs and were used to calculate the ROC AUC 
values for each pair combination in order to find the combi-
nation with the highest ROC AUC.

To reduce the risk of overfitting the data in the ROC AUC 
calculation, each combination was limited to 2 or 3 pairs. As 
the number of 3-pair combinations from 14,280 pairs was 
extremely large (4.9x1011) and would make the screening 
process tedious and inefficient, the process of identifying 
top combinations was accelerated using a Monte Carlo 
algorithm (31). First a training fold was generated, made 
up of repeated random selections of gastric cancer samples, 
controls, and non-gastric cancer samples; that is, each set in 
the training fold was independently generated from the total 
samples and contained half of the samples of each category 
of samples (18 gastric cancer; 27 healthy controls and 63 
non-gastric cancer), and this process was repeated 1,000 
times to produce 1,000 randomly selected sets. Three pairs 
from the total 14,280 pairs were then randomly selected and 
combined continuously, until a 3-pair combination repeti-
tion occurred. A total of >70,000 3-pair combinations were 
generated during this process. The 3-pair combination was 
used as a basic unit to predict gastric cancer in the 1,000 
sample cohorts of the training fold. By comparing the 
ROC AUC value of each combination for predicting gastric 
cancer, the final 3‑pair combination with the best ability to 
distinguish gastric cancer from healthy controls and from 
non‑gastric carcinomas was identified. The ROC AUC values 
of each 3-pair combination in diagnosing gastric cancer were 
calculated using Commercial MedCalc statistical software 
(MedCalc Software bvba, Ostend, Belgium), according to 
DeLong methodology (32).

Due to the fact that the sample size used in the present 
study was small, it is possible that the genes with the highest 
ROC AUC values selected for gastric cancer detection may 
have derived from random chance. In order to avoid this, we 
performed a 2-fold cross-validation (iterated 1,000 times). In 
brief, all the samples were randomly and equally distributed 
into the training fold and the test fold. A predictive model 
was constructed based on selected genes and using logistic 
regression, according to the performance of the model in the 
training fold. The model was then used to predict the rest of 
the samples in the test fold. This was repeated 1,000 times. 
In order to test whether the selected genes were derived due 
to random chance, the model was tested twice. The first time 
the model was used to predict the sample cohort with the true 
cancer/control status and the second time the model was used 
to predict the sample cohort with the status randomly reas-
signed (null set).

Results

For the present study, blood samples were collected from 
216 individuals, including 36 gastric cancer patients (27 males 
and 9 females; mean age, 63±10 years), 55 healthy controls 
(30 males and 25 females; mean age, 31±9 years) and 
125 non-gastric carcinomas (91 males and 34 females; mean 
age, 56±12 years). The clinical characteristics of the gastric 
cancer patients are described in Fig. 1A-D, including age, 

tumor location, tumor node metastasis (TNM) status and 
pathological classification.

Four candidate genes for detecting gastric cancer were 
identified via a self‑training logistic regression model, including 
purine‑rich element binding protein B (PURB), structural 
maintenance of chromosomes 1A (SMC1L1), DENN/MADD 
domain containing 1B (DENND1B) and programmed cell 
death 4 (PDCD4). Two of the genes (PURB and DENND1B) 
were overexpressed (2.2- and 1.5-fold, respectively) in 
gastric cancer samples when compared with healthy control 
samples, while the other two genes (SMC1L1 and PDCD4) 
were underexpressed (-1.6- and -1.7-fold, respectively; data 
not shown). The linear fold changes in the expression of the 
four genes were statistically significantly different (P<0.001) 
between the gastric cancer patient samples and the healthy 
control samples (data not shown). Fig. 2A and B demonstrate, 
through hierarchical cluster diagrams, the performance of 
each candidate gene and of the four-gene panel for gastric 
cancer differentiation for a total of 216 samples (36 gastric 
cancer, 55 controls and 125 non-gastric carcinomas). It was 
demonstrated that the majority of the 36 gastric cancer samples 
were clustered together and separated from healthy controls 
and non-gastric carcinoma samples. Table I demonstrates the 
performance of the four candidate genes (PURB, SMC1L1, 
DENND1B and PDCD4) selected from the microarray 
analysis based on 163 samples in the training set cohort (31 
gastric cancer, 33 controls and 99 non-gastric carcinoma). The 
remaining 53 of the 216 samples were set aside as independent 
samples for validation, as a test set cohort. The four-gene panel 
had an AUC of 0.99, with 95% accuracy, 90% sensitivity, 
96% specificity for healthy controls and non‑gastric carcinoma 
in the training set.

Mathematical predictive models built on the training set 
were then used to evaluate the completely independent samples 
in the test set cohort (total 53: gastric cancer, 5; controls, 22; 
and non-gastric carcinoma, 26). The performance of the 
predictive model for the test set had characteristics similar 
to that of the training set: 0.99 of ROC AUC, 94% accuracy, 

Figure 1. Clinical characteristics of patients with gastric cancer. There were 
27 males (75%) and 9 females (25%).
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100% sensitivity, 94% specificity for healthy controls and 
non-gastric carcinoma (Table I). Three of the 26 non-gastric 
cancer samples, including 1 breast cancer, 1 colorectal cancer 
and 1 lung cancer in the training set were predicted as posi-
tives; the reason for these false-positive results requires further 
study in larger cohorts. When results for the training set and 
test set were combined, the four-gene panel had an accuracy 
of 95%, sensitivity of 92% and specificity of 96% for gastric 
cancer diagnosis. Fig. 3A demonstrates the performance of the 
four-gene panel as a box-whisker plot based on logistic regres-
sion analysis. Fig. 3B demonstrates the high ROC AUC value 
of >0.9 for gastric cancer diagnosis.

To rule out the possibility that this four-gene panel was 
due merely to chance 2-fold cross-validations were performed, 
in which samples were randomly and equally divided into 
training and test folds. The samples in the training folds were 
used to define coefficients and thresholds for building the 
predictive model based on logistic regression analysis, and the 
resulting predictive model was used to make predictions of 
the samples in the test folds. This process was repeated 1,000 
times to evaluate gastric cancer detection performance for the 
sample cohorts using the measured gene expression data, first 
with the true cancer/control status and then with the status 
randomly reassigned (null set).

It was demonstrated that the distributions of the accuracy 
and AUC ROC values over the 1,000 iterations resulted in 
2 well-separated curves for gastric cancer, with the ‘true disease 

state’ results forming a group with an accuracy and ROC AUC 
>90%, whereas the ‘null-set’ with the randomly reassigned 
disease status cluster had an accuracy and ROC AUC of ~50% 
(Fig. 3C). There was no significant overlap between the two clus-
ters, from which it was concluded that the observed performance 
of the 4-gene panel is unlikely to be the result of random chance.

The biological functions and gene networks of the selected 
4 genes (PURB, SMC1L1, DENND1B and PDCD) were 
investigated, as demonstrated in Fig. 4. Since there was an 
insufficient number of genes in the gastric cancer signature 
to conduct pathway analysis directly, the four genes in the 
blood-based gene signature were assessed for their known 
protein interactions, and a protein-protein interaction (PPI) 
network was constructed as demonstrated in Fig. 5. It was 
identified that 3 genes (PURB, DENND1B and PDCD) were 
connected through a protein-protein network. The pathways 
of PURB, DENND1B and PDCD were enriched with the 
proteins in the network according to their biological functions. 
SMC1L1 by contrast was not found to be connected in the 
protein network, and the reason for this is unknown. Table II 
presents the closely associated network canonical pathways 
using hypergeometric distribution analysis.

Discussion

It is well recognized that a minimally invasive, accurate diag-
nostic test would be of major importance in reducing mortality 

Figure 2. Heat map of gene expression and hierarchical cluster diagram showing (A) the performance of four separate candidate genes and (B) four‑gene panel 
for clustering 163 samples in the training set, including 31 gastric cancers, 33 healthy controls and 99 non-gastric carcinoma samples. The dendrogram was 
generated using the heatmap function in R, using default settings for the clustering algorithm.
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from gastric cancer. Efforts have been made to identify 
biomarkers that may be of clinical use in detecting early stage 
gastric cancer, including high throughput genetic, epigenetic, 
transcriptomic and proteomic technologies (33,34). Other 
investigators have studied circulating tumor cells in late-stage 
gastric cancer (35). By contrast, this study aimed to identify 
a tumor-independent gene expression biological signature for 
gastric cancer in peripheral blood, a potential ‘liquid biopsy’. 
Such a blood‑based signature, if clinically verified, may poten-
tially provide an objective, non-invasive, tissue-independent 
test for the detection of early gastric cancer.

The expression signature of peripheral blood cells that 
the present study has identified in gastric cancer patients 
may be a result of the interaction between peripheral blood 
cells and gastric cancer lesions. This hypothesis is supported 
by a previous study by Sakai et al (36), who reported that 
the peripheral blood cells of hepatocellular carcinoma 
patients shared common gene expression alterations with 
tumor‑infiltrating mononuclear inflammatory cells, providing 
clues to the source of gene expression alteration in peripheral 
blood cells of gastric cancer patients.

Although the gastric cancer samples used in the present 
study were limited in number, the prediction performance was 
evaluated by distributing the samples into traditional training 
and test sets. To reduce any possible bias that may occur due to 
the limited number of gastric cancer samples (for example, a 

single data point skewing the results, particularly for samples 
in the test set), the samples were randomly distributed using a 
random sampling process with fixed proportions in the training 
set (28/33) and in the test set (5/33). The four-gene panel was 
used to predict outcomes across the two sample sets (the 
training and test sets) via random sampling and cross-validation 
for 1,000 iterations. The prediction performances of the 
four-gene panel were consistent throughout the 1,000-times 
cross-validation process, suggesting high reliability and 
reproducibility of prediction results, despite the small number 
of gastric cancer samples in the test set.

The blood-based four-gene signature identified in the 
present study may be the first reported, and comprised the genes 
PURB, SMC1L1, DENND1B and PDCD4. The four-gene panel 
was obtained by analyzing blood cell expression profiles from 
36 gastric cancer patients, 55 healthy controls and 125 patients 
with non-gastric carcinomas. The logistic regression scores of 
gastric cancer, healthy controls and non-gastric cancer carci-
noma samples in the training set (31 gastric cancers, 33 controls 
and 99 non-gastric carcinomas) and the test set (5 gastric 
cancers, 22 controls and 26 non-gastric carcinomas) were 
analyzed. The logistic regression scores for each sample were 
calculated through a self-trained logistic regression model. 
The samples were predicted as gastric cancer if their logistic 
regression scores were ≥0. The four‑gene panel showed high 
performance in discriminating gastric cancer from healthy 

Figure 3. Performance of four‑gene panel for gastric cancer detection. (A) Box‑whisker plot to display the logistic regression scores in gastric cancer samples, 
healthy controls and other non‑gastric carcinoma samples in the training set and test set. (B) Logistic regression scores were calculated from a self‑trained 
logistic regression model. ROC, receiver operating characteristic. (C) Two-fold cross validation for predicting true disease state and random assigned disease 
state (null) for 1,000 iterations.

Table I. Performance of the four-gene panel for gastric cancer diagnosis.

 Training set Test set
 ------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------
 Gastric Healthy Non-GC  Gastric Healthy Non-GC 
Characteristic cancer controls carcinoma cancer controls carcinoma

Positive prediction 28 0 5 5 0 3
Negative prediction  3 33 94 0 22 23
Sensitivity  90%   100%
Specificity  96%   94%
Accuracy  95%   94%
ROC AUC  0.99   0.99

GC, gastric cancer; ROC AUC, area under the receiver operating characteristic curve. 



SHI et al:  BLOOD GENE EXPRESSION SIGNATURE OF GASTRIC CANCER 9807

controls and from non-gastric carcinomas with an accuracy of 
95% and ROC AUC value of 0.99 (95% confidence interval) by 
combining the results of the training and test sets.

There have been no previous reports associating PURB, 
SMC1L1 and DENND1B with gastric cancer. However, the 
involvement of PDCD4 in gastric cancer has been extensively 

Figure 5. Protein‑protein interaction network of the four gastric‑cancer‑specific genes in peripheral blood. The network indicates that PURB, DENND1B and 
PDCD4 are connected, while SMC1L1 was not.

Figure 4. Gene network of biological processes involving the four-gene panel, PURB, SMC1L1 (SMC1A), DENND1B and PDCD4 (all in bold ovals). PURB, 
purine‑rich element binding protein B; SMC1L1 (SMC1A), structural maintenance of chromosomes 1A; DENND1B, DENN/MADD domain containing 1B; 
PDCD4, programmed cell death 4. 
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examined. PDCD4 is associated with tumor cell promo-
tion, progression and metastasis and is regarded as a tumor 
suppressor and a potential molecular target for the diagnosis 
and treatment of certain tumors. It has been demonstrated 
that PDCD4 expression in human digestive tract cancers such 
as gastric, colorectal and pancreatic cancers was significantly 
downregulated compared with PDCD4 expression in normal 
digestive tract tissues (37-39). In addition, the degree of PDCD4 
downregulation was associated with the degree of differentiation 
of hepatocellular and gastric cancer cells (36,37).

The PPI network contained 75 genes closely associated 
with PURB, DENND1B and PDCD, which may be enriched to 
14 canonical pathways. Hypergeometric distribution analysis 
against canonical pathways demonstrated that these genes are 
closely associated with pathways involved in RNA transport, 
replication and repair, oocyte meiosis and Wnt signaling. 
Through the closely associated genes presented in the PPI 
network, the four gastric cancer‑specific genes found in this 
study were directly or indirectly involved in important biolog-
ical tumorigenic processes such as regulation of cell growth 
and death, DNA replication and mismatch repair (Table II).

Although SMC1L1, DENND1B and PURB have not been 
directly associated with gastric cancer, these genes exhibit 
biological relevance in other types of carcinoma, including 
colorectal, cervical, pancreatic and renal cancer. SMC1L1 is 
represented in cell cycle and oocyte meiosis pathways, which 
are responsible for the structural maintenance of chromo-
some 1A and provide nucleotide binding sites. SMC1L1 has 
not yet been associated with gastric cancer; however, this gene 
is reportedly associated with biological processes involved 
in cervical and colorectal cancer. It has been reported that 
SMC1L1 expression is upregulated in cervical cancer relative 
to normal cervical tissue (40). The SMC1L1 protein was also 
identified in gastric tissue and acts as a CDX2-binding protein, 
and CDX2 is regarded as a tumor suppressor for colorectal 
cancer (41). The expression of SMC1L1 for the S phase 
checkpoint protein was upregulated by treatment with ferulic 

acid (FA), whereas FA served a protective role in the devel-
opment of colon cancer (42). With respect to the DENND1B 
(DENN/MADD domain containing 1B), its single nucleotide 
polymorphisms have been significantly associated with risk 
for pancreatic cancer (43) and have been associated with 
genetically inherited renal cancer (44). PURB is responsible for 
encoding functionally cooperative proteins in the Pur family. 
It has been reported that the deletion of PURB in patients with 
acute myelogenous leukemia was significantly higher (>5‑fold 
higher) than statistically expected (45).

In conclusion, the four-gene panel identified from 
peripheral blood was able to differentiate gastric cancer 
from healthy controls and non-gastric carcinomas, and shows 
biological plausibility in cancer pathogenesis. The biological 
signature identified in this study differed from conventional 
tumor-derived cancer biomarkers. The candidate four-gene 
signature identified in the present study likely reflects subtle 
alterations in blood gene expression, serving as a systemic 
response to disease and possibly acting to maintain homeostasis 
or mediating disease pathology.

Although the findings of the present study require further 
validation using larger cohorts, this study suggests the possi-
bility of detecting gastric cancer using gene expression profiles 
derived from blood. As a non-invasive, blood-based test, the 
gene signature may be of benefit to healthcare providers 
to help assess the requirement for increased monitoring of 
patients, or to suggest the requirement for further, more inva-
sive and expensive procedures to confirm gastric cancer in an 
individual patient. The results of this study and other research 
demonstrate the potential for mining the dynamic genome to 
identify multiple disease signatures using quantitative RNA 
expression analysis of a single blood sample.
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