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Wheat is among the ten top and most widely grown crops in the world. Several diseases
cause losses in wheat production in different parts of the world. Bipolaris sorokiniana
(teleomorph,Cochliobolus sativus) is one of the wheat pathogens that can attack all wheat
parts, including seeds, roots, shoots, and leaves. Black point, root rot, crown rot and spot
blotch are the main diseases caused by B. sorokiniana in wheat. Seed infection by B.
sorokiniana can result in black point disease, reducing seed quality and seed germination
and is considered a main source of inoculum for diseases such as common root rot and
spot blotch. Root rot and crown rot diseases, which result from soil-borne or seed-borne
inoculum, can result in yield losses in wheat. Spot blotch disease affects wheat in different
parts of the world and cause significant losses in grain yield. This review paper
summarizes the latest findings on B. sorokiniana, with a specific emphasis on
management using genetic, chemical, cultural, and biological control measures.
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INTRODUCTION

Wheat (Triticum aestivum) is among the most widely cultivated crops in the world. Wheat
production exceeded 734 million tons in 2018 from 214 million ha of land (FAO, 2021). China,
India, Russia, USA, and France were the largest producers of wheat in the world in 2018, accounting
for more than 50% of the world’s production (FAO, 2021).

Wheat production is limited by several biotic stresses, with diseases being a major limiting
factor to wheat production worldwide. The total number of wheat diseases exceeds 200, but 50
diseases cause economic losses and are widely distributed (Wiese, 1987; Al-Sadi, 2016; Jarroudi
et al., 2017; Lalic et al., 2017; Riaz et al., 2017; Sharma et al., 2017). Each year about 20% of wheat is
lost due to diseases. Some of the major wheat diseases are rusts, spot blotch, common root rot, smut,
tan spot, Septoria blotch, powdery mildew, fusarium head blight, blast and a number of viral,
nematode, and bacterial diseases (Wiese, 1987; Chowdhury et al., 2013; Fetch et al., 2015; Zhu et al.,
2015; Al-Sadi, 2017; Abdullah et al., 2020; Aboukhaddour et al., 2020; Gultyaeva et al., 2020). They
can reduce yield or result in mortality of the infected plants. The focus of this review will be on the
etiology and management of B. sorokiniana diseases in wheat.

The genus Helminthosporium is a large group of the class Hyphomycetes that includes many
species pathogenic to plants and animals. This genus has been split into three genera: Exserohilum,
Bipolaris, and Drechslera, on the basis of conidial ontogeny and morphology (Alcorn, 1988).
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Bipolaris sorokiniana

B. sorokiniana (Sacc.) Shoemaker, (syn. Helminthosporium
sativum Pammel, King & Bakke, H. sorokinianum Sacc. in
Sorokin, and Drechslera sorokiniana (Sacc.) Subramanian &
Jain, causes diseases on a number of cereals, including wheat
(Tunali et al., 2008; Devi et al., 2018; Gultyaeva et al., 2018; Gupta
et al., 2018b; Jamil et al., 2018; Singh et al., 2019; Villa-Rodrıǵuez
et al., 2019; Li et al., 2020). The teleomorph for this fungus is
Cochliobolus sativus (Ito & Kuribayashi) Drechs. ex Dastur,
which is the sexual (perfect) state. C. sativus was not reported
in nature, except in Zambia (Raemaekers, 1991). However,
sexual reproduction of C. sativus has been rarely reported
(Sultana et al., 2018). On the other hand, most of the
reproduction of B. sorokiniana occurs through the production
of asexual conidia (Gupta et al., 2018a).

The genus Bipolaris has brown conidiophores, mostly simple,
producing conidia through the apical pore. The conidia are
brown, several-celled (phragmosporous), elliptical, straight, or
curved, germinating by one germ tube at each end (Barnett and
Hunter, 1998; Navathe et al., 2020) (Figure 1). B. sorokiniana has
olive-brown, ovate conidia, with tapered ends and a prominent
basal scar. The conidia are 15-28 X 40-120 µm and have 3- to 10-
septa (Wiese, 1987) (Figure 1).
DISEASES CAUSED BY B. SOROKINIANA

Bipolaris sorokiniana attacks different cereals, including wheat,
and causes common root rot, spot blotch, and black point
diseases. Root rot is one of the most widespread diseases of
wheat and it occurs in all areas where wheat is grown. Losses in
wheat due to common root rot and seedling blight vary. Canada
lost approx. 5.7% of wheat during 1969–1971 due to common root
rot, which is equivalent to $42 million (Ledingham et al., 1973).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
Smiley et al. (2005) estimated 35% loss in wheat yield due to
crown rot in the Pacific Northwest. Spot blotch is found wherever
wheat is grown, and it can cause significant losses (15-25%) in
warm areas (Gupta et al., 2018a). Seed infection by B. sorokiniana
can result in black point disease, which may result in root rot
and seedling blight (Wiese, 1987; Al-Sadi and Deadman, 2010;
Li et al., 2019b).

B. sorokiniana attacks several host plants from different
genera and families (Wiese, 1987; Farr et al., 1989). The major
plant hosts (listed by the genera name) that attacked by
B. sorokiniana are Agrohordeum, Agropyron, Agrostis,
Ammophila, Andropogon, Arthraxon, Avena, Bouteloua,
Bromus, Buchloe, Calamagrostis, Calamovilfa, Cenchrus,
Chloris, Cynodon, Dactylis, Dendrobium, Dichanthelium,
Digitaria, Echinochloa, Elymus, Eragrostis, Eremopyrum,
Festuca, Hordeum, Hystrix, Koeleria, Linum, Lolium, Medicago,
Muhlenbergia, Oryzopsis, Panium, Phalaris, Phleum, Poa, Secale,
Setaria, Sorghum, Stipa, Trifolium, Triticum, Vulpia, Zea, and
Zizania species (Farr et al., 1989). Disease symptoms and yield
losses in these hosts are variable. B. sorokiniana do not have
host specialization (forma speciales). However, isolates have
been found to differ in their aggressiveness on wheat and
barley (Al-Sadi, 2016).
BLACK POINT

Importance and Etiology of Black Point
Black point is a disease of cereal seeds, exhibiting a brown to
black tip at the embryo end of the grain. The affected kernels
usually become heavier than normal. The disease can result in
lowering quality and market value of grains, production of fungal
toxins in the seeds that may become harmful to livestock, and
causing seedling blight, root rot and different diseases. In
addition, it can reduce seed germination, seedling emergence,
FIGURE 1 | Morphology of Bipolaris sorokiniana culture and spores (1 scale is equivalent to 5 µm) grown on potato dextrose agar. The mycelial growth of the four
isolates shows mixed color (white and black) as explanied by Navathe et al. (2020), with varying intensities of the black color among the isolates.
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total photosynthetic area, and normal growth of plants (Al-Sadi
and Deadman, 2010; Neupane et al., 2010; Ghosh et al., 2018;
Li et al., 2019b; Somani et al., 2019).

The disease is caused by B. sorokiniana (Sisterna and
Sarandon, 1996; Xu et al., 2018b; Li et al., 2019b; Somani et al.,
2019; Li et al., 2020). In addition, some reports indicated the
association of Alternaria alternata, Fusarium spp., and
Penicillium spp. with wheat seeds developing black point
symptoms (Al-Sadi and Deadman, 2010; Gannibal, 2018;
Ghosh et al., 2018; Xu et al., 2018b; Li et al., 2019b; Li et al.,
2020). Black point has been reported in different parts of the
world, including China, Argentina, Oman, Australia, India, and
Bangladesh (Rashid et al., 1992; Sisterna and Sarandon, 2005; Al-
Sadi and Deadman, 2010; Poole et al., 2015; Xu et al., 2018b).

Bipolaris sorokiniana has been reported in the embryo
(Weniger, 1923) and in the endosperm of wheat seeds (Rashid
et al., 1997). Seed infection in wheat increases after flowering
(Andersen, 1952). It can also be affected by the genotype,
location (especially in warm and humid climates) and the
management practices (Zhang et al., 1990). Penetration into
the seed is achieved through the ovary wall and seed coat (Han
et al., 2010; Ansari et al., 2017). B. sorokiniana was reported to
remain viable for 10 years in wheat seeds (Machacek and
Wallace, 1952). The fungus can also survive as a resting
mycelium for 5 years (Mead, 1942). B. sorokiniana is very
frequently isolated from the seeds of wheat, reaching as high as
80%–90.5%, and with a common level of infection of about 9%–
22%, depending on the cultivar and the prevailing conditions
(Rashid et al., 1992; Rashid et al., 1997; Rashid, 1998; Li
et al., 2019b).

The incidence of black point disease is affected by many
factors, most importantly temperature and humidity. Higher
humidity (especially above 90%), rain and relatively lower
temperatures (<30 oC) after heading usually increase the
disease incidence (Cromey and Mulholland, 1988; Li et al.,
2019a; Li et al., 2019b).

Management of Black Point
Control of B. sorokiniana in the seeds of wheat could be achieved
through the use of resistant cultivars, fungicides, seed treatment,
or biocontrol agents. Cultivars can react differently to seed
infection due to several factors such as non-compatibility to
infection, restricted pathogen invasion of the seed parts due to
inhibitors, or reduced testa permeability (Gannibal, 2018; Singh
et al., 2019). In a study by Li et al. (2014) on 403 wheat genotypes
in the North China Plain, 62.5% of the genotypes were classified
as susceptible, while 37.5% were resistant to black point disease.
In another study, considerable variation was found among wheat
cultivars in their resistance to black point disease, with no
relationship between the earliness of ripening and resistance
(Cromey and Mulholland, 1988). Connert and Davidson (1988)
showed that wheat cultivar resistance to black point disease can
be affected by the causal agent, with some cultivars having more
resistance to B. sorokiniana than to A. alternata.

A study in Pakistan revealed that tebuconazole + imidacloprid
and difenoconazole + cyproconazole were the most effective
chemicals for the management of black point disease of wheat
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
(Shahbaz et al., 2018). Triazole fungicides (e.g., propiconazole
and tebuconazole) inhibit the synthesis of sterols, which are
building blocks of the membranes of fungal cells. This makes
them ideal chemicals for the management of Bipolaris and other
fungal pathogens (Ansari et al., 2017; Somani et al., 2019).
Treating seeds with fungicides helps protect wheat seeds from
infection. In addition, it helps manage diseases associated with
seed infection, including root and crown rot. Some of the
common fungicides used in seed treatment include fludioxonil
and difenoconazole (Wei et al., 2021) and Vitavax-200 (Carboxin
37.5% + Thiram 37.5%) and Homai-80WP (Thiophanate methyl
50% + Thiram 30%) (Malaker and Mian, 2009).

The use of biocontrol agents has been effective in reducing
black point disease. Bacillus amyloliquefaciens, B. megaterium,
Trichoderma harzianum, and Epicoccum sp. were found
antagonistic against the causal agents of black point disease
(El-Gremi et al., 2017). The isolates also improved germination
and seedling growth of wheat, with B. amyloliquefaciens being
the most efficacious, as it was as effective as the fungicide
diniconazole in increasing the weight of kennels. In another
study, the antifungal compounds produced by B. vallismortis
were effective in inhibiting black point fungi (Kaur et al., 2015;
Kaur et al., 2017). A study byMónaco et al. (2004) showed that T.
harzianum and T. koningii significantly inhibited the growth and
caused mycelial abnormalities in Bipolaris sorokiniana and
A. alternata.
SPOT BLOTCH

Importance and Etiology of Spot Blotch
Spot blotch is a common disease on wheat in all continents
(Duveiller et al., 1998; Al-Saadi et al., 2002; Neupane et al., 2010;
Al-Sadi, 2016; Devi et al., 2018; Gultyaeva et al., 2018; Gupta
et al., 2018a; Gupta et al., 2018b). Losses due to spot blotch are
high, especially in warmer areas of the world. They have been
reported to reach 16%–43% (Sharma and Dubin, 1996; Duveiller
and Sharma, 2009; Ayana et al., 2018; Devi et al., 2018). In
addition, the hotspot for spot blotch disease is in South Asia
(Van Ginkel and Rajaram, 1998; Joshi et al., 2007; Sharma et al.,
2018; Sultana et al., 2018).

Spot blotch symptoms appear as brown lesions with yellow
halos, which enlarge with time to cover larger areas of the leaf.
Lesions can turn olive brown in color, especially under humid
conditions that promote sporulation of the fungus (Al-Sadi,
2016; Gupta et al., 2018a; Gupta et al., 2018b). Bipolaris
sorokiniana is the pathogen responsible for spot blotch disease
in wheat (Devi et al., 2018; Gupta et al., 2018a; Gupta et al.,
2018b; Tembo et al., 2018; Aggarwal et al., 2019). The symptoms
of Pyrenophora tritici-repentis-induced tan spot, and Alternaria
leaf blight resemble those of spot blotch. One difference is that
tan spot is characterized by the appearance of dark fruiting
structures, called pseudothecia, on wheat straw, which is not the
case for spot blotch (Carmona et al., 2006). Spot blotch differs
from Alternaria blight by the development of dark spot areas,
which represent masses of conidia that are produced at later
March 2021 | Volume 11 | Article 584899
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infection stages (Neupane et al., 2010; Viani et al., 2017). The
spot blotch symptoms elongate and coalesce (Chand et al., 2010).

Leaf infection by B. sorokiniana could come from seeds, root
or air. If the pathogen is in the soil, then infection could occur
through stomata on the hypocotyl, from where the fungus
progresses to the root, shoot and coleoptile (Sprague, 1950).
Spore germination can occur within 4–6 h and penetration by B.
sorokiniana occurs through stomata and epidermis (Raguchander
et al., 1988).

Studies in India and Brazil have shown that spot blotch is
usually favored by warm weather (Chaurasia et al., 2000; Kumar
et al., 2002; Acharya et al., 2011; Singh, 2017). Also, high
humidity is an important factor in enhancing symptom
development (Viani et al., 2017). Infection usually starts on the
older leaves (Gupta et al., 2018a). In addition, water stress and
terminal heat stress have negative effects on the resistance of
wheat to B. sorokiniana (Duveiller and Sharma, 2009).
Management of Spot Blotch
No complete resistance to spot blotch has been reported in
wheat, but wheat cultivars have been reported to differ in
resistance to the disease (Table 1) (Ahirwar et al., 2018; Ayana
et al., 2018; Gurjar et al., 2018; Jamil et al., 2018; Singh et al.,
2018; Tembo et al., 2018). Therefore, breeding and selecting
resistant cultivars is the best option for managing spot blotch in
the long term (Gupta et al., 2018a). Among 150 wheat genotypes
screened in Zambia, the genotypes 19HRWSN6, 19HRWSN7,
and 19HRWSN15 were found resistant (Tembo et al., 2018). In
addition, a study on 60 wheat genotypes in Nepal indicated that
the genotype NL750 had a high level of resistance to spot blotch,
while the tolerant genotype BL1473 is able to produce good
yields despite the high disease levels (Sharma et al., 2004; Rosyara
et al., 2007).

Resistance can be induced using some microorganisms and
compounds. The combined application of Trichoderma
harzianum and methyl jasmonate was found to enhance the
activities of defense related enzymes, including catalase,
ascorbate peroxidase, phenylalanine lyase, and peroxidase
(Singh et al., 2019). In addition, methyl jasmonate is known to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
inhibit spore germination in B. sorokiniana. In another study,
wheat was found to strongly elicit salicylic acid signaling,
followed by an enhanced expression of phenylpropanoid
pathway genes, which leads to the accumulation of phenolics
that play a role in the resistance against spot blotch (Sahu et al.,
2016). Also (Sharma et al., 2018) showed that salicylic acid and
syringic acid negatively correlated with spot blotch severity,
indicating their role in disease defense.

In a study on the efficacy of 195 bacterial strains in
suppressing B. sorokiniana, Bacillus subtilis TE3 strain proved
to be the most efficacious in suppressing the disease (Villa-
Rodrıǵuez et al., 2019). The mechanisms of actions of the
antagonistic bacterial strain were through colonizing the wheat
phyllosphere and the antimicrobial compounds produced by the
bacterium. Additionally, B. safensis and Ochrobactrum
pseudogrignonense have been reported to promote resistance to
spot blotch in wheat (Sarkar et al., 2018). However, the efficacy of
biocontrol agents is usually limited by environmental factors and
growing conditions.

Several fungicides have been developed and used for the
management of spot botch. The yield increase in fungicide
treated plots suffering from leaf diseases compared to
untreated plots was 10% in Sweden (Djurle et al., 2018) and
30% in Argentina (Castro et al., 2018). The fungicides
carbendazim (Yadav et al., 2013), difenoconazole (Ishikawa
et al., 2012), propiconazole (Singh and Singh, 2007; Gupta
et al., 2017), and Azoxistrobin (Navathe et al., 2019) were
efficacious in managing spot blotch. In addition, Mishra et al.
(2014) showed that silver nanoparticles act as a fungicide against
spot blotch. The use of silicon was also found to improve
resistance of wheat leaves to B. sorokiniana infection
(Domiciano et al., 2010). In addition to these management
strategies, balanced nutrition and crop rotation should form a
part of the integrated management strategies in managing spot
blotch in wheat (Sharma et al., 2005; Sharma et al., 2006; Yadav
et al., 2013; Mazzilli et al., 2016; Bankina et al., 2018; Sˇvarta and
Bimsˇteine, 2019). The application of nitrogen alone without
phosphorus and potassium is known to increase the severity of
spot blotch (Singh et al., 2012).
COMMON ROOT ROT AND CROWN
ROT DISEASES

Importance and Symptoms
Common root rot and crown rot of wheat are important diseases
in most wheat-growing countries, including China, Australia,
Middle East, and Europe (Fedel-Moen and Harris, 1987; Tunali
et al., 2008; Al-Sadi and Deadman, 2010; Poole et al., 2015; Gupta
et al., 2018b; Xu et al., 2018a). They are characterized by the
development of necrotic lesions on the roots, subcrown, and
crown. The lesions are dark brown to black in color.
Development of symptoms on the root is usually followed by
symptoms on wheat crowns (Al-Sadi and Deadman, 2010;
Qostal et al., 2019).
TABLE 1 | Examples of wheat genotypes having less susceptibility to spot
blotch.

Country Wheat genotypes/cultivars References

Afganistan PAMIR‐94 (Bainsla et al., 2020)
Brazil BH 1146 (Singh et al., 2016;

Singh et al., 2018)
China Ning 9415, Ning 8201 (Schlegel, 1997; Bainsla

et al., 2020)
India Chirya 7, Chirya 3, Ning 8139, Suzhou,

Milan-3, HD 2888, HD 2967, WR 95,
IC529962 and IC443652

(Gurjar et al., 2018;
Kumari et al., 2018;
Choudhary et al., 2019)

Mexico BARTAI, WUYA (Singh et al., 2018)
Nepal NL750 (Sharma et al., 2004;

Rosyara et al., 2007)
Zambia 19HRWSN6, 19HRWSN7 and

19HRWSN15
(Tembo et al., 2018)
March 2021 | Volume 11 | Article 584899
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The disease is caused by B. sorokiniana (Tunali et al., 2008; Xu
et al., 2018a; Yue et al., 2018), which is also associated with other
fungi including Fusarium pseudograminearum, F. culmorum,
Microdochium nivale, Pythium spp., and Rhizoctonia cerealis
(Moya-Elizondo et al., 2011; Saremi and Saremi, 2013; Kazan
and Gardiner, 2018; Xu et al., 2018a; White et al., 2019).

Yield and quality of wheat could be reduced by common root
rot and crown rot. Common root rot was reported to result in
yield losses of 6%–24% (Wildermuth et al., 1992). Yield
reduction due to crown rot has been estimated to range from 0
to 89% in New South Wales, Australia (Klein et al., 1991). In
Queensland (Australia), crown rot caused up to 26% yield loss in
some fields, with an overall reduction by 5% for the whole state
(Burgess et al., 1981), while a reduction by up to 35% was
reported in the Pacific Northwest, North America (Smiley
et al., 2005). Reduction in yield is usually because of the effect
of common root rot and crown rot diseases on the number of
tillers and on the number and size of kernels (Duczek and Jones-
Flory, 1993).

Common root rot is a disease of dry and warm areas. Disease
severity and incidence is affected by soil moisture, soil
temperature, cultural practices, pathogen population in the
soil, and time of infection. Disease severity increases when the
plant is under stress or grown in warm soil and less moisture
(Mathieson et al., 1990; Acharya et al., 2011). In addition, the
incidence of common root rot was found to be affected by the soil
populations of B. sorokiniana at the time of planting (Boer et al.,
1991). Propagules of B. sorokiniana can go to a depth of 40 cm
in the soil, but the population of the fungus is highest in the top
10 cm (Mathieson et al., 1990).
Management of Common Root Rot and
Crown Rot
Different methods have been used in the control of common
root rot and crown rot of wheat. The use of the endophytic
bacterium Pseudomonas mediterranea resulted in a significant
reduction in root and crown rot of wheat in Pakistan (Ullah
et al., 2020). Disease severity index of wheat common root rot
decreased from 90.8% to 27.7% following the use of the
actinobacterium Nocardiopsis dassonvillei as a biocontrol
agent, which was attributed to the ability of this isolate to
produce siderophores and hydrogen cyanide (Allali et al.,
2019). The actinobacterium was also found to enhance
growth of wheat through the production of indole-3-acetic
acid. In another study, the bacterial strain Lysobacter
enzymogenes C3 and the fungal strain Rhizoctonia BNR-8-2
were found to result in a significant reduction in the common
root rot of wheat, which was attributed to the production of
chitinases, b-1,3-glucanases and antibiotics, especially by
L. enzymogenes C3 (Eken and Yuen, 2014). Yue et al. (2018)
showed that the biocontrol fungus Chaetomium globosum is
effective in inhibiting B. sorokiniana associated with wheat
common root rot, which is attributed to the production of
secondary metabolites by C. globosum.
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Cultural practices are important for the management of plant
diseases. Crop rotation of wheat with Brassica carinata was
found to result in a significant reduction in common root rot
and crown rot diseases (Campanella et al., 2020). In Iran, soil
solarization was found effective in reducing wheat root rot
(Saremi and Saremi, 2013). The use of organic agriculture
helped reduce populations of Fusarium populations associated
with crown rot of wheat in Canada (Fernandez et al., 2011), while
zero tillage was found to increase wheat yields and reduce the
incidence of wheat root rot in Mexico (Govaerts et al., 2006).

Different cultivars of wheat were reported to differ in
resistance to common root rot (Al-Sadi and Deadman, 2010;
Manghwar et al., 2018). In addition, the production of GmPGIP3
transgenic wheat plants enhanced the resistance of wheat to
Bipolaris sorokiniana-induced common root rot as well as
Gaeumannomyces graminis var. tritici-induced take-all diseases
in wheat (Wang et al., 2015). Fungicides are not a good choice for
the management of wheat root and crown diseases (Fernandez
et al., 2010).
CONCLUSION

Bipolaris sorokiniana is a serious pathogen, not only because it
results in significant yield losses, but also because it can attack
most wheat organs, including roots, crown area, stems, leaves
and kernels. This means that management strategies should not
only focus on limiting the presence of the fungus in the aerial
parts of the plants, but attention should be given to B.
sorokiniana inoculum present in soil. In addition, it is
important to develop an integrated disease management
program for managing B. sorokiniana using cultural practices,
biological control and chemical fungicides. Since the search for
biocontrol agents has been given more attention during recent
years, it is important to find antagonistic strains that can
complement cultural and chemical practices in the field. The
search for new sources for resistance should consider finding less
susceptible cultivars to all diseases caused by B. sorokiniana,
instead of focusing on one disease.
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