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ABSTRACT

Background: The surveillance of antimicrobial
resistance genes (ARGs) and bacteria is one critical
approach to prevent and control antimicrobial
resistance (AMR). Next-generation sequencing (NGS)
is a powerful tool in monitoring the emergence and
spread of ARGs and resistant bacteria. The horizontal
transfer of ARGs across host bacteria mediated by
plasmids is a challenge in NGS surveillance for
resistance because short-read sequencing can hardly
generate the complete plasmid genome sequence, and
the correlation between ARGs and plasmids are
difficult to determine.

Methods: The complete genome sequences of 455
mer-carrying plasmids (pMCRs), and the data of their
host bacteria and isolation regions were collected from
the NCBI database. Genes of Inc types and ARGs were
searched for each plasmid. The genome similarity of
these plasmids was analyzed by pangenome clustering
and genome alignment.

Results: A total of 52 Inc types, including a variety
of fusion plasmids containing 2 or more Inc types were
identified in these pMCRs and carried by complex host
bacteria. The cooccurrence of ARGs in pMCRs was
generally observed, with an average of 3.9 ARGs per
plasmid. Twenty-two clusters with consistent or highly
similar sequences and gene compositions were
identified by the pangenome clustering, which were
different
countries/regions, years or host bacteria in each cluster.

Discussion: Based on the

characterized ~ with  distributions  in
complete  plasmid
sequences, distribution of mcr genes in different Inc
type plasmids, their co-existence with other AMRs,
and transmission of one pMCR across regions and host
bacteria can be revealed definitively. Complete plasmid
genomes and comparisons in the laboratory network
are necessary for spread tracing of ARG-carrying
plasmids and risk assessment in AMR surveillance.
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INTRODUCTION

The misuse of antimicrobials in clinical and
veterinary medicine for prophylactic, therapeutic, and
growth promoters (/—2) accelerates the emergence and
spread of antimicrobial resistance, posing a threat to
the effective control of bacterial diseases. Coupled with
the cross regional speed of resistance caused by the
acceleration of globalization, a long-term mechanism
of global surveillance for antimicrobial resistance genes
(ARGs), such as a laboratory network, should be
established. ARGs spread among bacteria through
vertical transmission and horizontal transfer, in which
plasmid-mediating ARG transmission is quite active
and even spread across bacterial species. Next-
generation sequencing (NGS) of microbial genomes
has been widely applied in the laboratory and
epidemiological surveillance for infectious diseases.
Because of the limitations of short-read sequencing
techniques, complete plasmid sequences are hard to be
assembled from short reads, which results in the data
loss of plasmid-carrying genes and difficulty in
determining if ARGs are carried by plasmids.
Therefore, the tracing of resistant plasmids will be
unable to implement in the resistance surveillance.

The colistin was reintroduced as a last resort in the
treatment of carbapenem-resistant Enterobacteriaceae
infections (3). However, the plasmid-mediated colistin
resistance gene (mcr) was found in 2015, which
increases the threat of rapid transmission of colistin
resistance (4). In the following years, 10 genotypes of
mer genes have been reported in more than 50
countries on 6 continents (5), and their host bacteria
were isolated from animals, environment, and humans
(6). Besides mcr genes, monitoring and tracing of their
plasmid vectors are also necessary in understanding,
spread assessment, and control of mecr-mediated
resistance.

In this study, we retrieved the sequences of mcr-
carrying plasmids (pMCRs) which have the complete
plasmid genomes and analyzed their resistance gene
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contents and genome clustering. Possible transmission
of pMCRs was found across countries, years, and hosts,
which revealed the important roles of the complete
plasmid genomes for the tracing of resistant plasmids
in antimicrobial resistance surveillance.

MATERIALS AND METHODS

Collection of pMCRs with Complete

Genome Sequences

A total of 455 pMCRs along with their geographic
locations, collection years, and complete genome
sequences in the National Center for Biotechnology
Information (NCBI) database were retrieved by blasted
mer genes (data as of October 2021). Due to low
sequence identity between mcr genotypes and high
sequence similarity between genotyped variants, a
representative sequence for each genotype was selected
for blasting, and all plasmid sequences hit were
collected and incorporated into the alternative dataset
before dereplication.

Identification of Plasmid Inc

Types and ARGs
Plasmid Inc types and ARGs were identified by
PlasmidFinder 2.1  (https://cge.cbs.dtu.dk/services/
PlasmidFinder/) (7) and ResFinder 4.1 (https://cge.
cbs.dtu.dk/services/ResFinder/) (8).

Pangenome Tree

The coding sequences of plasmids were collected and
the nonredundant homologous gene set was calculated
by CD-HIT (9). Then, a matrix with rows and
columns of the selected plasmid and nonredundant
homologous genome was constructed. When a
homologous gene was identified on the plasmid, 1 was
input into the corresponding position in the matrix,
coverage was set at 60% and the value was set at
0.00001. Otherwise, 0 was entered. Finally, the matrix
was output as a gene clustering tree and displayed by

iTOL v6 (https://itol.embl.de/) (10).

Plasmid Whole Genome Alignment

After manual alignment of the plasmid sequences,
genome alignment and display were performed using
the Mauve plugin (/1) in Geneious Prime (v2021.2).
The seed weight calculation and the minimum LCB
score were set to automatic. The evolutionary tree was
constructed using UPGMA for the tree building
method and Tamura Nei for the genetic distance
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model.

World Map
The world map was obtained from the standard map
service system of the Ministry of Natural Resources

(http://bzdt.ch.mnr.gov.cn/).
RESULTS

Diversification of Plasmid Inc Types and
Wide Host and Geography

Distribution of pMCRs

The 455 pMCR complete genome sequences in this
study were collected from 44 countries across 6
continents from 1998 to 2020 (Supplementary Figure
S1A, available in https://weekly.chinacdc.cn/). The
plasmid hosts involved 30 species of 15 genera, and
Escherichia accounted for the vast majority (234,
51.4%), and about half of the plasmids were isolated
from Escherichia coli (232, 51.0%) (Supplementary
Figures S1B and S2, available in https://weekly.
chinacdc.cn/).

In these plasmids, 52 incompatible types (Inc) were
identified, of which 5.9% were unknown. IncHI2
(135, 29.7%), Incl2 (107, 23.5%), and IncX4 (66,
14.5%) were the 3 major Inc types and had wide
national distribution (Supplementary Figures S1C and
S3, available in  https://weekly.chinacdc.cn/).
Interestingly, 62 (13.6%) plasmids were fusion
plasmids composed of at least 2 Inc types
(Supplementary Figure S1C).

Eight mcr genotypes were found in this dataset. mcr-
I-carrying plasmids (271, 59.6%) accounted for most
of the collection (Supplementary Figure S1D, and $4).
In this dataset, the mcr genotypes tended to correspond
to some common plasmid Inc types. In Incl2 and
IncX4 plasmids, only mcr-1 was found. IncHI2 had
mer-1 or mer-9, and IncP1 carried mer-1 or mer-3
(Figure 1). The remaining Inc types did not show a
high association with mcr genotypes due to the small
sample size. Additionally, the host bacteria of IncX4
plasmids were narrow, with only E. coli, S. enterica,

and K. pneumoniae, and the host range of IncHI2 was
broad (Figure 1).

The High Cooccurrence Rates of

ARGs in pMCRs
Except for mcr, a total of 97 ARGs carried by
pMCRs were identified. The average number of ARGs

CCDC Weekly /Vol. 4 /No. 12 243


https://cge.cbs.dtu.dk/services/PlasmidFinder/
https://cge.cbs.dtu.dk/services/PlasmidFinder/
https://cge.cbs.dtu.dk/services/ResFinder/
https://cge.cbs.dtu.dk/services/ResFinder/
http://bzdt.ch.mnr.gov.cn/
Figure S1B
Figure S1B
S2
https://weekly.chinacdc.cn/
https://weekly.chinacdc.cn/
Figure S1C
S3
Figure S1C
https://cge.cbs.dtu.dk/services/PlasmidFinder/
https://cge.cbs.dtu.dk/services/PlasmidFinder/
https://cge.cbs.dtu.dk/services/ResFinder/
https://cge.cbs.dtu.dk/services/ResFinder/
http://bzdt.ch.mnr.gov.cn/
Figure S1B
Figure S1B
S2
https://weekly.chinacdc.cn/
https://weekly.chinacdc.cn/
Figure S1C
S3
Figure S1C

China CDC Weekly

/(

Dther Inc types (87)

IncQ1/HI2 (6)

I|1<,FIA(II]I)/]]I]A HI1B(R27) (5)

po111 (3)

IncN/F [Ii(pNI)M Mar)/HI1B(pNDM-MAR) (2)
IncY (2)

IncN/HI2/Y (1)

IncHI2/FIB(AP001918)/FIC(FII) (1)
IncFIB(K)/p0111 (1)
IncN/FIB(AP001918)/FIC(FII) (1)
IneN/FIACHITYHITA/HITB(R27) (1)
IncC (5) mer-1(271)
IncFII(29) (1)

IncHI2/FIB(K) (1)
IncFIB(K)(pCAV1099-114) (3)
IncFIB(K)/FII(Yp) (4)
IncFIB(pECLA) (2)
IncFIB(pECLA) FII(pECLA) (1)
IncMI/HI2 (1
IncQ1/FIA/FIB(AP001918) (1)
IncFII (4)

IncFII(pMET) (2)

IncR/X1 (1)

IncX1 (2)

Incl1-I(Alpha) (2)

IncM I/FIACHIT)/FIB(K)(pCAV1099-114)/HI1 B(XONDM-MAR)/R (1) mer-9 (96)
IncN/FIB(K) (1)
IncR (

IncFII(pCoo) (2)
IncFIB(AP001918) (1)
IncQ1/R/IncFII(K) (1) mer-3 (38)
IncFIB(K)/FII(K) (1)

%‘“{{HE: (RI:I) mer-8 (16)
nc -
IncFIA(HI1)/FII(pKP9T) (3) mer- 10 };4)
IncFIB(pQil) (3) mer-2(13) W
IncFIA(HIT)/FIB(K)(pCAV1099-114)/HI1B(pNDM-MAR)/R (1) me ’_'7 (1;
IncFIA(HI1)/FIB(K) (2) mer-T
IncFIB(K)(pCAV1099-114)/FII(K)/HI1 B(pNDM-MAR) (1)
IncFIA(HIT)R (1)

IncFIA(HI)/FII(K) (1)

IncFIB(K) (3)

IncFIA(HII) (2)

IncFIB(K)/FII(pKP91) (1)

IncFII(pECLA) (1)

pKPC-CAV1321 (1)

ColE10 (2)

klncFIA(IIIl)/FIB(K)’FI](K) (1) /

mcr genotype

- - — - — S = —

Inc type Host bacteria
Incl2 (107)
Escherichia coli (232)
IncX4 (66)
IncHI2 (135)
/ Salmonella enterica (59)
//

IneN/HI2 (17) Enterobacter hormaechei (48)

IncP1 (16)
Klebsiella pneumoniae (39)

Shigella sonnei (14)
Enterobacter cloacae (10)
Citrobacter freundii (7)
Leclercia adecarboxylata (4)
Enterobacter asburiae (3)

Other Inc types (87)
Serratia marcescens (1)
Phytobacter ursingii (1)

Mixta calida

Klebsiella qzmwpnezmmnme 3)
Klebsiella grimontii (1
Klebsiella aerogenes (2)
Enterobacter roggenkampii (6)
Enterobacter kobei (4)
Cronobacter sakazakii (1)

Unknown type (27)

farmeri
ecorgiana (1)

a albertii (1)
Cttmbm ter braakii (1)
Acinetobacter baumannii (4)
Aeromonas veronii (
Aeromonas salmonicida (2)
Aeromonas hydrophila (1)
Escherichia fergusonii (1)
Klebsiella oxytoca (3)
Raoultella mmlhnml_\ tica (1)
Enterobacter mori (1)

FIGURE 1. The correspondence between mcr genotypes, Inc types, and hosts.
Note: The numbers in brackets represent the number of plasmids. Other Inc types are expanded in the left box.

was 3.9 per plasmid, and 48.4% of the plasmids carried
two or more ARGs including mcr genes (Figure 2A).
The average number of ARGs carried by IncHI2 and
IncC  pMCRs was 6.8 and 7.0 per plasmid,
respectively. In contrast, Incl2, IncX4, and IncPl
carried low numbers of ARGs, approximately 1.0 to
1.2 per plasmid, respectively (Figure 2A). In addition,
the number of ARGs carried by fusion plasmids was
significantly higher than the single Inc plasmid
(Figure 2B, P<0.0001).

The ARGs found in these pMCRs were involved in
the resistance to 14 classes of antibiotics. The ARGs
related to folate pathway antagonist resistance genes
(40.2%), P -lactam resistance genes (39.8%) and
aminoglycoside resistance genes (37.1%) were the most
common genes to cooccur with mcr genes in these

plasmids (Figure 2C).

Plasmid Genome Clustering Showed
Evidence of Spatiotemporal Transmission
and Cross-Host Transfer of pMCRs

Genomes of the pMCRs in the dataset were
compared to show genome similarities. Based on their
gene components and sequences, a pangenome cluster
tree was constructed by the BLAST matrix of the
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nonredundant coding gene set with the setting values
(Figure 3). Inc typing showed a better association with
clustering. In IncX4 and IncI2, pMCRs had relatively
conservative genomes; in contrast, IncHI2 pMCRs
presented much higher divergence. pMCRs isolated
from different specific hosts were scattered in various
clusters, and no host clustering was observed
(Figure 3).

In the pangenome cluster tree, some pMCRs with
high similarities in gene content and sequences were
grouped into 22 clusters (named Cluster A to V)
(Supplementary Figure S5, available in
https://weekly.chinacdc.cn/).  Then,  the

alignment among the plasmid in each cluster revealed

genome

the potential spatiotemporal transmission and cross-
host transfer of pMCRs. The main differences between
pMCR genomes in most clusters were the single
nucleotide polymorphisms and fragment indels in
some clusters, suggesting their very close evolutionary
relationship and even possible epidemiological
association  (Supplementary Figure S5). In  these
clusters, Cluster A, contained 12 IncX4 pMCRs with
basically the same length, and only a few SNPs were
identified among the plasmids (Figure 4A). The

plasmids were isolated in three countries (China,
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FIGURE 2. The comparison of the amounts of ARGs carried by each Inc type of pMCR and the carrying rate of ARG
classes. (A) The number of ARGs carried by each Inc type of pMCR. (B) The comparison of the amount of ARGs carried by
single Inc type plasmids and multi-Inc type fusion plasmids. (C) The carrying rate of ARG classes.

Note: (A) The Inc type is arranged in descending order according to the median number of carrying ARGs. Black dots
represent outliers. The number in parenthesis represents the amount of plasmids contained in each type.

Abbreviations: ARGs=antimicrobial resistance genes; pMCRs=mcr-carrying plasmids.

Tanzania, and the Netherlands), various sources
(patients, food, livestock, and the environment), and
different host bacteria (E. coli and S. enteritidis), which
implied that there might be a trans-spatiotemporal
resistance epidemic event initiated by the same plasmid
clone (Figure 4). Similar transmission events were also
observed in Clusters B, C, E, and others (Figure 4) In
some Incl2 plasmid clusters, such as Clusters ] and K,
inversions of gene segments occurred between plasmids

(Figure 4A). In Cluster ], inversions of gene segments
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were identified by the plasmid genome alignment,
although the plasmids only differed in length by 7 bp,
and the same recombination position was also observed
between pMCRs in Cluster K (Supplementary Figure
S6, available in https://weekly.chinacdc.cn/). IncHI2
plasmids accounted for the largest proportion in the
complete genome dataset of pMCRs, and 3 highly
conserved clusters (Cluster S, T and U, Supplementary
Figure S5) were identified. A total of 6 isolates of
human origin pMCRs isolated from the Netherlands
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Note: Circles 1 to 4 represent hosts, mcr genotypes, plasmid Inc types and the amounts of ARGs, respectively. Countries of

sources are marked on the sample codes.

Abbreviations: ARGs=antimicrobial resistance genes; pMCRs=mcr-carrying plasmids.

were included in Cluster U, with a less than 3 bp
difference in length (Figure 4A). The genome
alignment showed that plasmid CP071022.1 had a
161 kbp fragment inversion compared to the others.
This study did not find the origin and reservoir of
these plasmids, but their sources from different
hospitals and years strongly suggested the spread and
risk of MDR mediated by these plasmids (72). The
combination of pangenome clustering and genome
alignment in this study revealed the accumulation of
mutations and the recombination of genome fragments
in the epidemic process of resistant plasmids.

DISCUSSION

In Enterobacteriaceae, colistin resistance mediated
by the plasmid-borne mcr genes spread rapidly in
recent years (4,13). pMCRs are independent genetic
elements that can transfer across hosts and have
genomic plasticity, and complete sequences of pMCRs
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are required in the surveillance of the colistin resistant
bacteria.

The complete plasmid sequence can definitely reveal
the co-transfer of multiple ARGs on the same plasmid.
In this study, half of pMCRs carried multiple ARGs,
but some Inc type plasmids only carried mcr, such as
IncX4. Association studies of plasmid Inc types with
the ability to carry ARGs can be applied to evaluate the
risk of multi-resistance for different Inc type resistance
plasmids. In addition, complete plasmid sequences can
clearly define the genes related to environmental
adaptation and conjugation, such as heavy metal
resistance genes and type IV secretion systems, which
can be used to evaluate the maintenance and transfer
ability of the resistant plasmid.

In epidemiological surveillance of resistance, it is
necessary to identify the transmission events involving
different countries, dates, sources, and hosts. Applying
the pangenome clustering based on complete plasmid
genome to the surveillance can help to associate
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FIGURE 4. Representative plasmid clusters among 22 clusters with high complete plasmid sequence similarity and the
geographical distribution of transnational epidemic clusters. (A) Representative plasmid clusters among 22 clusters with high

sequence similarity. (B) The geographical distribution of transnational epidemic clusters.

Note: (A) The data of each cluster consists of pMCR isolation information (isolation year, country, host, sample source,
bacterial hosts, and Inc types) and genome alignment results. (B) The area and color of the solid circle marked with letter

represent the amount and Inc type of pMCRs in the cluster, respectively.

Abbreviation: pMCRs=mcr-carrying plasmids.
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independent data into transmission events. Even in
nosocomial infection control, this monitoring mode
can be used to reveal the source and spread of infection
(14). Although the amount of pMCRs with complete
genome sequences in the database is limited, we still
observed some plasmid genome clusters with only
some SNP differences among the 455 pMCRs by
genome alignment. Among these clusters, some
plasmids existed in a variety of host bacteria isolated
from different countries, years, and sample sources,
which  provides evidence for epidemiological
surveillance and tracing. These plasmids, which spread
widely and involve various sources, have higher public
health risks and should be monitored.

This study was subject to some limitations. Resistant
bacteria carrying mcr genes have been identified
worldwide. For the needs of plasmid type identification
and gene composition analysis, the data set of this
study only collected pMCR sequences with the
complete genome from the NCBI database, which may
lead to the deviation of plasmid characteristic statistics
caused by sampling biases. Although the transmission
of many resistant plasmids remained unobserved, we
still found some representative pMCR transmission
across countries and hosts. With the establishment and
continuous improvement of the resistant plasmid
surveillance network, more high-quality complete
plasmid genomes will be provided for analysis.

The genome alignment based on complete plasmid
genomes of pMCRs has revealed the epidemic events
across countries, years, sources, and hosts, which
suggests a potential dissemination of pMCRs among
human, food, animal, and environment. Therefore,
laboratory surveillance networks based on the genome
sequencing of resistant plasmids are needed to monitor
the epidemic and transmission of antimicrobial
resistance. Methods of genome sequencing, assembly,
and analysis strategies for resistant plasmids, such as
typing and genome alignment, should be optimized
and standardized to promote effective data collection,
sharing, analysis, and application among network
laboratories.
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SUPPLEMENTARY FIGURE S1. The statistics of isolation years, countries, bacterial hosts, Inc types and mcr genotypes of
455 pMCRs. (A) Isolation years and countries of pMCR bacterial hosts in the data set. (B) The host distribution of pMCRs in
dataset. (C) The plasmid amounts of pMCR Inc types in the data set. (D) The amounts of mcr genotypes carried by pMCRs.

Note: (A) Bubble plots represent the number of pMCRs isolated in different years for each isolation country, and numbers

are labeled in black. The column charts present the cumulative number of pMCRs in each isolation year, with numbers
labeled in red or white at the top of the column.

Abbreviation: pMCRs=mcr-carrying plasmids.
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SUPPLEMENTARY FIGURE S2. The geographical distribution of bacterial hosts of 455 pMCRs.
Note: The pie chart size represents the amount of pMCRs isolated from the country.
Abbreviation: pMCRs=mcr-carrying plasmids.
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SUPPLEMENTARY FIGURE S3. The geographical distribution of Inc types of 455 pMCRs.
Note: The pie chart size represents the amount of pMCRs isolated from the country.
Abbreviation: pMCRs=mcr-carrying plasmids.
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SUPPLEMENTARY FIGURE S4. The geographical distribution of mcr genotypes carried by 455 pMCRs.
Note: The pie chart size represents the amount of pMCRs isolated from the country.
Abbreviation: pMCRs=mcr-carrying plasmids.
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SUPPLEMENTARY FIGURE S5. Twenty-two clusters of pMCRs identified by high plasmid sequence similarity.

Note: The data of each cluster consists of the pMCR isolation information (isolation year, country, host, sample source,
bacterial host, and Inc type) and genome alignment trees. The color of the cluster code represents the Inc type of pMCR in
the cluster.

Abbreviation: pMCRs=mcr-carrying plasmids.
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SUPPLEMENTARY FIGURE S6. The genome alignment of pMCRs in plasmid Clusters J, K and U.

Note: The color of the cluster code represents the Inc type of pMCR in the cluster. Consistent sequence regions between
plasmid genomes are labeled with the same colors.

Abbreviation: pMCRs=mcr-carrying plasmids.
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