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Abstract. The aim of the present study was to identify genes 
with similar function to that of matrix metalloproteinases 
(MMPs) in invasive lung adenocarcinoma (AC) and to screen 
the transcription factors that regulate MMPs. The gene expres-
sion dataset GSE2514, including 20 invasive lung AC samples 
and 19  adjacent normal lung samples, was downloaded 
from the Gene Expression Omnibus database. Differentially 
expressed genes (DEGs) were screened using the limma 
package in R. Genes with similar function to MMPs were 
identified by K‑means clustering. Their correlations with 
MMPs were validated using Pearson correlation analysis. The 
expression of MMPs in lung cancer and normal tissues was 
evaluated by western blot analysis. Protein‑protein interac-
tion (PPI) network and transcriptional regulatory network 
analyses were performed with Retrieval of Interacting Genes 
and Database for Annotation, Visualization and Integrated 
Discovery, respectively. As a result, 269 DEGs were identified 
between invasive lung AC samples and normal lung samples, 
including 78 upregulated and 191 downregulated genes. Four 
MMPs (MMP1, MMP7, MMP9 and MMP12), which were 
upregulated in lung AC, were clustered into one group with 
other genes, including NAD(P)H quinone oxidoreductase 1, 
claudin 3 (CLDN3), S100 calcium‑binding protein P, serine 
protease inhibitor Kazal type 1, collagen type XI α 1 chain, 
periostin and desmoplakin (DSP), following cluster analysis. 
Pearson correlation analysis further confirmed correlations 
between MMP9‑CLDN3, MMP9‑DSP and MMP12‑DSP. PPI 
network analysis also indicated multiple interactions between 
MMPs‑associated genes. Furthermore, MMPs were commonly 
regulated by CCAAT/enhancer binding protein α transcription 

factor. These findings may provide further insight into the 
mechanisms of MMPs in invasive lung AC.

Introduction

Lung cancer is a leading cause of cancer mortalities worldwide, 
with 226,160 new cases and 160,340 mortalities in 2012 (1). As 
a type of lung cancer, non‑small cell lung carcinoma (NSCLC) 
consists of adenocarcinoma (AC), squamous cell carcinoma 
and large cell carcinoma  (2). Lung AC, a heterogeneous 
group of tumors ranging in aggressiveness from noninvasive 
bronchioloalveolar carcinoma (BAC) to microinvasive tumors, 
mixed‑type tumors and pure invasive AC, is the most common 
histological type of lung cancer (3,4). The first treatment for 
patients with early‑stage lung AC is surgical resection, but 
the 5‑year overall survival rate remains at ~80% for stage IA 
disease (5). Notably, patients with invasive lung AC have a 
lower mean 5‑year survival rate compared with that of patients 
with BAC (59 vs.  100%, respectively)  (6). Therefore, it is 
important to better understand the molecular mechanisms of 
invasive lung AC in order to develop effective preventive and 
curative strategies.

Cancer invasion is a highly complicated process, with the 
early events being the proteolytic degradation of extracellular 
matrix (ECM) components to provide room for infiltration, 
followed by migration into the adjacent tissues (7,8). Recent 
studies suggest that matrix metalloproteinases (MMPs), 
members of the matrixin subfamily of zinc metallopro-
teinases, are involved in the breakdown of the ECM (9,10). 
Over‑expression of MMPs has been detected in a number of 
tumor types, including invasive lung AC (11). MMP2, MMP7, 
MMP9 and tissue inhibitor of metalloproteinase 2 are upreg-
ulated in the lung tissue of patients with primary spontaneous 
pneumothorax (PSP), and the imbalance of their expression 
may be implicated in the pathogenesis of PSP (12). The signal 
module and sequence variant module appearing in lung AC, 
in which the expression of MMP12 is upregulated but that 
of MMP11 is downregulated, can promote the invasion of 
cancer cells (13). Chemotherapy drugs can markedly inhibit 
the invasive ability of human lung AC cells via reducing 
the expression of MMP2 and MMP9 (14,15). Additionally, 
rosuvastatin and simvastatin can function in the treatment of 
lung cancer by regulating the expression of MMP2, MMP9, 
RAS and nuclear factor‑κB‑p65 (16). However, the current 
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number of screened MMPs is limited, and further studies are 
required to identify genes with a similar function to that of 
MMPs.

In addition, it has been reported that the transcrip-
tion factor signal transducer and activator of transcription 
3 (STAT3) can regulate the transcription of MMP2 and 
promote melanoma cell invasion  (17). Blocking STAT3 
signaling significantly inhibits the invasion of melanoma 
cells (17). Storz et al (17) have demonstrated that forkhead 
box O3 promotes invasion and progression in numerous 
human solid tumors by inducing the expression of MMP9 
and MMP13. However, the regulatory mechanisms of MMPs 
are not well understood in lung AC.

The present study aimed to identify differentially 
expressed genes (DEGs), particularly MMPs‑associated 
genes, using gene expression profile data of invasive lung AC 
and adjacent normal samples collected from a publicly avail-
able database. Besides, the transcriptional factors regulating 
MMPs‑associated genes were also investigated.

Materials and methods

Ethical statement. The present study was approved by the 
Ethics Committees of the Beijing Shijitan Hospital (Beijing, 
China) and the Chest Hospital Affiliated to Shanghai Jiaotong 
University (Shanghai, China), and it was performed in accor-
dance with the ethical standards  (18). In addition, written 
informed consent was obtained from all patients, prior to 
enrollment in the present study.

Microarray data. The gene expression dataset GSE2514, which 
is based on two platforms [GPL81 (MG_U74Av2) Affymetrix 
Murine Genome U74A Version 2 Array and GPL8300 
(HG_U95Av2) Affymetrix Human Genome U95 Version 2 
Array], was downloaded from Gene Expression Omnibus 
(GEO; https://www.ncbi.nlm.nih.gov/geo/) database  (19). 
Microarray data obtained with the platform GPL8300 (HG_
U95Av2; Affymetrix Human Genome U95 Version 2 Array; 
Affymetrix, Inc., Santa Clara, CA, USA) was downloaded 
from the GEO database (19) in our study. It contained 20 lung 
AC samples and 19 adjacent lung samples (~1 cm away from 
the tumor site), which were obtained from 5 male and 5 female 
patients undergoing lobectomy (9) and wedge resection (1). 
Of these patients, 9 had a history of tobacco smoking. The 
ages of the patients ranged from 45 to 73 years. Their tumors 
were all invasive lung AC. The majority of tumors were 
low‑to‑intermediate grade and low stage, although 2 stage III 
tumors were included in the analysis. Probe annotation files 
were also acquired.

Preprocessing and differential analysis. The raw array data in 
the CEL file (Affymetrix, Inc.) were transformed into recogniz-
able gene expression data using the robust multi‑array average 
algorithm from the affy package in R (20). Upon normaliza-
tion, probes were mapped to genes according to the annotation 
files. The levels of probes corresponding to one gene were 
averaged and used as the final gene expression value. DEGs 
were screened using the limma package (http://www.biocon-
ductor.org/packages/release/bioc/html/limma.html) (21) in R 
based on the cut‑offs of P<0.05 and |log fold‑change| >1.

Cluster analysis. Cluster analysis of DEGs was performed with 
Cluster  3.0 (http://bonsai.ims.u‑tokyo.ac.jp/mdehoon/soft-
ware/cluster) using the K‑means clustering algorithm (22), 
which was conducted on data with K (the number of clus-
ters)=5.

Pearson correlation analysis. The method of Pearson correla-
tion analysis (23) in the cor function in R (https://www.r‑project 
.org/) was used to perform the correlation analysis between the 
expression of DEGs and MMPs. A correlation coefficient of 
>0.8 was used as the cut‑off criterion.

Western blot analysis. A total of 6 lung AC and matched 
adjacent lung tissue biopsy samples were obtained in 
June 2014 from Shanghai Lung Cancer Center, Chest Hospital 
Affiliated to Shanghai Jiaotong University (Shanghai, China). 
Tissues were washed with ice‑cold PBS and lysed in ice‑cold 
radioimmunoprecipitation assay lysis buffer (Sangon Biotech 
Co., Ltd., Shanghai, China). Extracted proteins were quantified 
using a BCA Protein Assay kit (Sangon Biotech Co., Ltd., 
Shanghai, China) and separated with SDS‑PAGE with a 10% 
separating gel and a 5% stacking gel. Subsequently, proteins were 
transferred onto polyvinylidene difluoride membranes (EMD 
Millipore, Billerica, MA, USA). Then, membranes were blocked 
in 5% nonfat dry milk and probed with primary rabbit antibodies 
against MMPs (anti‑MMP1, cat. no. sc‑58377; anti‑MMP7, cat. 
no. sc‑80205; anti‑MMP9, cat. no. sc‑13520; and anti‑MMP12, 
cat. no. sc‑8839; all diluted to 1:500; Santa Cruz Biotechnology, 
Inc., Dallas, TX, USA) overnight at 4˚C. Horseradish 
peroxidase‑conjugated anti‑rabbit immunoglobulin  G 
(cat. no.  111‑035‑003; 1:5,000; Jackson ImmunoResearch 
Laboratories, Inc., West Grove, PA, USA) served as a secondary 
antibody and was incubated for 1 h at 4˚C. The anti‑β‑actin 
antibody (cat. no. 8227; 1:10,000; Abcam, Cambridge, CA, 
USA) was used as the control. The position of protein bands was 
developed with ECL chemoluminescence kit (Merck Millipore) 
and visualized under a ChemiDoc MP imaging system (Bio‑Rad 
Laboratories, Inc., Hercules, CA, USA).

Functional and pathway enrichment analysis. Gene 
Ontology (GO; http://www.geneontology.org/) (24) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG; http://www 
.genome.jp/kegg/)  (25) pathway enrichment analyses were 
performed for the MMPs‑associated genes using the Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID) online tool (26) to reveal altered biological functions 
in lung AC. P<0.05 and a false discovery rate (FDR) adjusted 
by the Benjamini and Hochberg method (27) of <0.01 were set 
as the thresholds.

Selection of disease‑associated genes. Diseases associated 
with the DEGs were identified by gene set enrichment analysis 
against the Genetic Association Database Disease Class 
(http://geneticassociationdb.nih.gov/) using the annotation 
server DAVID (P<0.05) (26).

Construction of protein‑protein interaction (PPI) network. 
PPI network analysis for the DEGs was carried out with the 
Search Tool for the Retrieval of Interacting Genes (STRING; 
http://string‑db.org/), and the PPI network involving 
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MMPs‑associated genes was selected. Interaction associa-
tions with a combined score of ≥0.4 were retained and the PPI 
network was visualized by Cytoscape software (version 2.8; 
http://www.cytoscape.org) (28).

Transcriptional regulatory network analysis. Transcriptional 
regulatory network analysis was performed with DAVID (26) 
for the group of DEGs including MMPs, and the transcriptional 
regulatory network was visualized by Cytoscape software 
(version 2.8; http://www.cytoscape.org) (28).

Results

DEGs analysis. Upon normalization of the raw data (Fig. 1), 
the DEGs were screened using the limma package in R. As a 
result, 269 DEGs were identified between lung AC and adja-
cent normal lung samples, including 78 upregulated and 191 
downregulated genes.

MMPs‑associated genes screening. MMP1, MMP7, MMP9 
and MMP12 were clustered into one group with a number of 
other DEGs (Table I), which were upregulated in lung AC 
compared with their expression in normal lung tissues. These 
results were further confirmed by Pearson correlation analysis 
and western blotting. The present findings also demonstrated 
that MMP9 expression exhibited a significant correlation with 
DSP (correlation coefficient=0.8309295) and CLDN3 (correla-
tion coefficient=0.8058015) expression. Additionally, MMP12 

expression was significantly correlated with DSP expression 
(correlation coefficient=0.8127249). The expression of MMP1, 
MMP7, MMP9 and MMP12 was also observed to be upregu-
lated in lung AC compared with that in adjacent lung tissues 
(Fig. 2).

Functional and pathway enrichment analysis. Functional 
enrichment analysis was applied for the above group of DEGs 
with the DAVID online tool. As shown in Table II, collagen 
metabolism (P=4.37x10‑6) and multicellular organism macro-
molecule metabolic processes (P=5.98x10‑6) were enriched for 
these DEGs.

Disease‑relevant genes selection. Relevant diseases to the 
MMPs‑associated DEGs were retrieved with DAVID. Under 
the Genetic Association DB Disease Class, MMP9, NAD(P)H 
quinone oxidoreductase 1 (NQO1), MMP12 and MMP1 were 
linked with lung AC, while MMP9, MMP12 and MMP1 were 
associated with lung function (Table III).

PPI network analysis. A PPI network was constructed for the 
MMPs‑associated DEGs using STRING (Fig. 3). The results 
revealed that interaction associations existed among MMP9, 
NQO1 and MMP7. In addition, the other genes clustered into 
the MMPs group also interacted with each other.

Transcriptional regulatory network analysis. Transcriptional 
regulatory network analysis indicated that 9 genes, including 

Figure 1. Box plot for normalized gene expression data. Horizontal axis and vertical axis separately represent sample names and expression values. The blue 
box and the black line represent expression values and their median, respectively. The medians (black lines) are almost all at the same level, indicating a good 
performance of normalization.
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MMP1, MMP9 and NQO1, were commonly regulated by the 
CCAAT/enhancer binding protein (C/EBP) α (CEBPA) tran-
scription factor (Fig. 4).

Discussion

In the present study, cluster analysis demonstrated that 
4 MMPs, including MMP1, MMP7, MMP9 and MMP12, 

were upregulated in lung AC samples, and may be involved 
in ECM metabolic processes, thus promoting cancer inva-
sion. These results were validated by western blotting and 
were in accordance with previous studies  (29‑32). MMP1 
is the most highly expressed interstitial collagenase for 
degrading fibrillar collagens (33). Overexpression of MMP1 
has been associated with tumor invasion and metastasis by 
modulating the polarization of T helper (Th)1/Th2 inflamma-
tory responses (29). Downregulation of MMP‑7 mediated by 
antisense oligonucleotide changes the ultrastructure of lung 
AC A549 cells, leading to decreased microvilli, endoplasmic 
reticulum dilation, swelling of mitochondria and formation of 
apoptotic bodies, which eventually inhibits invasion in lung 
AC A549 cells (30). Similarly, the expression levels of MMP9 
and MMP12 were observed to be higher in NSCLC than in 
normal samples (31). Upregulation of MMP12 and MMP9 
may be one of the mechanisms to promote lung cancer cell 
invasion (32).

In addition, the present study identified several DEGs that 
were clustered into one group with MMPs, thus indicating the 
same function in cancer cell invasion. A number of these genes 
have been linked to lung cancer in the following studies. NQO1 
is a member of the NQO family, and altered expression of this 
protein has been reported in numerous tumors (34). Mutations 

Figure 2. Expression of MMPs (MMP1, MMP7, MMP9 and MMP12) in lung 
AC tissues and adjacent NTs evaluated by western blotting. AC, adenocarci-
noma; NT, normal tissue; MMP, matrix metalloproteinase.

Table I. List of genes clustered with MMPs.

ID	 Log (fold‑change)	 Mean expression	 t	 P‑value	 False discovery rate

RAMP1	 1.803939312	 6.214583105	‑ 10.555338710	 4.33x10‑13	 3.50x10‑11

FAP	 1.561195027	 6.500446054	‑ 9.026036586	 3.63x10‑11	 1.48x10‑9

CLDN3	 1.625063261	 9.253029938	‑ 7.959600860	 9.43x10‑10	 2.41x10‑8

CP	 1.533166764	 7.200364641	‑ 7.654471654	 2.45x10‑9	 5.46x10‑8

ZWINT	 1.534376695	 6.188206312	‑ 7.484374926	 4.18x10‑9	 8.53x10‑8

MDK	 1.627179122	 9.344798091	‑ 7.324035903	 6.94x10‑9	 1.32x10‑7

MMP9	 1.708966359	 7.597559232	‑ 6.771606537	 4.04x10‑8	 5.82x10‑7

COL3A1	 1.643158431	 9.138801925	‑ 6.532240647	 8.72x10‑8	 1.11x10‑6

COL11A1	 2.387669841	 5.767529739	‑ 6.412529728	 1.28x10‑7	 1.54x10‑6

TOX3	 1.770307511	 4.159327973	‑ 6.212832065	 2.44x10‑7	 2.68x10‑6

GABBR1 UBD	 1.619335627	 7.242024866	‑ 6.016224500	 4.60x10‑7	 4.64x10‑6

MMP12	 1.644563956	 5.138055675	‑ 5.757801490	 1.06x10‑6	 9.61x10‑6

POSTN	 1.502940090	 7.019690170	‑ 5.698113750	 1.28x10‑6	 1.13x10‑5

SPINK1	 2.517220534	 7.945875667	‑ 5.613361864	 1.69x10‑6	 1.44x10‑5

NQO1	 1.527576974	 7.820504924	‑ 5.374097053	 3.64x10‑6	 2.77x10‑5

SLC7A5	 1.517121297	 7.685388227	‑ 5.301930776	 4.59x10‑6	 3.37x10‑5

MMP7	 2.087445737	 6.987333841	‑ 5.300686125	 4.61x10‑6	 3.38x10‑5

MMP1	 1.553980336	 4.289661258	‑ 5.235072252	 5.68x10‑6	 4.05x10‑5

DSP	 1.669305242	 7.306405073	‑ 5.162024033	 7.18x10‑6	 4.94x10‑5

CEACAM5	 2.090196480	 7.403316921	‑ 4.560737891	 4.80x10‑5	 2.43x10‑4

S100P	 1.513031206	 7.826887416	‑ 3.965427875	 2.97x10‑4	 1.12x10‑3

t, (the sample mean‑the expected value for the population mean)/the standard error of the mean. MMP, matrix metalloproteinase; ID, identity; 
RAMP1, receptor activity modifying protein 1; FAP, familial adenomatous polyposis; CLND3, claudin 3; CP, ceruloplasmin; ZWINT, ZW10 
interacting kinetochore protein; MDK, midkine; COL3A1, collagen type III α 1; COL11A1, collagen type XI α I; TOX3, TOX high mobility 
group box family member 3; UBD, ubiquitin D; POSTN, periostin; SPINK1, serine peptidase inhibitor, Kazal type 1; NQO1, NAD(P)H 
quinone oxidoreductase 1; SLC7A5, solute carrier family 7 member 5; DSP, desmoplakin; CEACAM5, carcinoembryonic antigen‑related cell 
adhesion molecule 5; S100P, S100 calcium‑binding protein P.
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in this gene contribute to susceptibility to various forms of 
cancer, including lung cancer (35,36). S100 calcium‑binding 
protein P (S100P) is a member of the S100 family of proteins 
containing two EF‑hand calcium‑binding motifs, which 
are involved in the regulation of cell cycle progression and 
differentiation (37). Bartling et al (31) reported that S100P 
expression is mainly increased in AC, and that S100P 
upregulation is detected in early rather than in advanced 
tumor stages. Overexpression of S100P may lead to cancer 
cell invasion by changing the expression levels of several 
cytoskeletal proteins (38). Serine peptidase inhibitor, Kazal 
type 1 (SPINK1) is a secreted serine protease inhibitor (39). 
Overexpression of SPINK1 is associated with aggressiveness 
of prostate cancer (40). A previous study by Soon et al (34) 
revealed that SPINK1 is an invasion factor associated with 
prognosis in breast cancer patients. However, its role in 
lung cancer remains unknown. The present study suggested 
that SPINK1 may also be involved in lung AC invasion. 
Ubiquitin D (UBD, also known as F‑associated transcript 10) 
is a member of the ubiquitin‑like modifier family, and appears 

to be upregulated in hepatocellular carcinoma, as well as in 
gastrointestinal and gynecological cancers  (41). Increased 
cytoplasmic UBD is significantly associated with depth of 
colon cancer invasion (42). Few studies have investigated the 
roles of UBD in lung AC invasion, including the present study. 
Collagen type XI α I (COL11A1) has also been demonstrated 
to be overexpressed in NSCLC, and has been identified as a 
potential invasion‑associated gene in cancer (43). However, 
its mechanism of function is not understood yet. The present 
study revealed that COL11A1 could interact with the osteo-
blast‑specific factor periostin (POSTN), although this requires 
further experimental validation. In addition, the associations 
between MMPs and various genes (including MMP9‑CLDN3, 
MMP9‑DSP and MMP12‑DSP) were also further confirmed 
by Pearson correlation analysis. CLDN3, a component of tight 
junctions, has been reported to be upregulated in NSCLC, 
and may be important in invasion (44). Agarwal et al (39) 
reported that CLDN3‑mediated increased invasion may be 
accomplished through the activation of MMP2. In the present 
study, CLDN3 was significantly correlated with MMP9 

Table II. GO terms over‑represented for the MMPs‑associated genes.

	 Gene
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Category	 Term	 N	 %	 P‑value	 Genes	 False discovery rate

GO_BP	 GO:0032963 collagen	 4	 20	 4.37x10‑6	 MMP9, COL3A1, 	 0.005547327
	 metabolic process				    MMP7 and MMP1	
GO_BP	 GO:0044259 multicellular	 4	 20	 5.98x10‑6	 MMP9, COL3A1, 	 0.007594962
	 organism macromolecule				    MMP7 and MMP1	
	 metabolic process					   
GO_CC	 GO:0005578 proteinaceous	 7	 35	 2.30x10‑6	 MMP9, COL3A1, 	 0.002198433
	 ECM				    MMP7, POSTN, COL11A1, 	
					     MMP12 and MMP1	
GO_CC	 GO:0031012 ECM	 7	 35	 3.56x10‑6	 MMP9, COL3A1, 	 0.003399869
					     MMP7, POSTN, COL11A1, 	
					     MMP12 and MMP1	

Go, Gene Ontology; BP, biological process; CC, cellular component; ECM, extracellular matrix; MMP, matrix metalloproteinase; COL3A1; 
collagen, type III α 1; POSTN, periostin; COL11A1, collagen type XI α I.

Figure 3. Protein‑protein interaction network for MMPs‑associated genes. MPPs are marked in circles and other genes in squares. Lung cancer‑associated 
genes are presented as white and other genes as yellow. MMP, matrix metalloproteinase; GABBR1, γ‑aminobutyric acid type B receptor subunit 1; UBD, 
ubiquitin D; FAP, familial adenomatous polyposis; COL11A1, collagen type XI α I; COL3A1, collagen type III α 1; POSTN, periostin.
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via Pearson correlation analysis, indicating a potential link 
between CLDN3 and MMP9 in lung AC cell invasion. DSP 
acts as a tumor suppressor via inhibiting the Wnt/β‑catenin 

signaling pathway in NSCLC  (45). Thus, the expression 
patterns of DSP and MMPs are theoretically opposite, which 
has been demonstrated in the human epithelial carcinoma cell 
line A431 during the epithelial‑mesenchymal transition, with 
upregulated MMPs and downregulated DSP levels (46).

According to the present transcriptional regulatory network 
analysis, MMPs‑associated genes were regulated by CEBPA. 
CEBPA is a basic leucine zipper domain transcription factor 
that not only can bind to certain promoters and enhancers as 
a homodimer, but can also form heterodimers with the associ-
ated proteins CEBPB and CEBPG (47). It has been reported 
that CEBPB is an important mediator in the activation of 
MMP genes (including MMP1, MMP3 and MMP10) in A549 
lung carcinoma cells stimulated with the inflammatory cyto-
kine interleukin‑1β (48). Therefore, it could be speculated that 
CEBPA may also serve an important role in upregulating the 
expression of MMP1 and MPP9, thus affecting the invasion 
of lung cancer. Although the present results indicated that 
CEBPA could modulate the expression of fibroblast activation 
protein α, CLDN3, collagen type III α 1, COL11A1, TOX high 
mobility group box family member 3, NQO1 and POSTN, no 
experimental evidence could be obtained.

In conclusion, the present study identified several genes such 
as SPINK1 and UBD that may serve important roles in lung 
AC invasion with MMPs (including MMP1, MMP7, MMP9 
and MMP12). Several MMPs‑associated genes were observed 

Figure 4. Transcriptional regulatory network containing MMPs. The 
transcription factor CEBPA is marked as white, while lung cancer‑associated 
genes are presented as green and other genes as yellow. The dashed arrows 
indicate regulatory associations. MMP, matrix metalloproteinase; FAP, 
familial adenomatous polyposis; NQO1, NAD(P)H quinone oxidoreductase 1; 
POSTN, periostin; COL11A1, collagen type XI α I; COL3A1, collagen type 
III α 1; TOX3, TOX high mobility group box family member 3; CLDN3, 
claudin 3; CEBPA, CCAAT/enhancer binding protein (C/EBP) α.

Table III. Diseases associated with MMPs‑associated genes.

Term	 P‑value	 Genes

Nasopharyngeal cancer	 8.72x10‑6	 MMP9, MMP7, NQO1, MMP12 and MMP1
Abdominal aortic aneurysm	 1.18x10‑4	 MMP9, COL3A1, MMP12 and MMP1
Brain cancer	 6.15x10‑4	 MMP9, MMP7, NQO1 and MMP1
Gastric ulcer	 6.37x10‑4	 MMP9, MMP7 and MMP1
Subarachnoid hemorrhage	 1.68x10‑3	 MMP9, MMP12 and MMP1
Lung function	 3.48x10‑3	 MMP9, MMP12 and MMP1
Ovarian cancer	 3.78x10‑3	 MMP9, MMP7, NQO1 and MMP1
Bladder cancer	 5.85x10‑3	 MMP9, NQO1, MMP12 and MMP1
Colorectal cancer	 6.11x10‑3	 MMP9, MMP7, NQO1, MDK and MMP1
Coronary artery luminal dimensions	 7.91x10‑3	 MMP7 and MMP12
Osseointegrated implant failure	 7.91x10‑3	 MMP9 and MMP1
Alzheimer's disease dementia, vascular	 1.18x10‑2	 MMP9 and MMP1
Chronic obstructive pulmonary disease	 1.84x10‑2	 MMP9, MMP12 and MMP1
Rheumatoid arthritis	 1.85x10‑2	 MMP9, MMP7, MMP12 and MMP1
Uterine leiomyoma	 1.97x10‑2	 MMP9 and MMP1
Adenomyosis endometriosis	 1.97x10‑2	 MMP9 and MMP7
Breast cancer	 2.09x10‑2	 MMP9, POSTN, NQO1, MMP12 and MMP1
Cervical artery dissection, spontaneous	 2.36x10‑2	 MMP9 and COL3A1
Aneurysm	 2.36x10‑2	 MMP9 and MMP12
Lung cancer	 2.51x10‑2	 MMP9, NQO1, MMP12 and MMP1
Coronary artery disease	 3.07x10‑2	 MMP9, COL3A1 and MMP12
H. pylori infection stomach cancer	 3.52x10‑2	 MMP9 and MMP7
Left ventricular remodeling	 3.90x10‑2	 MMP9 and MMP1

MMP, matrix metalloproteinase; MDK, midkine; COL3A1, collagen type III α 1; POSTN, periostin; NQO1, NAD(P)H quinone oxidoreduc-
tase 1.
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to regulated by the CEBPA transcription factor. These findings 
may provide various underlying targets for prevention of lung 
AC invasion. However, further experimental investigations or 
studies on other datasets are required to validate the present 
observations.
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