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Berberine is a nutraceutical activator of 
AMP-activated kinase
The phytochemical berberine, a constituent 
of certain herbs used in traditional Chinese 
medicine, has long been in use in China 
as a well-documented therapy for type 2 
diabetes.1 2 Mechanistic studies demonstrates 
that, like metformin, it activates AMP-acti-
vated kinase (AMPK); this is thought to be 
the chief basis of its utility in diabetes.3–5 The 
typical therapeutic regimen is 500 mg two or 
three times per day, or 850 mg two times per 
day. The most common side effect is consti-
pation, which tends to remit during contin-
uing treatment.6 Unlike metformin, however, 
berberine upregulates the hepatic expression 
of LDL receptors, through a mechanism that 
is complementary to that of statins or red 
yeast rice (RYR); whereas statins increase tran-
scription of the gene coding for LDL recep-
tors, berberine increases the half-life of LDL 
receptor mRNA.7 Hence, the combination of 
berberine plus RYR—a natural low-potency 
source of monacolin K (lovastatin) and other 
monacolins that has moderate hypocholeste-
rolaemic activity in a standardised dose that 
is well tolerated in most patients who don’t 
tolerate pharmaceutical statins8–10—has been 
recommended as a nutraceutical alternative 
to pharmaceuticals in the management of 
hypercholesterolaemia.11

The carotenoid astaxanthin can act as a 
PPARα agonist
The natural carotenoid astaxanthin is 
extraordinarily effective—more so than 
tocopherols—for conferring radical-scav-
enging antioxidant protection to biological 
membranes.12 It may be particularly bene-
ficial for blunting the feedforward loop 
whereby mitochondria subjected to oxida-
tive stress—as during ischaemia-reperfusion 

injury—become greater sources of oxidants 
owing to damage to their respiratory chains.13 
However, in both clinical and rodent studies, 
oral astaxanthin has ameliorated the dyslipi-
daemia and hepatic steatosis associated with 
metabolic syndrome, suggesting that it has an 
additional target of action.14–18 Indeed, there 
is recent evidence that, in concentrations that 
can be achieved through oral administration 
at practical doses, astaxanthin can act as a 
PPARα agonist.19 20 In other words, astaxan-
thin has the potential to replicate the activity 
of PPARα agonist drugs, such as the fibrates, 
which are known to decrease risk for cardi-
ovascular events in patients with metabolic 
syndrome.21 22 In a recent placebo-controlled 
trial enrolling patients with type 2 diabetes, 
astaxanthin (8 mg daily for 8 weeks) achieved 
significant reductions in serum triglycerides 
(156→128 mg/dL), serum fructosamine 
(7.4→5.8 µmol/L) and systolic blood pres-
sure (143→132 mm Hg), while significantly 
elevating adiponectin (36→47 µg/mL); these 
parameters all worsened non-significantly in 
the placebo group.23

AMPK and PPARα agonists reinforce each 
other’s utility in metabolic syndrome
The combination of metformin and fenofi-
brate has been studied in patients with type 
2 diabetes and metabolic syndrome, and has 
been found more effective for improving 
lipid profiles and aiding glycaemic control 
than either agent alone.24 25 This likely 
reflects the fact that AMPK and PPARα 
interact in mutually complementary ways to 
promote efficient mitochondrial oxidation of 
fatty acids, thereby lessening hepatic triglyc-
eride synthesis and decreasing the exposure 
of tissues to ectopic fat.

The transcription factor PPARα, after 
forming a heterodimer with the retinoid 

http://www.bcs.com
http://openheart.bmj.com/
http://orcid.org/0000-0002-7888-1528
http://orcid.org/0000-0002-3376-5822
http://crossmark.crossref.org/dialog/?doi=10.1136/openhrt-2018-000977&domain=pdf&date_stamp=2019-08-05


Open Heart

2 DiNicolantonio JJ, et al. Open Heart 2019;6:e000977. doi:10.1136/openhrt-2018-000977

Figure 1  Legend interactions of AMPK and PPARα in promoting fatty acid oxidation and HDL production. Arrows reflect 
induction and/or activation. AMPK, AMP-activated kinase; CPT-1a, carnitine palmitoyl transferases-1a; FGF21, fibroblast 
growth factor 21; PGC-1a, PPARγ coactivator-1a; UCP-2, uncoupling protein-2.

X receptor, stimulates the transcription of genes which 
promote mitochondrial oxidation of fatty acids and keto-
genesis, including carnitine palmitoyl transferases (CPT) 
1a and 2, acyl-coenzyme A oxidase and uncoupling 
protein 2. The favourable impact of PPARα agonists on 
human HDL levels reflects the induction of apolipopro-
teins A-I and A-II—an effect not observed in rodents.26 27 
PPARα also stimulates hepatic production of fibroblast 
growth factor 21 (FGF21), a ‘pro-longevity’ hormone 
which acts on adipocytes to boost their production of 
adiponectin; the latter, in turn, acts on hepatocytes and 
other tissues to stimulate AMPK activity.28–38

Although there is no evidence that AMPK directly phos-
phorylates PPARα to influence its transcriptional activity, 
AMPK acts to increase both the expression and activity of 
PPARγ coactivator-1a (PGC-1a), which serves as a coacti-
vator for PPARα as well as for several other transcription 
factors that promote mitochondrial biogenesis.39–43 Also, 
in some cellular contexts, AMPK boosts the expression 
of PPARα, likely by promoting nuclear translocation of 
transcription factor EB, a master regulator of autophagy 
and lysosomal activity; this effect might also be partially 
attributable to enhanced PGC-1α activity, as PPARα acts 
to drive transcription of its own gene.44–49 Importantly, 
AMPK complements PPARα impact on mitochondrial 
fatty acid oxidation by lowering cytoplasmic levels of 
malonyl-coenzymeA, an allosteric inhibitor of CPT-1a; 
it does so by conferring inhibitory phosphorylation on 
acetyl-coenzymeA carboxylase, and activating phosphor-
ylation on malonyl-coenzymeA decarboxylase,50 51 and 
AMPK decreases hepatic triglyceride synthesis both by 
directing free fatty acids towards mitochondrial oxida-
tion, as well as by suppressing the activity of rate-limiting 
enzyme for triglyceride synthesis, glycerol-3-phosphate 
acyltransferase.52 Concurrently, AMPK inhibits hepatic 

gluconeogenesis, an effect in large part responsible for 
the favourable impact of AMPK agonists on glycaemic 
control in diabetics; a rate-limiting enzyme for glucone-
ogenesis, fructose-1,6-bisphosphatase, has recently been 
identified as AMPK’s target in this regard.53 54 While, as 
noted, PPARα activation in the liver can boost AMPK 
activity systemically via induced production of FGF21 and 
adiponectin, it also enhances AMPK activation in hepato-
cytes and endothelium by promoting cytoplasmic translo-
cation and subsequent activation of LKB1, an upstream 
activating kinase for AMPK.55 56 These reinforcing inter-
actions are depicted in figure 1.

Hence, since AMPK and PPARα complement each 
other’s activity in multiple ways, the clinical complemen-
tary of metformin and fibrates is predictable.

Proposal: astaxanthin plus berberine for control of 
metabolic syndrome
We propose that a nutraceutical regimen of berberine 
plus astaxanthin has the potential of replicating the 
utility of metformin+fenofibrate for improving the hyper-
lipidaemia and impaired glycaemic control that charac-
terise metabolic syndrome and type 2 diabetes. Moreover, 
adding RYR to this regimen would be expected to provide 
additional control of LDL cholesterol. A regimen of 
berberine/RYR/astaxanthin might constitute a safe and 
usually well-tolerated strategy for optimising lipid profiles 
in patients in whom triglycerides and LDL cholesterol 
are both elevated, and HDL cholesterol depressed. Krill 
oil rich in astaxanthin (1 mg or more per gram) could 
be employed as an astaxanthin source, as this provides 
an esterified form of this carotenoid that has superior 
bioavailability, as well as health-protective omega-3 fatty 
acids, oxidised metabolites of which likewise act as PPARα 
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agonists.57–60 Meta-analysis confirms the utility of krill oil 
supplementation for improving serum lipid profile.61 Its 
efficacy with respect to modulating serum lipids, glucose 
and C reactive protein appears to be superior to that of 
fish oil.62 63 The possibility of incorporating astaxanthin 
into hypolipidaemic nutraceutical regimens incorpo-
rating RYR, berberine and other agents was presciently 
envisioned by Cicero et al over a decade ago.64
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