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Abstract. The growth and development of the fetus is a complex 
phenomenon that can be influenced by several variables. High 
quantities of heavy metal ions in the amniotic fluid have been 
linked to poor health, especially in industrial, polluted and 
poor areas. The aim of the present study was to assess the 
differences in the concentration of these ions between preterm 
(weeks 15‑37) and term pregnancies (starting at week 37). 
Another objective was to compare pregnancies from two 
cities with different industry levels. Two sample lots from 
two Romanian cities were analyzed. A total of 100 patients 
from Timisoara were compared with 60 from Petrosani, a 
heavy industry city in Romania. Demographic data were 
collected, and amniocentesis was performed on all women. 
Lead (Pb), copper (Cu), nickel (Ni), cadmium (Cd), arsenic 
(As), iron (Fe) and zinc (Zn) concentrations were assessed. 
Descriptive and analytical statistics were performed using the 
Mann‑Whitney U test for non‑parametric data and the Fisher's 
exact test for categorical data. In addition, categorical data was 
represented graphically. In the Timisoara cohort, the differ‑
ences in heavy metal concentrations between preterm and term 
pregnancies were not statistically significant. In the Petrosani 

cohort, however, the concentrations of Zn (P=0.02606) and Cd 
(P=0.01512) were higher in preterm than in term pregnancies. 
When comparing the two cohorts as a whole, the concentration 
of Pb (P=0.04513), Cd (P=0.00002), As (P=0.03027) and Zn 
(P<0.00001) were higher in the patients from Petrosani than 
in those from Timisoara. Only Cu concentrations were higher 
in the Timisoara cohort (P<0.00001). The concentrations of 
Ni (P=0.78150) and Fe (P=0.44540) did not differ statistically. 
Thus, amniocentesis is an important diagnostic and explor‑
atory tool in determining differences in the concentrations 
of elements such as heavy metal ions. Research over a longer 
period of time should be carried out to examine the relation 
between heavy metal ions concentration and possible postnatal 
health outcomes.

Introduction

The growth and development of the fetus is a complex 
phenomenon that can be influenced by several variables. 
Although electrolytes are present in the amniotic fluid in 
trace amounts, they are considered essential for the health 
and well‑being of the fetus. Associations between amniotic 
fluid electrolyte concentrations and fetal development have 
been made (1). Common ions found in amniotic fluid include 
sodium, potassium, chloride, calcium, magnesium, phosphate 
and bicarbonate (2). These ions in the amniotic fluid serve an 
important role in a normal pregnancy and can aid in prevention 
and early diagnosis of fetal or maternal pathologies. Through 
accurate prenatal assessment of the biochemical composition 
of the amniotic fluid, overall health status and fetal maturity 
can be evaluated (1‑3).

Normally, the volume of amniotic fluid increases steadily 
until it reaches a maximum of 400‑1200 ml at 34‑38 weeks. 
Afterwards, the volume starts to decline. At 40 weeks, the 
volume of amniotic fluid can measure ~800 ml and continues to 
decrease as the pregnancy goes on (4‑6). Although the compo‑
sition of the amniotic fluid does not remain constant during 
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pregnancy, the bulk volume at all times (~98%) is water. Other 
important constituents are urea, creatinine, glucose, proteins, 
lipids, bile pigments, fetal epithelial cells and mineral ions (7).

Common ions have important uses during pregnancy. 
Sodium contributes to the regulation of water‑electrolyte 
balance of the amniotic fluid, high chloride reflects possible 
renal pathologies, high potassium and calcium can be signs 
of pre‑eclampsia, high phosphate indicates reduced antibacte‑
rial activity, magnesium and zinc (Zn) assess the risk of fetal 
growth retardation (8‑12). Potassium, phosphate and Zn also 
affect normal antimicrobial activity (13‑15).

Some heavy metal ions can also be traced in the amni‑
otic fluid, and small amounts of these elements are normal. 
However, large quantities have been shown to have detrimental 
effects in humans. For example, lead (Pb) is known for its 
negative effects on neural development (16), while cadmium 
(Cd) is known for its risk of preterm delivery (17). Usually, this 
can be seen in people living in highly industrialized, highly 
polluted and poor areas (18‑22). As such, the assessment of 
these ions in the amniotic fluid is essential to understanding 
the risks these people might be facing. Heavy metals in high 
concentrations have the ability to disrupt normal physiological 
processes. Copper (Cu), arsenic (As), Cd, nickel (Ni), chro‑
mium, mercury, manganese and Pb can lead to fetal growth 
retardation, pre‑eclampsia, impaired cognitive development 
and even cancer (23‑28).

The present study had two objectives. The first was to 
assess the differences of heavy metal ion concentrations in the 
amniotic fluid between preterm (between weeks 15 and 37) 
and term (starting week 37) pregnancies. Moreover, the 
second was to assess whether pregnant women from two cities 
with different industrial levels from Romania would present 
different heavy metal ion concentrations in their amniotic 
fluid.

Materials and methods

Study design. The present retrospective study was conducted 
in the ‘Bega’ Maternity Clinic in Timisoara, Romania 
between April 1st 2020 and April 1st 2021. The study design 
is in accordance with The Declaration of Helsinki and was 
approved by the Ethics Committees of the ‘Bega’ Maternity 
Clinic (approval no. 260/16IUL2021) and Petrosani Hospital 
(approval no. 15990/27.07.2021).

Two cohorts of pregnant patients were examined. The 
first included 100 pregnant women admitted in the ‘Bega’ 
Maternity Clinic from Timisoara. The second included 60 
pregnant women admitted in the Maternity Clinic of the 
Petrosani Emergency Hospital. Written informed consent was 
provided by all 160 individuals for amniocentesis and use of 
data for research purposes. Amniocentesis was performed on 
all patients, and each patient cohort was separated in two equal 
groups.

Participants. The inclusion criteria were as follows: Consenting 
adult women with single fetal gestation, patients with medical 
indications for amniocentesis (such as maternal age over 35, 
unfavorable or uncertain results obtained at screening 
tests, previous exposure to infectious agents including 
Toxoplasma gondii or cytomegalovirus and known genetic 

disorders running in the family). The exclusion criteria were: 
Pregnancies earlier than 15 weeks, pregnant patients with 
severe anemia, hematological, neoplastic, cardiac or metabolic 
conditions and patients with previous perinatal complications 
or fetal disorders.

Petrosani and Timisoara were selected in order to determine 
whether a mountainous, highly industrial city might harbor 
higher heavy metal ion concentrations in the amniotic fluid 
than a city in the plains, with moderate industry. The patients 
were stratified into four groups: Group 1 (n=50), women 
from Timisoara with preterm pregnancies (15‑37 weeks); 
group 2 (n=50), women from Timisoara with term pregnan‑
cies (≥37 weeks); group 3 (n=30), women from Petrosani 
with preterm pregnancies; and group 4 (n=30), women from 
Petrosani with term pregnancies.

Amniotic liquid sampling. All procedures were performed 
under careful sterile and antiseptic conditions. Before the 
amniocentesis procedure, an ultrasound evaluation was carried 
out in order to determine the location of the placenta, fetus and 
other characteristics of the amniotic fluid.

To enter the amniotic cavity, a spinal needle with a gauge 
of 20‑22 was used under continuous ultrasound guidance. 
The entry into the amniotic cavity was done firmly in order 
to prevent rupture of the amniotic membrane and avoiding 
the placenta. Once the entry into the cavity was confirmed 
by ultrasound, the amniotic fluid was slowly aspirated. The 
first 2 ml were discarded, as they may be contaminated with 
maternal cells. A quantity of 20‑22 ml was deemed sufficient, 
as 18‑20 ml were used for genetic, sex and lung development 
testing (for pregnancies after week 32). The remaining 2 ml 
were used for the evaluation of heavy metal ion concentration.

After removal of the needle, the mothers were kept under 
further ultrasound evaluation to confirm proper fetal heart 
rate. Intramuscular administration of anti‑D immuno‑globulin 
was also done for Rhesus‑negative women in order to prevent 
fetal Rhesus disease. After completing the procedure, the 
mothers were advised to avoid strenuous and sexual activities 
for the next 48 h.

Detection of heavy metal ions. The working method used for 
the detection of heavy metals in the amniotic fluid involved 
flame atomic absorption spectroscopy. Each amniotic fluid 
sample was nebulized in the gases of the spectrophotometer's 
flame. Each of the studied metals have well‑known specific 
absorption rates and the spectrophotometer was also equipped 
with an interference correction system. All measurements are 
presented in mg/l.

The method follows national guidelines (SR ISO 
8288/2001 standards). All reagents used in this determination 
were of high quality and the water used was ultrapure, with no 
traces of heavy metals. All spectrophotometer readings were 
analyzed on a connected computer running GBC Avanta 1.33 
(GBC Scientific Equipment). The calibration values used for 
the readings are presented in Table I.

Data collection. The following clinical and demographical 
data were collected for each patient: Age of the patient, gesta‑
tional age, concentrations of Pb, Cu, Ni, Cd, As, Zn, iron (Fe) 
(in mg/l), femur length (in mm), location of residence (urban or 
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rural) and smoking status (no smoking, either smoking in the 
past or quitting the habit once the patient found out about the 
pregnancy and active smoking). The data were recorded in an 
Excel file (2016 Office Suite, Microsoft).

Smoker status. Information on tobacco use was also collected. 
Active smokers were defined as patients smoking even during 
pregnancy. Former smokers were defined as patients that had 
smoked and gave up the habit in the past, as well as mothers, 
which quit smoking once the pregnancy was suspected and/or 
confirmed. Nonsmokers were defined as patients that never 
smoked.

Statistical analysis. Normal distribution was assessed using 
the Shapiro‑Wilk test. Descriptive statistics for numerical 
variables include means, standard deviations, medians, inter‑
quartile range (IQR, 1st quartile ‑ 3rd quartile) and range. 
For the comparison of with non‑parametric variables, the 
Mann‑Whitney U test was used. For categorical variables, 
frequency (%) and/or count (n) were included, and Fisher's 
exact test used to analyze the contingency tables. The α‑level 
was set at 0.05. P<005 was considered to indicate a statistically 
significant difference. All data were processed using SPSS 
version 22 for Windows (IBM Corp.).

Results

Overview. In the Timisoara cohort, a total of 100 pregnant 
women between the age of 20 and 35 were admitted in the 
maternity during the study period. The mean maternal ages 
for groups 1 (preterm) and 2 (term) were 27.76±3.83 and 2
7.46±3.58 years, respectively. Mean gestational age was 
18.14±1.81 weeks for the preterm group and 38.66±1.04 weeks 
for the term group. Mean femur length for the preterm group 
was 24.94±6.32 and 74.55±2.65 for the term group. All 
demographic data are presented in Table II. The distribution 
of the area of residence distribution is presented in Fig. 1. 
Statistical analysis of the area of residence did not reveal 
a significant difference between the groups (P=0.83694; 
Fisher's exact test).

The Petrosani cohort consisted of 60 pregnant women 
between the age of 19 and 35 admitted in the maternity. 
The mean maternal age was 27.20±4.47 years for group 3 
(preterm) and 26.47±4.09 years for group 4 (term). Mean 
gestational age was 18.33±1.84 weeks for the preterm group 
and 39.07±0.94 weeks for the term group. Mean femur length 
for the preterm group was 25.15±5.98 and 76.13±1.76 for 
the term group. The demographic data for these groups are 
presented in Table III. The distribution of the area of residence 

distribution is presented in Fig. 2. Statistical analysis of the 
area of residence using Fisher's exact test showed no significant 
difference between the groups (P=0.42956).

Analysis of the Timisoara cohort. In the Timisoara cohort, 
there were no statistically significant differences in the 
heavy metal ion concentrations between pre‑term and term 
pregnancies (Table IV).

Analysis of the Petrosani cohort. In the Petrosani cohort, no 
statistically significant differences were observed between 
pre‑term and term pregnancies regarding Pb, Cu, Ni, As and 
Fe concentrations. However, the concentrations of Cd and 
Zn were significantly higher in the pre‑term than in the term 
pregnancies (Table V).

Analysis between Timisoara and Petrosani. The Timisoara 
and Petrosani were also analyzed as a whole. No significant 
differences were observed with respect to Ni and Fe concentra‑
tions. However, the median concentrations of Pb, Cd, As and 

Table I. Calibration values for the flame atomic absorption spectroscopy.

Metal Zn Cu Cd Ni Pb As Fe

Maximum error 0.037 0.027 0.012 0.039 0.083 0.027 0.013
R2 0.999 1.000 0.999 0.998 0.995 0.998 1.000

Zn, zinc; Cu, copper; Cd, cadmium; Ni, nickel; Pb, lead; As, arsenic; Fe, iron.

Table II. Demographic data for patients from Timisoara.

 Preterm Term
Parameter pregnancies pregnancies

Gestational age, weeks  
  Mean 18.14 38.66
  SD   1.81   1.04
  Median 18.00 39.00
  IQR 16.88‑19.88 38.00‑39.00
  Range 6.00 4.00
Maternal age, years  
  Mean 27.76 27.46
  SD   3.83   3.58
  Median 28.00 28.00
  IQR 24.88‑30.13 26.00‑29.00
  Range 15.00 15.00
FL, mm  
  Mean 24.94 74.55
  SD   6.32   2.65
  Median 25.30 75.05
  IQR 19.80‑29.44 72.39‑75.63
  Range 23.50 11.70

FL, femur length; IQR, interquartile range; SD, standard deviation.
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Zn were significantly higher in the Petrosani cohort, compared 
with patients from Timisoara. The median Cu concentration 
was significantly higher in the Timisoara cohort, compared 
with that in the Petrosani cohort (Table VI).

Analysis of smoking status. As smoking may affect the 
concentrations of trace elements such as heavy metal ions in 
the blood, urine, hair and toenail samples, the smoking status 
of the patients was also assessed. Fisher's exact test was used 

Figure 1. Area of residence of patients from Timisoara with (A) preterm and (B) term pregnancies.

Figure 2. Area of residence of patients from Petrosani with (A) preterm and (B) term pregnancies.

Figure 3. Smoking status of patients from (A) Timisoara and (B) Petrosani. The inner circle represents preterm pregnancies (<37 weeks), while the outer circle 
represents term pregnancies (≥37 weeks).
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to see if the smoking status was associated with gestational 
age or with the area of residence. (Table VII; Figs. 3 and 4). 
There was no association between smoking status and either 
of these two parameters.

Discussion

Amniotic fluid plays a key role in the development of the 
fetus. It protects the fetus from mechanical shock and insu‑
lates it thermally, whilst helping elements from the maternal 
plasma reach the fetus, especially in the early pregnancy, 
before the formation of the placenta and it participates in 
keeping the antibacterial balance. These properties are 
the result of the bioactive compounds that take part in its 
constitution (7).

Since implantation, the extracolemic cavity is produced, 
forming the amniotic space. The fetus and the amniotic 
fluid are enveloped by the amniotic sac. At weeks 34‑38 
the amniotic fluid reaches its maximum value, after which 
it starts declining as the pregnancy goes on (4‑6). However, 
the concentrations of its bioactive compounds changes as the 
osmolarity of the fluid decreases. These concentrations are 
important as they can provide insight into the status of the 
fetus through amniocentesis.

Although they are found in small amounts, mineral ions 
can play an important role in the development of the fetus. 
Common ions are sodium, chloride, potassium, calcium, 
magnesium, bicarbonate and phosphate (2,7,29). In addition, 
trace levels of heavy metals, such as Cu, As, Cd, Ni, chro‑
mium, mercury, manganese, Zn and Pb, can also be found in 
the amniotic fluid (1,2,7).

Sodium is involved in regulating the water‑electrolyte 
balance (9,29‑31). Chloride can be used to determine possible 
renal disorders, such as the Barter syndrome (8,9,32). Raised 
potassium levels may lead to pre‑eclampsia and lower anti‑
bacterial activity (11,14). Elevated calcium levels can result in 
pre‑eclampsia and spina bifida, while low levels are associated 
with preterm deliveries (33‑37). Low levels of magnesium have 
been associated with pre‑eclampsia and possible fetal growth 
retardation (12,13,38‑40). High bicarbonate may indicate 
complicated twin‑twin transfusion syndromes (41), while 
phosphate plays a role in antimicrobial activity (42‑44).

Heavy metals are metalloids with high density or atomic 
number, which are usually found in trace amounts in serum. 
Several have well‑known physiological functions, such as 
heme constitution, hormone production, enzyme regulation 
or even act as antioxidants (45). Therefore, it is normal for 
these elements to be found in tissues and bodily fluids. When 
concentrations are elevated however, certain health risks may 
appear. In adults, risks range from acute hepatic injury, cardio‑
vascular, neuro‑psychological disorders to chronic poisoning 
or even death (46‑48). Considering the risks adults are exposed 
to, prudence is advisable regarding the risks in children.

Zn is essential for embryogenesis and neurogenesis. 
Deficiency in this element is associated with fetal growth 
retardation and neurodegenerative disorders (28,49‑51). It 
may also promote antimicrobial activity (15,17). Due to these 
concerns, similarly to magnesium and iron, supplementation 
for both pregnant and lactating mothers is recommended. 
The average intake is in the range of 9.6‑11.2 mg/day (51,52). 
Another reason to determine the amniotic fluid levels is that 
oxidative stress, induced by menadione, is further exacerbated 
by high concentrations (80 µM) of Zn (53). In the Timisoara 
cohort of the present study, the differences in Zn concen‑
trations between term and preterm pregnancies were not 
statistically significant. In the Petrosani cohort, the preterm 
pregnancy group had a median Zn concentration higher than 
that of the term pregnancy group. The differences between the 
two cohort were also statistically significant.

Cu is an essential cofactor for several metalloenzymes. It 
also has antimicrobial and antiviral properties. Average intake 
varies from 0.6 to 1.6 mg/day, although this can be higher 

Table III. Demographic data for patients from Petrosani.

 Preterm Term
Parameter pregnancies pregnancies

Gestational age, weeks  
  Mean 18.33 39.07
  SD   1.84   0.94
  Median 18.00 39.00
  IQR 17.00‑20.00 38.00‑39.88
  Range 6.00 3.00
Maternal age, years  
  Mean 27.20 26.47
  SD   4.47   4.09
  Median 28.00 26.50
  IQR 23.75‑30.13 23.88‑29.00
  Range 16.00 15.00
FL, mm  
  Mean 25.15 76.13
  SD   5.98   1.76
  Median 25.35 75.50
  IQR 19.41‑30.24 75.49‑77.10
  Range 22.30   7.90

FL, femur length; IQR, interquartile range; SD, standard deviation.

Figure 4. Smoking status of patients from Timisoara (inner circle) or 
Petrosani (outer circle).
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during pregnancy and breastfeeding (54). Deficits may lead to 
neurological and immunological abnormalities of the fetus (54). 
By contrast, high Cu concentrations may lead to diverse abnor‑
malities. For example, high concentrations in maternal serum 
have been linked to pre‑eclampsia (55,56), and elevated levels 
in the amniotic fluid have been associated with fetal growth 
retardation (28). When considering genetics, Cu is has been 
implicated in two major diseases, namely Wilson and Menkes 
diseases. In both cases, accumulation of Cu in the fetus can 
usually be observed prenatally (57‑60). In the present study, 
the differences between term and preterm pregnancies were 
not statistically significant, both for patients from Timisoara 
and from Petrosani. When comparing the two cohorts, the 
Timisoara cohort presented higher median concentrations, 
with the differences being statistically significant.

Ni is essential for gut bacterial growth, hormone production, 
iron absorption and as part of RNA and DNA. Recommended 
dietary allowance for women is 400‑600 µg/day (61,62). Large 
doses of Ni or prolonged exposure can cause harmful effects 
such as genotoxicity, hematotoxicity, teratogenicity, immu‑
notoxicity, carcinogenicity and allergic reactions (62,63). 
Smokers and families with lower socio‑economic status might 
be exposed to higher doses (62‑64). Rodent models have shown 
that the transfer of Ni through the placenta occurs mainly from 
the mother to the fetus, resulting in its accumulation in the 
amniotic fluid or fetal organs (65,66). In the present study, the 
differences between term and preterm pregnancies were not 
considered statistically significant for both cohorts. There were 

no statistically significant differences in Ni concentrations 
between the two cohorts.

Fe is an important molecule that serves several functions 
in the body, with the most important role being in oxygen 
transportation, as part of the heme structure (67). Another 
important role is combating infections (68). Normal intake 
for iron is 16 mg/day for women and 7‑11 mg/day for chil‑
dren <14 years (69). Fe deficiency is a common worldwide 
problem leading to anemia. Children and pregnant women 
are at a high risk for this condition and may need supple‑
mentation. During pregnancy, total intake should reach 
27 mg/day, while during lactation, the recommended intake 
falls to 10 mg/day (70).

Deficiency and anemia in pregnant women has been asso‑
ciated with low birth weight, preterm delivery and potential 
fetal anemia (71,72). During intra‑amniotic infection or 
inflammation complications, the amniotic levels of Fe are not 
significantly increased compared with healthy individuals. 
This may be due to hepcidin upregulation, which may result 
in hypoferremia in maternal serum, as hepcidin redirects Fe 
to macrophages correlated with the infection or inflammation 
episode (73,74). Common symptoms of Fe deficiency anemia 
include paleness, fatigue, reduced cognitive performance and 
diminished immune responses. Infants experience these as 
well, along with an increased risk of cognitive and psychomotor 
developmental deficit (75).

Excess Fe can be observed after repeated blood transfu‑
sions or in congenital cases of hemochromatosis. Mutations 

Table IV. Heavy metal concentrations in patients from Timisoara (n=100) with preterm and term pregnancies.

Metal Mean SD Median IQR Range P‑valuea

Pb      
  Preterm 0.0409 0.1582 0.0001 0.0000‑0.0136 1.012 0.74300
  Term 0.0570 0.1944 0.0002 0.0000‑0.0138 1.012 
Cu      
  Preterm 0.4736 0.5068 0.2840 0.0829‑0.9263 1.662 0.59780
  Term 0.5810 0.5106 0.3690 0.0780‑1.0339 1.738 
Ni      
  Preterm 0.4426 0.6478 0.0131 0.0000‑0.9954 2.057 0.09952
  Term 0.6863 0.7292 0.7175 0.0000‑1.2206 2.787 
Cd      
  Preterm 0.0067 0.0354 0.0001 0.0000‑0.0001 0.238 0.69680
  Term 0.0103 0.0429 0.0001 0.0000‑0.0001 0.240 
As      
  Preterm 0.9131 1.0294 0.5530 0.0000‑1.7294 3.769 0.17080
  Term 0.7219 0.9954 0.0020 0.0000‑1.4208 3.767 
Zn      
  Preterm 0.0776 0.1518 0.0145 0.0000‑0.0674 0.658 0.98310
  Term 0.0534 0.1329 0.0140 0.0000‑0.0369 0.742 
Fe      
  Preterm 0.3072 0.3624 0.1504 0.0414‑0.4477 1.500 0.13470
  Term 0.3332 0.3126 0.2333 0.1769‑0.3369 1.382 

aMann Whitney's U‑test. IQR, interquartile range; SD, standard deviation.
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of the High Fe2+ protein family and other Fe transport 
proteins lead to iron build‑up in the organism, resulting 
in liver cirrhosis, hepatocellular carcinoma, heart disease 
and impaired pancreatic function (76). Although these 
symptoms usually appear in later life, infants with Fe over‑
load may be at risk of developing brain and hematopoiesis 
alterations (77).

In the present study, the differences in Fe concentrations 
between term and preterm pregnancies were not consid‑
ered statistically significant in the Timisoara or Petrosani 
cohorts. Nor were there any differences between the two 
cohorts.

Cd is an element still being investigated, along with Pb and 
As. It is commonly found in cigarettes. Present only in very 
small amounts in the body, no physiological role has been 
established yet. As a toxic element, previous studies have 
looked into its effects on cardiovascular function (78,79), 
obesity and ghrelin regulation (80,81), possible cancer occur‑
rence (82,83), reproduction and pregnancy (84‑87). Rodent 
fetal experimentation has suggested cytotoxicity problems, 
progesterone disorders, microRNA expression changes, 
elevated oxidative stress and DNA damage (84‑86). The toxic 
effects from Cd, such as high oxidative stress, cytotoxicity 
and apoptosis have also been shown in humans (87). Prenatal 
exposure has been linked with lower birth weights, preterm 
deliveries and even possible spontaneous abortion (88‑90). 
Elevated amniotic fluid levels have been also linked with 

pre‑eclampsia (26,91). Children with such prenatal history 
might also be prone to cardiometabolic disorders (92). 
In the present study, the differences in Cd concentration 
between term and preterm pregnancies were not considered 
statistically significant in patients from Timisoara. In the 
Petrosani cohort, the median concentrations for the preterm 
pregnancy group were significantly higher, compared with 
the term group. Compared with patients from Timisoara, 
the Petrosani cohort presented significantly higher median 
concentrations.

As is an element known since ancient times, where it 
was frequently used as a poison. Very small amounts do 
have some physiological functions, interacting with the 
metabolism of selenium and methionine; the normal dose is 
in the range of 12‑40 µg/day (93,94). Except for the deriva‑
tive arsenic trioxide (As2O3), which has antitumor properties, 
the levels of As should be maintained in the recommended 
levels, as high doses can lead to neuronal insulin signaling 
disruption and the development of malignancies, severe 
gastrointestinal toxicities, diabetes, cardiac arrhythmias or 
even death (95‑97). Related neurological problems include 
lower IQ levels, attention‑deficit/hyperactivity disorder and 
autism spectrum disorders (98,99). Elevated maternal levels 
have been associated with maternal hypertension preterm 
deliveries, low birth weight and even possible spontaneous 
abortion (23,24,100,101). In the present study, the differences 
between term and preterm pregnancies were not considered 

Table V. Heavy metal concentrations in patients from Petrosani (n=60) with preterm and term pregnancies.

Metal Mean SD Median IQR Range P‑valuea

Pb      
  Preterm 0.0728 0.2249 0.0020 0.0000‑0.0284 1.124 0.20840
  Term 0.1579 0.3048 0.0190 0.0000‑0.0865 1.202 
Cu      
  Preterm 0.0386 0.0519 0.0265 0.0054‑0.0468 0.265 0.78420
  Term 0.0260 0.0200 0.0185 0.0109‑0.0409 0.074 
Ni      
  Preterm 0.5743 0.7706 0.0990 0.0000‑1.2199 2.198 0.47120
  Term 0.7173 0.8653 0.1765 0.0000‑1.4485 2.898 
Cd      
  Preterm 0.0135 0.0463 0.0003 0.0000‑0.0020 0.235 0.01512b

  Term 0.0070 0.0368 0.0001 0.0000‑0.0001 0.202 
As      
  Preterm 1.0785 0.9899 0.7525 0.2260‑1.7548 3.004 0.66710
  Term 1.1075 1.2392 0.7632 0.0086‑1.8127 4.743 
Zn      
  Preterm 0.2202 0.2975 0.0845 0.0344‑0.3295 1.259 0.02606b

  Term 0.0604 0.053 0.0425 0.0199‑0.0989 0.177 
Fe      
  Preterm 0.3377 0.4297 0.1235 0.0704‑0.5135 1.747 0.16690
  Term 0.4119 0.3316 0.3760 0.1406‑0.6029 1.500 

aMann Whitney's U‑test, bstatistically significant. IQR, interquartile range; SD, standard deviation.
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statistically significant, both for patients from Timisoara 
and from Petrosani. When comparing the two cohorts, the 
Petrosani cohort presented significantly higher median 
concentrations of As.

Pb is well‑known for its high toxicity and has no known 
physiological roles, and as such, avoiding contact with this 
metal is advised. Pb poisoning affects the kidneys, the 
cardiovascular system, reproduction and especially the 
neurological and psychologic systems, as it can pass the 

blood‑brain barrier (102‑106). In children, the neurological 
and psychological effects can be drastic, as their brains and 
mind undergo much development. This can lead to prob‑
lems such as lower IQ levels, attention‑deficit/hyperactivity 
disorder and antisocial disorders (107‑109). Other pediatric 
disorders due to elevated lead concentrations in the mother's 
serum could be reduced glomerular filtration, asthma, 
immunological and dermatological disorders (110‑113). 
Perinatal effects of high Pb concentrations are low birth 

Table VI. Comparison of heavy metal concentrations in the amniotic fluid between the Timisoara (n=100) and the Petrosani 
(n=60) groups.

Metal Mean SD Median IQR Range P‑valuea

Pb      
  Timisoara 0.0489 0.1765 0.0001 0.0000‑0.0130 1.012 0.04513b

  Petrosani 0.1136 0.2671 0.0030 0.0000‑0.0468 1.202 
Cu      
  Timisoara 0.5281 0.5339 0.3225 0.0805‑1.0230 1.738 <0.00001b

  Petrosani 0.0322 0.0392 0.0190 0.0090‑0.0433 0.265 
Ni      
  Timisoara 0.5645 0.6970 0.0010 0.0000‑1.1390 2.787 0.78150
  Petrosani 0.6480 0.8089 0.0504 0.0000‑1.3100 2.898 
Cd      
  Timisoara 0.0085 0.0392 0.0001 0.0000‑0.0001 0.239 0.00002b

  Petrosani 0.0101 0.0413 0.0001 0.0000‑0.0010 0.235 
As      
  Timisoara 0.8175 1.0120 0.2310 0.0000‑1.5270 3.768 0.03027b

  Petrosani 1.0751 1.1116 0.7400 0.0685‑1.7029 4.743 
Zn      
  Timisoara 0.0664 0.1462 0.0140 0.0000‑0.0560 0.742 <0.00001b

  Petrosani 0.1394 0.2249 0.0530 0.0238‑0.1418 1.266 
Fe      
  Timisoara 0.3202 0.3370 0.2219 0.0982‑0.4240 1.500 0.44540
  Petrosani 0.3735 0.3793 0.2660 0.0883‑0.5653 1.768 

aMann Whitney's U‑test, bstatistically significant. IQR, interquartile range; SD, standard deviation.

Table VII. Smoking status of patients from the Timisoara and the Petrosani groups.

Patient group Active smoker, n Former smoker, n Non‑smoker, n P‑valuea

Timisoara (all patients) 4 43 53 0.7193
Petrosani (all patients) 2 28 30 
Timisoara     
  Preterm 3 18 29 0.26855
  Term 1 25 24 
Petrosani     
  Preterm 0 12 16 0.23577
  Term 2 17 13 

aFisher's exact test.
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weight, preterm delivery, pre‑eclampsia and pregnancy 
hypertension (90,114‑117). Umbilical cord blood analysis 
has also shown that Pb affects DNA methylation and has 
also confirmed the reduced intellectual abilities of children 
coming from pregnancies with exposure to Pb (118,119). 
In the present study, the differences in Pb between term 
and preterm pregnancies were not statistically significant 
in either cohort. Compared with the Timisoara cohort, 
the patients from Petrosani presented significantly higher 
median concentrations of Pb.

For both cohorts, the differences between the preterm 
and term pregnancies were minimal. Indeed, no statisti‑
cally significant differences were observed in the Timisoara 
cohorts, and the patients from Petrosani only showed higher 
concentrations of Zn and Cd in the preterm pregnancy group. 
More importantly, the comparison between the two cities 
showed that patients from Petrosani, a well‑known industrial 
region, had higher concentrations of Zn, Cd, Pb and As. This 
is in agreement with other international studies showing that 
people living in industrialized regions are susceptible to accu‑
mulation of these elements, even if they mostly measured the 
concentrations either in the mother's serum, urine, toe‑nails, 
hair, fetal placenta and cord blood (16‑22,90,115,120,121). 
These elements are important as their concentration may be 
further increased by tobacco and are secreted in colostrum 
and breast milk (122). These elements are also some of the 
more toxic metalloids. Concern regarding their levels and 
possible health problems has also been expressed in other 
studies (46,47,92,99,111,113,123).

The smoking status of mothers can influence concentra‑
tions in blood, urine, hair or toe‑nail samples (124‑127). 
However, in order to avoid this, the patients in the present study 
were separated in three groups. Active smokers were defined 
as patients smoking even during pregnancy. Former smokers 
were defined as patients that had smoked and gave up the habit 
in the past, as well as mothers, which quit smoking once the 
pregnancy was suspected and/or confirmed. Nonsmokers were 
defined as patients that never smoked. There was no associa‑
tion between smoking status and gestational age, nor with any 
of the two cities in particular. Therefore, smoking status may 
not be an interfering element with respect to the concentration 
of heavy metal ions.

There are some limitations to this study. Larger sample 
lots might help produce finer, more accurate results. The 
design of the study may result in unequal follow‑up, as it 
involved two maternity clinics from different cities. All 
mothers were recommended supplements such as Elevit 2 
(Bayer, Germany) or Femosun (Sun Wave Pharma, Ascendis 
Health, South Africa), which may interfere with some of the 
recorded elements, especially Fe. Another limitation, which 
was not analyzed, may be the frequency of smoking, repre‑
sented by the number of cigarettes smoked by an individual 
per day. Only the smoker status was assessed under the labels 
previously described.

In conclusion, bioactive components found in the amniotic 
fluid are important and can be monitored through amniocen‑
tesis. This tool enables healthcare professionals to assess the 
condition of the developing fetus. Common ions have been 
largely studied in the past. Heavy metal ions require more 
attention as minimal differences in concentration might 

influence the fetal development. Cd and Pb are elements with 
high toxicity and almost no physiological function. Thus, the 
authors recommend that these elements be avoided, especially 
by pregnant women and children. Metalloids such as Fe, Cu, 
Zn or Ni are to be discussed by expecting mothers with their 
healthcare provider, in order to check if any supplementation 
is needed. More in‑depth research should be done in order to 
outline the effects of these elements and to determine how 
they affect antenatal outcomes and childhood development in 
the long run.
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