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Introduction

Dendritic cells (DCs) operate as professional antigen-
presenting cells (APCs) and play a critical role in the induction of 
immune responses against pathogens and malignant cells. Thus, 
DC-based anticancer vaccines are being intensively investigated, 
in both preclinical and clinical settings. To obtain tumor-specific 
vaccines, DCs have been loaded with tumor-associated antigens 
(TAAs) in the form of purified peptides,1 malignant cell lysates2 
or apoptotic cancer cells,3 as well as upon transfection with 
TAA-encoding mRNAs.4,5 An alternative strategy for inducing 
DC-dependent antitumor immune responses relies on the fusion 
of DCs and whole cancer cells6,7 (Fig. 1). This approach allows 
DCs to express (and hence present to T cells in the context of 
MHC molecules) the entire repertoire of TAAs contained in fused 
cancer cells. In preclinical models, DC/malignant cell fusions 
have been shown to possess all the elements that are required 

for the processing of TAAs and their presentation to immune 
cells, resulting in the elicitation of effective antitumor immune 
responses that were able to break peripheral T-cell tolerance to 
TAAs.8,9

Stimulation of T Cells by DC/Cancer Cell 
Fusion-Based Anticancer Vaccines

Upon fusion, the cytoplasmic compartments of DCs and 
cancer cells mix, while their nuclei remain separate.10,11 Such a 
peculiar configuration allow DC/cancer cell fusion to maintain 
the functions of both parental cell types (Fig. 1). Therefore, 
within DC/malignant cell fusions, TAAs (be they known or 
unidentified) efficiently feed into the antigen-processing pathway 
and antigenic TAA-derived peptides are presented on cell surface 
in complex with MHC class I or II molecules and in the presence 
of co-stimulatory factors6,10,11 (Fig. 1). Moreover, DC/cancer 
cell fusions are able to migrate to tumor-draining lymph nodes, 
where they can directly interact with CD4+ and CD8+ T cells, 
thus inducing robust antitumor immune responses.12 This is 
important as the direct presentation of TAAs by DC/malignant 
cell fusions can bypass the defects in the APC compartment often 
manifested by cancer patients. Host DCs can also take up TAAs 
released from dying DC/cancer cell fusions and represent them 
on MHC class I and II molecules to simultaneously activate CD4+ 
and CD8+ T cells. Thus, TAA-specific T cells can be induced by 
DC/neoplastic cells fusions either directly or indirectly.

Immunogenicity of DC/Malignant Cell 
Fusions as Anticancer Vaccines

Despite the unique features of DC/cancer cell fusions 
described above and their ability to promote tumor eradication 
in animal models, limited, yet encouraging, success has been 
obtained with this immunotherapeutic approach in clinical 
trials.8,9 In murine tumor models, many adjuvants, including 
interleukin (IL)-2, IL-12 and IL-18, as well as synthetic 
oligodeoxynucleotides (ODNs) containing unmethylated CpG 

*Correspondence to: Shigeo Koido; Email: shigeo_koido@jikei.ac.jp
Submitted: 07/21/2013; Accepted: 07/31/2013
Citation: Homma S, Okamoto M, Namiki Y, Takakura K, Uchiyama K, 
Kajihara M, Arihiro S, Imazu H, Arakawa H, Kan S, et al. How to improve 
the immunogenicity of dendritic/tumor fusion cells as cancer vaccines. 
OncoImmunology 2013; 2:e25994; http://dx.doi.org/10.4161/onci.25994

Strategies to improve the immunogenicity 
of anticancer vaccines based 

on dendritic cell/malignant cell fusions
Shigeo Koido1,2,3,*, Sadamu Homma3, Masato Okamoto4, yoshihisa Namiki2, Kazuki Takakura1, Kan Uchiyama1,  

Mikio Kajihara1, Seiji arihiro1, Hiroo Imazu5, Hiroshi arakawa1,5, Shin Kan3, Hideo Komita3, yuko Kamata3, Masaki Ito3,  
Toshifumi Ohkusa1, Jianlin Gong6, and Hisao Tajiri1

1Division of Gastroenterology and Hepatology; Department of Internal Medicine; The Jikei University School of Medicine; Tokyo, Japan; 2Institute of Clinical Medicine  
and research; The Jikei University School of Medicine; Tokyo, Japan; 3Department of Oncology; Institute of DNa Medicine; The Jikei University School of Medicine; Tokyo, Japan; 

4Division of Cellular Signaling; Institute for advanced Medical research; Keio University School of Medicine; Tokyo, Japan; 5Department of endoscopy; The Jikei University 
School of Medicine; Tokyo, Japan; 6Department of Medicine; Boston University School of Medicine; Boston, Ma USa

Keywords: dendritic cell, whole tumor cell, immunogenicity, cytotoxic T lymphocyte, fusion

The rationale for fusing dendritic cells (DCs) with whole 
tumor cells to generate anticancer vaccines resides in the 
fact that the former operate as potent antigen-presenting 
cells, whereas the latter express a constellation of tumor-
associated antigens (Taas). although the administration of 
DC/malignant cell fusions to cancer patients is safe and this 
immunotherapeutic intervention triggers efficient tumor-
specific T-cell responses in vitro, a limited number of objective 
clinical responses to DC/cancer cell fusions has been reported 
thus far. This review discusses novel approaches to improve 
the immunogenicity of DC/malignant cell fusions as anticancer 
vaccines.
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motifs and polyinosinic:polycytidylic acid (polyI:C), functioning 
as agonists for Toll-like receptor 9 (TLR) and TRL3, respectively, 
have been combined with DC/malignant cell fusions to evoke 
antitumor immune responses.8 Therefore, adjuvants may be 
essential to boost antitumor immunity when DC/neoplastic cell 
fusion-based vaccines are used to treat patients with advanced 
cancer. Indeed, the administration of these vaccines to cancer 
patients has been associated with immunological responses. 
However, early clinical trials have shown limited rates of success 
for this immunotherapeutic approach.8,9 Optimal responses 
to DC/malignant cell fusion-based anticancer vaccines may 
therefore require maneuvers that exacerbate the immunogenicity 
of both DCs and neoplastic cells.13

Improving the Immunogenicity of DCs

The clinical outcome of tumor-specific immune responses 
developing in cancer patients receiving DC/malignant cell 

fusions is significantly influenced by the characteristics of 
the DCs employed for the creation of the vaccine. TLRs have 
recently emerged as key components of the innate immune 
system, triggering DC activation and the secretion of pro-
inflammatory cytokines in response to a wide panel of conserved 
microbial or endogenous components.14 In line with notion, the 
co-administration of TLR agonists with anticancer vaccines 
modulates the activity of regulatory T cells (Tregs) and DCs 
through numerous mechanisms15,16: (1) the activation of DCs by 
TLR agonists favors the exposure on the cell surface of antigenic 
peptides complexed with MHC molecules, the expression of 
co-stimulatory molecules (e.g., CD80 and CD86) as well as the 
secretion of IL-12; (2) DCs activated by TLR agonists render naïve 
T cells refractory to Treg-dependent immunosuppression; (3) TLR 
agonists activate DCs at the tumor site, thus enhancing antigen 
cross-presentation as well as DC migration to regional lymph nodes, 
and hence promoting antigen-specific cytotoxic T lymphocyte 
(CTL) responses; and (4) TLR agonists such as CpG ODNs can 

Figure 1. Fusions generated with dendritic cells and whole malignant cells. The heterotypic cells obtained by the fusion of dendritic cells (DCs) and whole 
cancer cells express MHC class I and II molecules, co-stimulatory factors and tumor-associated antigens (Taas). DC/cancer cell fusions are able to process 
tumor-associated antigen (Taa)-derived peptides and load them on MHC class I molecules in the endoplasmic reticulum, resulting in the expression on the 
cell surface of peptide/MHC class I complexes for presentation to CD8+ T cells. DC/malignant cell fusions can also process Taa-derived MHC class II-restricted 
peptides and efficiently present them to CD4+ T cells, which are important for the efficient induction of cytotoxic T lymphocyte (CTL) responses.
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prevent the activation-induced death of CTLs by increasing the 
expression of anti-apoptotic molecules such as the BCL-2 family 
members BCL-X

L
 and CASP8 and FADD-like apoptosis regulator 

(CFLAR, best known as cFLIP), thereby allowing CTLs to survive 
and reach neoplastic lesions. However, the administration of a 
single TLR agonist has been reported to increase the expression 
of only approximately 1% of gene transcripts, a phenomenon 
that was exacerbated by more than 5-fold upon synergistic TLR 
stimulation. Thus, the optimal activation of DCs may require the 
engagement of multiple TLR-dependent signaling pathways.17 We 
and others have previously reported that the co-administration 
of various TLR agonists promotes the immunogenicity of DC/
malignant cell fusions through the upregulation of IL-12.14,18 
In this setting, we used a protein-bound polysaccharide isolated 
from Coriolus versicolor (PSK, which operates as a TLR2 agonist) 
and lyophilized preparations of a low-virulence strain (Su) of 
Streptococcus pyogenes (OK-432, which acts as a TLR4 agonist), 
both of which can be produced as good manufacturing practice 
(GMP)-grade agents and have been previously used in the clinic as 
biological response modifiers.18,19 Of note, DC/cancer cell fusions 
activated in the presence of both TLR2 and TLR4 agonists, 
but not DC/malignant cell fusions that were left unstimulated 
or were exposed to either TLR agonist alone, overcame the 
immunosuppressive activity of tumor-derived molecules such 
as transforming growth factor β1 (TGFβ1). In particular, 
TLR2/4-activated DCs (or the corresponding fusions): (1) exhibit 
increased expression levels of MHC class II molecules and CD86 
on the cell surface; (2) manifest an improved fusion efficacy; 
(3) produce elevated levels of IL-12; (4) simultaneously activate 
CD4+ and CD8+ T cells, which secrete high levels of interferon 
γ (IFNγ); (5) potently induce antigen-specific CTL activity; 
and (6) manifest a superior efficacy in inhibiting the generation 
of CD4+CD25+FOXP3+ Tregs.20 Nonetheless, when DC/cancer 
cell fusions are generated with neoplastic cells producing extremely 
high levels of TGFβ1, they inhibit the activity of CTLs in vitro. 
Therefore, incorporating the simultaneous activation of multiple 
TLRs and the blockade of immunosuppressive that are intrinsically 
produced by DC/neoplastic cell fusions may significantly enhance 
the therapeutic potential of this approach.

Improving the Immunogenicity of Malignant Cells

Most, if not all, malignant cells secrete multiple 
immunosuppressive mediators such as TGFβ1, IL-10 and vascular 
endothelial growth factor (VEGF). As these immunosuppressive 
molecules normally inhibit the initiation of efficient CTL 
responses,21 the microenvironment of malignant cells used for 
the generation of DC/cancer cell fusions has to be rendered 
immunostimulatory. Several strategies to inhibit the production of 
immunosuppressive factors by cancer cells have been developed, 
including the administration of neutralizing antibodies22 and small 
chemical inhibitors,23 as well as the transfection of specific small-
interfering RNAs (siRNAs)24 or constructs coding for a soluble 
variant of the TGFβ receptor.25 Also heat-shock proteins (HSPs), 
which have recently been implicated in the immunogenicity of 
apoptotic and necrotic cells, might constitute effective adjuvant 

for boosting the efficacy of DC/neoplastic cell fusions.26,27 HSPs 
generally operate as chaperons for a wide panel of peptides, 
including antigenic peptides, and HSP/peptide complexes not 
only can be efficiently taken up by DCs through specific receptors, 
but also can be presented in complex with MHC class I and II 
molecules the DC surface.28 We have previously reported that 
TLR2-stimulated DCs fused with heat-treated cancer cells are 
immunogenic, as demonstrated by: (1) the upregulation of multiple 
HSPs, MHC class I and II molecules, TAAs, CD80, CD86, CD83, 
and IL-12; (2) their ability to activate CD4+ and CD8+ T cells 
producing high levels of IFNγ; and (3) the capacity to efficiently 
elicited antigen-specific CTL activity.26 More recently, we have 
demonstrated that the secretion of TGFβ1, IL-10 and VEGR 
from whole cancer cells is significantly limited upon exposure to 
pharmaceutical grade ethanol, a maneuver that does not reduce the 
levels of MHC class I molecules and TAAs on the cell surface.27 
Moreover, ethanol, employed at concentrations that affect tumor 
growth, promoted the upregulation of HSPs. HSPs exposed by 
cancer cells can be recognized by DCs via TLR4, facilitating their 
activation and promoting antigen processing and presentation.29 
Of note, malignant cells that undergo immunogenic apoptosis 
ectopically expose the Ca2+-binding chaperone calreticulin (CRT) 
on the cell surface, allowing TAAs to efficiently traffic to the 
DC antigen-presenting compartment.30 Moreover, high-mobility 
group box 1 (HMGB1) passively released from dying neoplastic 
cells can stimulate antigen processing and presentation in DCs via 
a TLR4-dependent signaling pathway.31,32 Therefore, the exposure 
of CRT and the release of HMGB1 by ethanol-treated malignant 
cells enhance the immunogenicity of DC/cancer cell fusions.27 
Importantly, fusions involving DCs and ethanol-treated cancer 
cells activate T cells to produce high levels of IFNγ, boosting the 
elicitation of antigen-specific CTL response in vitro.27 In addition, 
HSP70-peptide complexes derived from DC/cancer cell fusions 
appear to possess superior immunogenic properties as compared 
with similar complexes obtain from neoplastic cells.33

Synergistic Effects of Fusions Generated 
with Immunogenic DCs and Cancer Cells

One of the biggest advantages of DC/malignant cell fusion-
based anticancer vaccines is that DCs and neoplastic cells can 
be modified independently from each other (before fusion), but 
these alterations persist for long period (after fusion). This is 
an important difference between this approach and the use of 
DCs loaded with cancer cell lysates. Thus, fusing TLR-activated 
DCs with cancer cells that express abundant danger signals, 
including HSPs, may result in efficient antigen processing and 
presentation in the context of high levels of MHC molecules 
and co-stimulatory factors (Fig. 2). We have recently reported 
that improved CTL responses are induced by DC/cancer cell 
fusions generated with neoplastic cells expressing danger/alarm 
signals and DCs stimulated with TLRs agonists in vitro.20,26,27,34 
However, it is still unclear which among multiple treatments that 
induce the immunogenic demise of neoplastic cells, including 
cytotoxic chemotherapy, targeted anticancer drugs and ionizing 
irradiation, and which (combination of) TLR agonists must be 



e25994-4 OncoImmunology volume 2 Issue 9

harnessed to obtain optimal DC/malignant cell fusion-based 
anticancer vaccines.

Conclusions

Even upon a significant improvement of their immunogenicity, 
DC/malignant cell fusion-based anticancer vaccines alone may 
still be insufficient to generate therapeutically relevant immune 
responses in patients affected by advanced neoplasms. To circumvent 
this issue, DC/cancer cell fusions might have to be combined with 
other forms of immunotherapy or conventional chemotherapy. In 
murine models, the combination of DC/neoplastic cell fusions 
with adoptive immunotherapy was very effective against poorly 
immunogenic tumors.35 As an alternative, the therapeutic profile 
of DC/cancer cell fusions might be improved upon combination 

with various strategies that inhibit the immunosuppressive activity 
of Tregs while promoting CTL responses, including specific types 
of chemotherapy, radiotherapy, hormonal therapy, photodynamic 
therapy and immunostimulatory monoclonal antibodies. 
Importantly, the blockade of immunological checkpoints with 
monoclonal antibodies specific for programmed cell death 1 
(PDCD1, best known as PD-1), its ligands, namely CD274 
(also known as PD-L1) and CD273 (also known as PD-L2), or 
cytotoxic T lymphocyte-associated protein 4 (CTLA4) is emerging 
as a promising immunotherapeutic strategy against cancer.36–39 All 
these interventions may be combined with DC/cancer cell fusions 
to treat cancer patients.
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Figure 2. Generation of immunogenic cancer cells fused to activated dendritic cells. Immunogenic cancer cells expressing calreticulin (CrT) as well as heat-
shock proteins (HSPs) on their surface, releasing high-mobility group box 1 (HMGB1) and secreting low levels of immunosuppressive mediators such as 
transforming growth factor β1 (TGFβ1) can be fused with Toll-like receptor (TLr)-activated dendritic cells (DCs), resulting in the further inhibition of TGFβ1 
secretion as well as in the increased released of interleukin-12 (IL-12) and HSPs. These immunogenic DC/cancer cell fusions effectively activate CD4+ and 
CD8+ T cells that are capable of producing high levels of interferon γ (IFNγ), eliciting potent antigen-specific cytotoxic T lymphocyte (CTL) responses in vitro.
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