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CD200Fc Improves Neurological
Function by Protecting the Blood–brain
Barrier after Intracerebral Hemorrhage

Chen-sheng Le1,* , Xiao-di Hao1,*, Jia-wen Li1, Jia-wei Zhong1,
Hao-ran Lin2, Yi-ting Zhou3, Zachary D. Travis4,
Lu-sha Tong1,*, and Feng Gao1,*

Abstract
CD200 is widely distributed in the central nervous system and plays an essential role in the immune response in neurological
diseases. However, little is currently known about the effects of CD200 signaling on the blood–brain barrier (BBB) function
after intracerebral hemorrhage (ICH). In this study, the role of CD200 during ICH in an autologous blood induced mouse ICH
model was investigated. Following ICH, critical protein expression, BBB permeability, and neurological function were mea-
sured with or without CD200Fc administration. Our results showed that both the expression of CD200 and CD200R1
decreased after ICH and administration of CD200Fc attenuated BBB leakage and improved neurological functions. In con-
clusion, our work demonstrated that CD200Fc might be a potential treatment option for ICH by protecting the BBB and
improving functional outcomes.
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Introduction

Intracerebral hemorrhage (ICH) is associated with high mor-

tality and high morbidity1–3. Currently, no effective treat-

ment option is available to improve functional outcomes in

patients with ICH. Beyond the immediate impact of ICH,

secondary brain injury is the leading cause of death and long-

term disability following ICH4. Blood–brain barrier (BBB)

disruption, which leads to tissue exudation, neuronal necro-

sis, and apoptosis, further propagates brain edema5. The

combination of such pathologies has been noted as an essen-

tial aspect of secondary brain injury.

CD200 is a type-I cell surface glycoprotein. It interacts

with its receptor CD200 R, which includes CD200R1,

CD200R2, CD200R3, and CD200R4 in mice and is

expressed on myeloid cells (including microglia). The

CD200 R family is responsible for the regulation of micro-

glia function in several neurological diseases, such as Par-

kinson’s disease6, multiple sclerosis7, white matter

ischemia8, and spina bifida9. The main isoforms of the

CD200 R family which are expressed in the mouse brain are

CD200R1 and R4. While the human CD200 R family only

contain CD200R1 and CD200R210. Thus, we focused our

attention on CD200R1 in this study. CD200Fc, a fusion

protein of CD200 and the immunoglobulin (Ig)G1 Fc seg-

ment applied in this study was reported to interact specifi-

cally with CD200R1 but not CD200R2-R411–13.

In previous studies which utilized a CD200 knockout

mice model, higher BBB permeability and more infiltration

of peripheral proinflammatory cells in the nervous system
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was observed14, which indicated that CD200 might be

related to BBB function and neuroinflammation.

In this study, we aimed to explore whether CD200Fc

treatment can attenuate ICH-induced BBB disruption.

Materials and Methods

Animals

Animal protocols were approved by the Zhejiang University

Committee on the Use and Care of Animals. A total of 124

male C57/Bl6 mice (6.5% mortality or asymptomatic)

weighing 20–24 g were used in this study.

ICH Models

The homologous blood injection ICH model was adapted

from a previously described model in mice15. The animals

were anesthetized with 1% pentobarbital (80 mg/kg, intra-

peritoneally), and then positioned in a stereotaxic frame

(World Precision Instruments, Sarasota, FL, USA), while

core temperature was maintained at 37.5�C with a heating

pad (temperature was monitored with a rectal thermometer).

A cranial hole (1 mm) was drilled 2.2 mm lateral and 0.2 mm

anterior to the bregma, near the right coronal suture. Auto-

logous blood was collected from the caudal artery. A 26-

gauge needle was inserted to the right basal ganglia through

the hole (3.5 mm ventral). A total of 20 ml of autologous blood

was injected at a rate of 2 ml/min using an automated pump

(World Precision Instruments). The needle remained fixed for

5 min to prevent reflux and then was gently removed to limit

any unintended damage. Animals in the sham groups only had

a needle inserted and then removed.

Experimental Design

The experiments were conducted as follows.

Experiment 1. The time course of CD200 and CD200R1

expression after ICH were analyzed using Western blot. The

ipsilateral hemispheres of mice from group sham, 6 h, 12 h,

24 h, 72 h were collected for analysis.

Experiment 2. Immunofluorescence was performed to check

the localization of CD200R1 at 24 h after ICH. Four mice

were used in both the sham group and the ICH group.

Experiment 3. For the Evans blue test, 24 mice were randomly

divided into sham, ICH, ICH þ CD200Fc (0.08 mg/g, intra-

cerebroventricularly (i.c.v)), and ICHþ IgG (0.08 mg/g, i.c.v)

groups (n¼6). Treatments were administrated at 1 h after

surgery. The function of the BBB in each group was assessed

at 24 h using Evans blue. For the brain water content test, a

total of 24 mice were divided and treated similarly. Brain

edema was evaluated by measuring brain water content.

Experiment 4. Mice were randomly divided into four groups

with six animals in each group: sham, ICH, ICHþ CD200Fc

(0.08 mg/g, i.c.v), and ICH þ IgG (0.08 mg/g, i.c.v) groups.

Neurobehavioral tests including the Garcia test, foot-fault,

corner turn, and rota-rod were performed.

Experiment 5. The downstream molecule Dok1 was measured

in sham, ICH, ICHþ CD200Fc (0.08 mg/g, i.c.v), and ICHþ
IgG (0.08 mg/g, i.c.v) groups (n¼4), using Western blot.

Western Blotting

Mice were transcardially perfused with 50 ml of ice-cold

phosphate-buffered saline (PBS). The brain tissue was homo-

genized and then centrifuged at 12,000 r/min for 30 min at 4�C,

and the supernatant was collected. Protein concentration was

determined by the bicinchoninic acid protein assay kit (Pierce,

Thermo Scientific, Waltham, MA, USA). Protein was then

loaded and separated using sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and trans-

ferred to a nitrocellulose (NC) membrane. After blocking with

5% nonfat milk, the membranes were incubated overnight at

4�C with primary antibodies: rabbit anti-CD200 (1:300, Santa

Cruz Biotechnology, Santa Cruz, CA, USA), goat anti-

CD200R1 (1:300, Santa Cruz), mouse anti-Dok1 (1:300, Santa

Cruz) and mouse anti-glyceraldehyde 3-phosphate dehydro-

genase (GAPDH; 1:3000; KangChen, Shanghai, China). The

membranes were then processed with a secondary antibody

against goat IgG (1:3000; Multi Sciences, Hangzhou, Zhe-

jiang, China) or mouse IgG (1:3000; Multi Sciences, China)

for 2 h at room temperature. Bands were visualized using the

chemiluminescence (ECL) detection reagents and then ana-

lyzed with ImageJ software.

Immunofluorescence Staining

Mice were perfused with 4% paraformaldehyde in 0.1 mol/l

PBS (pH 7.4). The brains were kept in 4% paraformaldehyde

for 12 h and then dehydrated in 30% sucrose for 2 to 3 days

at 4�C. A series of 10-mm coronal brain sections (LEICA,

CM3050 S, Buffalo Grove, IL, USA) were blocked with 5%
donkey serum albumin for 2 h at room temperature and then

incubated with goat anti-CD200R1 (1:200, R&D Systems,

Minneapolis, MN, USA), rabbit anti-Iba-1 (1:500, Wako,

Chuo-ku, Osaka, Japan), rabbit anti-GFAP (1:200, Abcam,

Cambridge, MA, USA), and rabbit anti-NeuN (1:200,

Abcam) at 4�C for 2 nights. After being rinsed three times

with PBS, the sections were incubated with appropriate sec-

ondary antibodies for 2 h at room temperature. The perihe-

matomal areas of stained sections were examined under a

confocal laser scanning microscope (Olympus, FV3000,

Tokyo, Japan). Microphotographs were analyzed with FV-

10 ASW software.

Evans Blue Assay

Mice received an intraperitoneal injection of 2% Evans blue

solution (4 ml/kg of body weight), at 24 h after surgery.
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Moreover, the stain was allowed to circulate for 3 h. Follow-

ing circulation, mice were perfused with 50 ml ice-cold PBS.

The brains were then removed and divided into left and right

hemispheres, frozen in liquid nitrogen, and stored at �80�C.

Right hemisphere samples were homogenized in PBS and

then centrifuged at 12,000 r/min for 30 min at 4�C, and the

supernatant was collected. An equal amount of 50% trichlor-

oacetic acid was added to each 500 ml of the supernatants and

then incubated overnight at 4�C. Later it was centrifuged at

12,000 r/min for 30 min at 4�C, and then the quantity of

Evans blue stain was detected by spectrophotometer (Bio-

Tek, Winooski, VT, USA) at 610 nm and quantified accord-

ing to a standard curve. These results are presented as

milligrams of Evans blue stain per gram of brain tissue.

Brain Water Content

Brain water content was measured using the wet/dry method.

Mice were sacrificed under anesthesia without perfusion at

24 h after surgery. The brains were removed quickly and

divided into ipsilateral and contralateral cortices (Ipsi-CX and

Cont-CX), ipsilateral and contralateral basal ganglia (Ipsi-BG

and Cont-BG), and cerebellum (Cerebel). The wet weight of

each part was measured immediately, and the dry weight was

obtained after the brain tissue had been dried for 24 h.

Short-Term Neurobehavioral Test

Garcia test at 24 h after ICH was carried out, including

assessment of spontaneous activity, axial sensation, vibris-

sae proprioception, symmetry of limb movement, lateral

turning, forelimb walking, climbing, and grabbing.

Long-Term Neurobehavioral Test

Foot-fault, corner turn, and rota-rod tests were performed

every 24 h in the first 7 days after ICH. Foot-fault: animals

were placed on a horizontal 26 � 13 grid floor (wire dia-

meter 1.3 cm) for 5 min. The number of foot faults of each

forelimb were recorded using a camera (Logitech Webcam,

Lausanne, Switzerland). Corner turn: the mice were placed

in a 30-degree corner. We then recorded whether the animals

turned left or right. The corner turn test was repeated 10

times for each mouse, and the percentage of right turns was

calculated. Rota-rod: animals were placed on an accelerating

rod (YLS-4C, Xuzhou, Jiangsu, China), with a max speed of

40 r/min and the time to fall was recorded for each run. All

animals were trained twice daily until their results were

consistent, before surgery.

Statistical Analysis

All data was given in means + standard deviation (SD).

The data was analyzed using GraphPad Prism version 6.02

with a Student’s t test and one-way analysis of variance

(ANOVA). Multiple comparisons between the groups were

performed using a Tukey test. Differences were considered

significant at p < 0.05.

Results

Expression of CD200 and CD200R1 after ICH

Results of the Western blot showed that the expression of

CD200 decreased at 24 h (Fig. 1B). While the expression of

CD200R1 decreased since 6 h (p < 0.05, versus sham) and

rose again at 72 h (Fig. 1A).

Expression of CD200R1 in Perihematomal Tissue

Double immunofluorescence staining was performed in the

basal ganglia area of sham and ICH groups. The staining

found that CD200R1 was expressed on microglia in both

sham and ICH groups (Fig. 2A and B), while CD200R1 was

not expressed on astrocytes or neurons (Fig. 2C and D).

Fig. 1. CD200R1 and CD200 expression in brain after ICH. (A) Western blot showed significant decrease of CD200R1 at 6 h, 12 h, and 24 h
after ICH (*p < 0.05 versus sham), and increased at 72 h (#p < 0.05, versus 24 h). (B) CD200 decreased at 24 h after ICH (*p < 0.05 versus
sham). N¼4 mice/group. Values are expressed as mean + SD.
ICH: intracerebral hemorrhage; SD: standard deviation.
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CD200Fc Protected BBB Integrity at 24 h after ICH

To examine whether CD200R1 plays a vital role in BBB

protection after ICH, we tested the permeability of the BBB

in mice with Evans blue and brain edema with brain water

content. The results showed that the accumulation of Evans

blue increased in our mice at 24 h after ICH, compared with

sham. Mice injected with normal IgG showed no significant

difference from the nontreatment group. Also, ICH mice

that received CD200Fc treatment had a lower release of

Evans blue than ICH with IgG. (Fig. 3A). The brain water

content was higher in ICH mice than sham mice. Besides,

mice that received CD200Fc treatment showed significant

improvement in both ipsilateral basal ganglia and cortex

after ICH. (Fig. 3B).

CD200Fc Improved Neurobehavioral Outcomes

A 1 week a neurobehavior test was performed in order to see

whether CD200Fc influenced the functional recovery after

ICH. Foot-fault and corner turn tests showed a significant

difference between ICH groups and CD200R1 treatment

groups on the first 7 days after ICH (Fig. 4A and B). The

rota-rod test showed a significant improvement in CD200Fc

treatment group from day 2 to day 7 (Fig. 4C). The Garcia

test showed neuronal function improvement at 24 h after

ICH in the CD200Fc-treated group (Fig. 4D).

CD200Fc Upregulated Dok1

Dok1, the downstream protein of CD200R1, decreased at 24

h after ICH, which was reversed by treatment with

CD200Fc. (Fig. 5)

Discussion

Though intracerebral hemorrhage is the leader of mortality

and morbidity in all subtypes of stroke, there are few effec-

tive treatments for improving functional outcome in patients

with ICH16. In this study, we found that administration of

CD200Fc attenuated BBB disruption at 24 h and improved

functional neurological outcomes of mice in the first week

Fig. 2. Localization of CD200R1 in brain. (A–B) CD200R1 was detected on Iba-1 positive cells in sham and ICH groups. (C-D) CD200R1 did
not co-localize with GFAP or NeuN.
ICH: intracerebral hemorrhage.
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after ICH. CD200, the ligand of CD200 R family, is a surface

protein widely expressed in central nervous system17. The

decrease of interaction between CD200 and its receptor may

promote the proinflammatory effect of microglia18. The

decrease of CD200 expression and exaggeration of micro-

glial response was reported in several disease models such as

multiple sclerosis19 and Parkinson’s disease20. Though a

microglia response has been noted, little is known about the

modification of the CD200 receptors. Studies have shown a

decrease of CD200 R on macrophages in patients with Par-

kinson’s disease21 as well as on microglia in Alzheimer’s

disease patients22. However, no significant alteration of

Fig. 3. Evans blue assay and brain water content. (A) Accumulation of Evans blue increased at 24 h after ICH (**p < 0.01 versus sham). Evans
blue decreased in mice treated with CD200Fc (#p < 0.05 versus ICH). N¼6 mice/group. (B) Brain water content showed significant increase
in ipsilateral basal ganglia and cortex at 24 h after ICH while was reversed by CD200Fc treatment (**p < 0.01 versus sham, #p < 0.05 versus
ICH). N¼6 mice/group. Values are expressed as mean + SD.
ICH: intracerebral hemorrhage; SD: standard deviation.

Fig. 4. Neuronal behavior test at 24 h after ICH. (A–C) Long-term tests showed significant improvement in CD200Fc-treated mice. (D)
Short-term Garcia test showed significance improvement in CD200Fc-treated mice. (*p < 0.05 versus sham, **p < 0.01 versus sham, #p <
0.05 versus ICH, ##p < 0.01 versus ICH. Values are expressed as mean + SD).
ICH: intracerebral hemorrhage; SD: standard deviation.
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CD200 R expression was found in patients with multiple

sclerosis23. In the present study, we found that both

CD200 and its receptor decreased after ICH in mice. A

recent study showed that the disruption of the BBB might

reduce CD200 expression by interleukin (IL)-6 and tumor

necrosis factor (TNF)-a produced by the microglia24.

Though CD200 expression is better understood, there is still

a substantial gap in the understanding of why there would be

a decrease in CD200R1. According to some studies, anti-

inflammatory cytokines, such as IL-4 and IL-13 stimulate

CD200 R expression on microglia22,25. This stimulation may

be related to the activation of microglia and ultimately

responsible for BBB disruption and neurobehavior deficit

after ICH.

The BBB is a system composed of microvascular

endothelium, astrocytes, basement membrane, pericytes, and

neurons26,27. In a thrombin-induced ICH injury model,

blocking the downstream activation of thrombin alleviated

BBB disruption and promoted brain microvascular endothe-

lial cell and astrocyte regeneration28. This experimental

design allows for a new approach for studying neuroprotec-

tion after cerebral hemorrhage and the pathologies of sec-

ondary brain injury.

Microglia get activated very soon after ICH and play a

vital role in secondary injury29,30. Yan et al.31, found that

microglia can not only work on neurons or other glia but also

alter the microvascular structure. As more evidence contin-

ues to suggest that microglia are powerful players in innate

immunity and maintain homeostasis in the nervous system,

microglia should not be separated from the BBB30. When

over-activated, microglia accumulate around the blood

vessels, and destruction of microvascular structures takes

place, including atrophy of endothelial cells, thickening of

basement membrane, vacuolization, and degeneration of

pericytes. The accumulation of these complications results

in the changes of BBB permeability and exudation around the

blood vessels32,33. Previous studies have demonstrated that,

CD200 is expressed mainly on the neurons, but also vascular

endothelial cells6 and astrocytes34. In the present study, we

found CD200R1 is expressed on microglia but not on neurons

or astrocytes, which indicated that the CD200–CD200R1

pathway might be a bridge between neurovascular units and

microglia. Thus, further studies need to be carried out to

determine whether CD200Fc protects the BBB or improves

neurological functions through regulating microglia.

Since CD200 fusion protein has been used in several in

vivo experiments8,35–37, we treated mice with CD200Fc at a

dosage accordingly36,37. Following treatment, Evans blue,

brain water content and a series of neurobehavioral tests

were applied to estimate the treatment effect of CD200Fc.

We found that CD200Fc treatment resulted in a significant

reduction of BBB permeability, Evans blue accumulation

and brain water content was decreased in CD200Fc-treated

mice, compared with the nontreatment group and the IgG-

treated group. This finding coincided with the improvement

of the neurobehavioral scores of the CD200Fc-treated

mice. Among the long-term neurobehavioral tests, foot-

fault and corner turn tests showed a significant difference

following the first day after administration of CD200Fc,

while the rota-rod test showed a significant difference fol-

lowing the second day.

There are a few limitations to our study. We directly

focused on BBB function but did not look into the anti-

inflammation or anti-apoptotic effect of CD200R1, although

anti-apoptosis of CD200R1 function is quite widely studied

in tumor and autoimmune diseases. Furthermore, the

detailed mechanism about how the signaling pathways of

CD200/CD200R1 changed with or without CD200Fc treat-

ment in ICH was not demonstrated in our study. Previous

studies have confirmed in both in vivo and in vitro studies

using rat models, that when CD200 R binds to CD200,

Y297 tyrosine in the PTB domain of its intracellular NPXY

sequence is rapidly phosphorylated, then the phosphory-

lated inhibitory molecule Dok1 and Dok2 proteins are

recruited and bound to Ras-GAP and SHIP. This cascade

furtherly inhibits RAS and its downstream ERK, JNK, and

P38 MAPK activation38–40. As a downstream molecule of

ERK, MMP-9 has been proven to be important in BBB

permeability41–43. Here we assume that activation of

CD200 R protects BBB through ERK/MMP-9 signaling

pathway. Thus, future studies are needed to investigate

which downstream signals take charge in ICH and what

changes take place during the treatment.

Ethical Approval

The animal study protocol was approved by the Institutional

Animal Care and Use Committee of Zhejiang University.

Fig. 5. Dok1 expression after ICH and different treatments. Dok1
expression decreased at 24 h after ICH. While treatment with
CD200Fc showed significant improvement (**p < 0.01 versus sham,
##p < 0.01 versus ICH. Values are expressed as mean + SD).
ICH: intracerebral hemorrhage; SD: standard deviation.
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