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secHsp70 as a tool to approach amyloid-b42 and other extracellular amyloids
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ABSTRACT
Self-association of amyloidogenic proteins is the main pathological trigger in a wide variety of
neurodegenerative disorders. These aggregates are deposited inside or outside the cell due to
hereditary mutations, environmental exposures or even normal aging. Cumulative evidence
indicates that the heat shock chaperone Hsp70 possesses robust neuroprotection against various
intracellular amyloids in Drosophila and mouse models. However, its protective role against
extracellular amyloids was largely unknown as its presence outside the cells is very limited. Our
recent manuscript in PNAS revealed that an engineered form of secreted Hsp70 (secHsp70) is highly
protective against toxicity induced by extracellular deposition of the amyloid-b42 (Ab42) peptide. In
this Extra View article, we extend our analysis to other members of the heat shock protein family.
We created PhiC31-based transgenic lines for human Hsp27, Hsp40, Hsp60 and Hsp70 and
compared their activities in parallel against extracellular Ab42. Strikingly, only secreted Hsp70
exhibits robust protection against Ab42-triggered toxicity in the extracellular milieu. These
observations indicate that the ability of secHsp70 to suppress Ab42 insults is quite unique and
suggest that targeted secretion of Hsp70 may represent a new therapeutic approach against Ab42
and other extracellular amyloids. The potential applications of this engineered chaperone are
discussed.
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Introduction

Alzheimer disease (AD) is a progressive, incurable neu-
rologic disorder characterized by memory loss, cogni-
tive decline and degeneration of brain neurons.1 It is
the most prevalent neurodegenerative disease and the
leading cause of dementia among older people. A
prominent pathological feature in the AD brain is the
abnormal, extracellular deposition of the amyloid-b42
peptide (Ab42). This peptide has an extraordinary abil-
ity to undergo conformational changes and is highly
amyloidogenic.2 Interestingly, the heat shock chaper-
one Hsp70 has been found associated with extracellular
deposits in AD. Since Hsp70 is a cytosolic protein, it
has been suggested that such association may be a con-
sequence of release due to non-specific processes, such
as cell death. Alternatively, it has been proposed that
Hsp70 may go out of the cells through exosomes to

stop the accumulation of proteotoxic assemblies, which
agrees with the increased levels of Hsp70 seen in AD.3,4

Whatever the case, if the interaction with Ab42 assem-
blies outside the cell is too extensive the extracellular
levels of Hsp70 would be severely affected. In this situa-
tion, an imbalance between neuronal Hsp70 function
and the toxic accumulation of Ab42 may be a major
trigger for the neuronal death.

In this regard, we recently hypothesized that the
rational delivery of Hsp70 to the extracellular space
would be an effective approach to prevent formation
of toxic assemblies of Ab42 and subsequent neurode-
generation. This hypothesis was supported by previous
studies showing that Hsp70 has the ability to alleviate
the aggregation of Ab42 in several experimental mod-
els. For instance, in vitro studies in a cell-free system
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indicate that Hsp70 inhibits early stages of Ab42
aggregation.5 This inhibitory effect causes dissociation
of preformed oligomers but not fibrils, suggesting that
this chaperone targets oligomeric intermediates on the
Ab42 aggregation pathway.5 Also, Hsp70 demon-
strated neuroprotective activity against intracellular
Ab42 in primary culture,6 while downregulation of
Hsp70 led to increased protein aggregation in trans-
genic worms expressing intracellular Ab42.7 Taken
together, these studies suggested that if Hsp70 were
present in the same cellular compartment in which
Ab42 is produced, it would suppress the early aggre-
gation of Ab42. Thus, we reasoned that the thoughtful
enhancement of Hsp70 in the extracellular milieu
would prevent or delay pathologies associated with
extracellular deposition of Ab42.

secHsp70: A robust blocker of Ab42-induced toxicity

To test the aforesaid hypothesis, we created transgenic
flies expressing human Hsp70 fused to a signal peptide
for secretion (secHsp70).8 We found that secHsp70
robustly suppresses a variety of Ab42 phenotypes
including the glassy eye, locomotor dysfunction, short-
ened lifespan, premature cell death, and neurodegener-
ation of brain neurons. We also found that secHsp70
exerts neuroprotection without obvious changes in
Ab42 steady-state levels or aggregation. Interestingly,
this protective effect does not require the foldase activ-
ity of secHsp70. Instead, neuroprotection is mediated
by the holdase activity as evidenced through mutations
of the substrate-binding domain. We concluded that
secHsp70 neutralizes Ab42 without the assistance of
factors involved in protein folding or degradation and
that the holdase activity of secHsp70 is essential to
mask neurotoxic Ab42 epitopes.8 Thus, we strongly
believe that secHsp70 blocks Ab42 neurotoxicity by
inducing the accumulation of nontoxic aggregates and/
or preventing pathological interactions with cellular
substrates. Further experiments are required to define
the precise mechanisms of secHsp70 neuroprotection.

Are other heat shock chaperones effective against
extracellular Ab42?

To address this question we tested additional heat shock
protein family members that possess different roles and
distributions. These include Hsp27, a small chaperone
carrying extra antioxidant and antiapoptotic roles;9

Hsp40, a DNAJ domain chaperone with essential or
accessory functions in a variety of processes including
nascent chain folding, transport and degradation of pro-
teins;10 and Hsp60, a nuclear-encoded mitochondrial
chaperone that is also present in the cytosol, extracellular
space and on the cell membrane.11 To facilitate compari-
son between these chaperones, we targeted the insertion
of the transgenes to the same chromosomal location to
achieve similar expression levels. Thus, we created
PhiC31-based UAS lines carrying human Hsp27,
Hsp40, Hsp60 and Hsp70 with and without signal pep-
tide for secretion. We first compared the ability of the
normally expressed chaperones (cytosolic) against the
toxicity induced by mutant Ataxin3-Q78 (Atx3-Q78) in
the fly eye. Since Atx3-Q78 is an intracellular amyloid
with well-characterized phenotypes, this experiment
served as control to functionally assess the strength of
the new PhiC31-based transgenes. As expected, only
Hsp40 and Hsp70 rescued the Atx-3Q78 phenotype
(Fig. 1A), suggesting that the expression levels elicited by
the site-specific integration of the transgenes are suffi-
ciently high to achieve neuroprotection. However, when
the same chaperones were engineered for secretion and
tested against extracellular Ab42, only secHsp70 dis-
played robust protection of the Ab42-induced eye phe-
notype (Fig. 1B). This result highlights the remarkable
ability of secHsp70 to suppress Ab42 insults. Thus, in
the following sections, we discuss potential uses and
applications of this engineered chaperone.

Future directions

Impact on other extracellular amyloids
After confirming that the extracellular delivery of
Hsp70 prevents Ab42-related phenotypes, the next
logical step will be to expand its uses to other extracel-
lular amyloids. Interestingly, several transgenic fly
strains that accumulate extracellular amyloidogenic
proteins are already available in different laboratories.
These include flies expressing ABri and ADan pepti-
des (familial British and Danish dementia),12 mutant
transthyretin (familial amyloidotic polyneuropathy),13

PrP (prion disorders),14 mutant lysozyme (hereditary
lysozyme amyloidosis),15 and amylin (type 2 diabe-
tes)16 to name a few. All these strains exhibit amyloid-
related phenotypes in the eye or CNS and, thus, are
ideally suited to investigate the potential protective
effect of secHsp70 against each of these extracellular
amyloids (Fig. 2).
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Organelle-specific targeting
Converging data indicate that Ab42 can be internal-
ized from the extracellular space via endocytic and
non-endocytic pathways (see below) leading to
organelle dysfunction and neuronal death. Of note,
confocal and biochemical studies have shown that
Ab42 can penetrate into mitochondria and interact
with several mitochondrial components, including
complex II of the respiratory chain.17 These interac-
tions result in severe mitochondrial dysfunction, a
key pathological event in AD.18 Therefore, it will be
interesting to fuse the same Hsp70 isoform used
above to a mitochondrial targeting signal to induce
its deliberate deployment into this organelle

(mitHsp70, Fig. 2). This study would reveal whether
the “masking” ability of this chaperone can also pro-
tect against Ab42-induced mitochondrial toxicity. If
this is the case, a combinatorial approach co-
expressing secHsp70 and mitHsp70 may potentiate
the neuroprotection against Ab42-related patholo-
gies. On the other hand, the same rationale can be
applied to target other pathological protein aggre-
gates that accumulate in different organelles. Among
these, the nuclear accumulation of C9orf72-derived
dipeptide repeats linked to ALS/FTD19 will be a rel-
evant target. Thus, the engineering of a nuclearly
targeted Hsp70 version (nucHsp70, Fig. 2) may
have extensive applications in this regard.

Figure 1. Comparative analysis of heat shock chaperones against intracellular and extracellular amyloids in the Drosophila eye. Panels
show fresh eyes and SEM images from flies of the indicated genotypes. (A) Co-expression of intracellular Atx3-Q78 with LacZ results in
severe depigmentation and poorly differentiated lenses compared with control flies expressing LacZ alone. However, co-expression of
Atx3-Q78 with cytosolic Hsp40 and Hsp70 results in a strong rescue of these phenotypes. Note that cytosolic Hsp27 and Hsp60 do not
modify Atx3-Q78 toxicity. (B) Co-expression of Ab42 with a control LacZ transgene leads to small, glassy eyes with severe ommatidial
disorganization compared with control flies expressing LacZ alone. Note that co-expression of Ab42 with secHsp70 results in bigger and
healthier eyes with almost perfect organization of the ommatidial lattice. In contrast, secHsp27, secHsp40 and secHsp60 do not modify
the Ab42-induced phenotype. Eye-specific expression of UAS transgenes was directed with the gmr-Gal4 driver and all UAS constructs
were inserted into the same landing site. Insets show a magnification of the ommatidia.
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Spreading of amyloidosis
Several studies indicate that, despite their different ori-
gins, misfolded proteins can exit affected cells and
behave as amyloid seeds in the extracellular milieu.20

Of note, these seeds can penetrate other cells to propa-
gate formation of toxic assemblies and subsequent
neurotoxicity. In this regard, extracellular Ab42 can
be internalized by both active and passive mecha-
nisms, which results in cell-to-cell propagation of
toxic oligomers.21,22 Interestingly, human tau can be
also released to the extracellular milieu and internal-
ized into neighboring cells through endocytic mecha-
nisms.23 In addition, recent evidence indicates that
a-synuclein, SOD1 and huntingtin amyloids are also
associated with transcellular propagation.24 Therefore,
it will be important to determine whether the deliber-
ate deployment of Hsp70 in the extracellular milieu
would target toxic amyloid seeds to prevent or mini-
mize the spreading of amyloidosis (Fig. 2).

Learning and memory studies
Extracellular deposition of Ab42 in Drosophila leads
to age-dependent learning defects.25 Thus, another
logical step of our work will be to define whether
secHsp70 can suppress these behavioral deficits

(Fig. 2). On the other hand, several transgenic mouse
models have been instrumental in studying Ab42
accumulation and memory decline.26 However, the
potential protective role of Hsp70 upon engineered
secretion has not been investigated yet in any mouse
model of AD. This could be easily achieved by global
expression of secHsp70 in the mouse brain through
somatic brain transgenesis.27 Therefore, it will be
important to determine whether the extracellularly
targeted Hsp70 has the ability to stop or delay the
Ab42-associated memory decline. If so, the results of
these studies will have profound implications for
future design of therapeutic strategies.

Concluding remarks

Although Hsp70 is one of the most potent suppressors
of protein misfolding and neurodegeneration, this is the
first time that a secreted form that expands its range of
action to the secretory pathway and extracellular space
has been engineered and tested against Ab42.8 In our
opinion, adding this new tool to prevent or delay the for-
mation of toxic extracellular amyloids will result in addi-
tional knowledge about the abnormal biology of Ab42
in AD. In addition, it may expand the spectrum of

Figure 2. Overview of applications for secHsp70 and other engineered chaperones. Upon engineering of cytosolic Hsp70 to allow its
secretion (bottom left), we found that secHsp70 (green structures with a star) masks Ab42 in the extracellular space and neutralizes its
toxicity in a fly model of AD. A logical extension of this work will be to use secHsp70 to challenge the toxicity of the extracellular
amyloids depicted at the top left. In addition, secHsp70 could be also used to assess its ability to alleviate cell-to cell propagation of
amyloids (top right) as well as learning and memory deficits in AD models (bottom right). Finally, the engineering of mitochondrial and
nuclear versions of Hsp70 may have important applications to target accumulation of Ab42 and other amyloids in these cellular
organelles (center).
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therapeutic options for other neurodegenerative diseases,
particularly those involving intercellular propagation of
misfolded proteins. We anticipate that our work will
stimulate research in the areas described above and that
the following years will shed light onto the therapeutic
potential of secHsp70 and other derived modifications.

Materials and methods

Drosophila stocks and genetics

The Ab42 flies carry 2 tandem copies of Ab42 fused to
the Argos signal peptide with their own UAS regula-
tory sequence. These flies imitate the duplication of
the APP gene associated with familial AD in
humans.28 Flies expressing the Atx3-Q78 transgene
were kindly provided by N. Bonini.29 For expression
in the eye, the UAS-Ab42 and UAS-Atx3-Q78 trans-
genes were first recombined with the gmr-Gal4 driver
to generate w; gmr-Gal4, UAS-Ab42(2X)/CyO and w;
gmr-Gal4, UAS-Atx-Q78/CyO, respectively, and then
crossed with the chaperone-related UAS lines. The
cDNAS encoding for human Hsp27 (a gift from H.
Kampinga),30 Hsp40 (Addgene #19468), Hsp60 (Ori-
gene SC111640) and Hsp70 (a gift from N. Bonini)
were isolated from their respective plasmids and
subcloned with and without signal peptide into the
injection vector pJFRC-MUH (Addgene #26213). The
resulting constructs were verified by sequencing and
targeted to the attP2 landing site (3rd chromosome)
by PhiC31-mediated integration. Details of cloning
are available upon request.
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