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Abstract

Oxidative stress, pulmonary and systemic inflammation, endothelial cell dysfunction, atherosclerosis and cardiac autonomic
dysfunction have been linked to urban particulate matter exposure. The chemical composition of airborne pollutants in
Milano is similar to those of other European cities though with a higher PM2.5 fraction. Milano winter fine particles
(PM2.5win) are characterized by the presence of nitrate, organic carbon fraction, with high amount of polycyclic aromatic
hydrocarbons and elements such as Pb, Al, Zn, V, Fe, Cr and others, with a negligible endotoxin presence. In BALB/c mice,
we examined, at biochemical and transcriptomic levels, the adverse effects of repeated Milano PM2.5win exposure in lung
and heart. We found that ET-1, Hsp70, Cyp1A1, Cyp1B1 and Hsp-70, HO-1, MPO respectively increased within lung and heart
of PM2.5win-treated mice. The PM2.5win exposure had a strong impact on global gene expression of heart tissue (181 up-
regulated and 178 down-regulated genes) but a lesser impact on lung tissue (14 up-regulated genes and 43 down-
regulated genes). Focusing on modulated genes, in lung we found two- to three-fold changes of those genes related to
polycyclic aromatic hydrocarbons exposure and calcium signalling. Within heart the most striking aspect is the twofold to
threefold increase in collagen and laminin related genes as well as in genes involved in calcium signaling. The current study
extends our previous findings, showing that repeated instillations of PM2.5win trigger systemic adverse effects. PM2.5win
thus likely poses an acute threat primarily to susceptible people, such as the elderly and those with unrecognized coronary
artery or structural heart disease. The study of genomic responses will improve understanding of disease mechanisms and
enable future clinical testing of interventions against the toxic effects of air pollutant.
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Introduction

The first evidence of a link between short term exposure to air

pollution and increased mortality dates to the Meuse Valley in

Belgium of 1930 and to the London ‘‘great smog’’ of 1952 [1,2],

but in the last years a growing number of studies correlated high

levels of acute air pollution exposure to increased rate of hospital

admission for cardiovascular events. Short term exposures to

PM10 (particles #10 mm in aerodinamic diameter) and to PM2.5

(particles #2.5 mm in aerodinamic diameter) have been connected

to higher hospitalization risk for congestive heart failure,

myocardial infarction and acute coronary syndrome [3]. More-

over, large scale long term studies demonstrated a close

relationship between PM2.5 exposure, lung cancer and cardio-

pulmonary mortality [4,5,6].

Pathways leading to cardiovascular effects of particulate matter

exposure have been mainly linked to oxidative stress, pulmonary

and systemic inflammation, endothelial cell dysfunction, athero-

sclerosis and altered cardiac autonomic function [7]. PM2.5

fraction toxicity was emphasized because of particles deposition

into the deep airways and terminal alveoli, chemical composition,

indoor penetration and prolonged atmospheric lifetime [8].

Various kind of chemicals are adsorbed onto fine particulate

matter collected during winter season, such as trace of metals and

polycyclic aromatic hydrocarbons (PAHs) [9,10,11,12]. These

chemicals are known to dissolve and translocate into blood

circulation after particles deposition in the lungs. Some of these

metals initiate redox reactions producing reactive oxygen species,

implicated in inflammation and adverse health effects [13], thus

the specific chemical composition seems to be the most important

issue to determine adverse health effects [8]. Many studies
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investigated the biological response after exposure to air pollutants

at molecular, cellular and whole organism levels. It has been

clearly established that air pollution, derived from a variety of

sourcesis able to induce specific biological responses [14].

Moreover, genomic alterations play an important role in

mediating pathogenic mechanisms sustained by air pollutants.

Mice are useful in-vivo models to study particulate matter

induced toxicity. In a murine model of asthma by day 4 of

exposure to particulate matter, microarrays detected 436 differ-

entially expressed genes, with activated pathways concerning

innate immunity, allergic inflammation, chemotaxis, complement

system, inflammation, host defence and signal transduction, thus

implicating air pollutant exposure to susceptibility and severity of

asthma [15]. Furthermore, several studies evaluating gene

expression in human cells lines (BEAS-2B and A549) showed

up-regulation of inflammatory cytokines and mediator genes,

STAT3 activation pathway and oxidative stress in response to

PM2.5 or DEP (Diesel Exhaust Particles) exposure [16,17,18,19].

Annual PM2.5 levels in Milano are greater than those observed

in urban sites in Europe, while its chemical composition is similar

to those of other European cities. Indeed Milano PM2.5win is

mainly constituted by particles with a mean dimension ranging

from 40 nm to 300 nm, and only a small number of particles

exceeded 1 mm [10]. In particular, winter fine particles

(PM2.5win) are characterized by the presence of nitrate, organic

carbon fraction (with high amount of PAHs) and various elements

(Pb, Al, Zn, V, Fe, Cr and others), while a negligible endotoxin

presence has been found [10].

It has been suggested that PM2.5 may contribute to respiratory

and cardiovascular morbidity and mortality, however, the

molecular mechanism is still unknown. Here we focused on heart

and lungs to examine the adverse effects induced by PM2.5win

exposure in mice. Within lung and heart we analysed biomarkers

associated to particulate matter exposure such as ET-1, Hsp70,

Cyp1A1, Cyp1B1, OGG1, HO-1, MPO, Caspase3-p17, Cas-

pase8-p18, p-H3 and H3. At gene expression levels we carried out

a global gene expression profiling by GeneChip technology in

heart and lungs. To discuss the biological meaning of gene

expression changes induced by PM2.5win exposure we apply

functional enrichments approaches by means of gene ontology and

pathways analyses.

Materials and Methods

Animals
Male BALB/c mice (7–8 weeks old) were purchased from

Harlan; food and water were administered ad libitum. Mice were

housed in plastic cages under controlled environmental conditions

(temperature 19–21uC, humidity 40–70%, lights on 7 a.m.–7

p.m.). Animal use and care procedures were approved by the

Institutional Animal Care and Use Committee of the University of

Milano-Bicocca and complied with guidelines set by Italian

Ministry of Health (DL 116/92); invasive procedures have been

performed under anaesthesia and all efforts were made to

minimize suffering.

PM sources and characterization
Atmospheric PM2.5win was collected during winter 2008 in

Torre Sarca, an urban site in Milano, as previously described [10].

PM2.5win was sampled and chemical analyses were performed as

described in Perrone et al. [12,20]; Milano PM2.5win chemical

composition (inorganic ions, elements and PAHs) is summarized in

Tab.1.

Particles were recovered from filters by sequential sonications

(four cycles of 20 min each) in sterile water; detached particles

were dried into a desiccator and weighed. Particles’ suspensions

were prepared as follow: just before the intratracheal instillation,

PM2.5win aliquots were properly diluted in sterile saline,

sonicated and vortexed and then immediately instilled in mice.

Dose
The aim of this study is to disclose short-term adverse effects on

respiratory and cardiovascular systems induced by winter fine

particles exposure. Similar investigations have been previously

based on very high PM exposure rate [11,21,22]. Starting from the

dose proposed for repeated instillation protocol by Happo et al.

[11] we reduced the cumulative dose of fine particulate matter to

0.3 mg/mouse within the same time points, in order to apply the

same protocol proposed by Farina et al. [23]. The treatment

scheme here proposed has been specifically outlined to rise extra-

pulmonary adverse effects being lungs still affected.

Intratracheal PM2.5win instillation
Animal testing was replicated twice by instilling intratracheally a

total of 5 sham and 5 PM2.5win-treated mice. For gene expression

profiling and histological analyses, we considered 5 sham and 5

PM2.5win-treated mice.

Male BALB/c mice were briefly exposed to 2.5% isoflurane

(Flurane) and kept under anaesthesia during the whole instillation

procedure. Once a deep stage of anaesthesia was reached, mice

were intratracheally instilled by means of MicroSprayer Aerosol-

izer system (MicroSprayer Aerosolizer- Model IA-1C and FMJ-

250 High Pressure Syringe, Penn Century, USA) with 100 mg of

PM2.5win in 100 ml of isotonic saline solution, or 100 ml of

isotonic saline solution (sham) as described in Mantecca et al.

[24,25] and in Farina et al. [26].

The intratracheal instillation was performed on days 0, 3 and 6,

for a total of three instillations.24 h after the last instillation, mice

from each experimental group were euthanized with an anesthetic

mixture overdose (Tiletamine/Zolazepam-Xylazine and isoflur-

ane). The broncho alveolar lavage (BAL) procedure, pellets and

supernatant recovery have been performed as described in

Mantecca et al. [24,25].

Bronchoalveolar lavage fluid analyses (BALf)
Cell counts. After centrifugation, total and differential cells

counts were performed according to Mantecca et al. [24,25] and

Farina et al. [26].

Cytokines analyses. The analyses of pro-inflammatory

cytokines and chemokines released within the BALf was

performed by DuoSet ELISA kits for TNF-a, MIP-2 and IL-

1b(R&D Systems, Minneapolis, MN) according to manufacturer’s

protocols.

Biochemical analyses. The following biochemical analyses

were performed on cell-free BALf supernatants. The commercially

available kits for ALP (DALP-250 QuantiChrom Alkaline

Phosphatase Assay Kit, Gentaur Molecular) and LDH (DLDH-

100 QuantiChrom Lactate Dehydrogenase Kit, Gentaur Molec-

ular) were employed according to manufacturer’s instructions.

Other proteins. A total of 30 mg of BALf proteins obtained

from sham and PM2.5win-treated mice were loaded onto SDS-

PAGE, submitted to electrophoresis followed by Western blot, and

tested for MPO and Hsp70 (anti-MPO sc-16128 1:200, anti-

Hsp70 sc-1060 1:200, Santa Cruz), according to the procedures

described below.

PM2.5win Effects on Lung and Heart Tissue
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Lung and heart parenchyma protein markers analyses
For the detection and quantification of proteins, organs were

minced at 4uC, suspended in NaCl 0.9%, briefly homogenized for

30 seconds at 11000 rpm with Ultra-Turrax T25 basic (IKA

WERKE), then sonicated for other 30 seconds. Then samples

were submitted to trichloroacetic acid (TCA) precipitation

according to the procedure described by Farina et al. [26]. The

pellets were suspended in water and protein amount measured by

BCA method (Sigma Aldrich, USA).

Thereafter, lung and heart homogenates of sham and

PM2.5win-treated mice were loaded onto SDS-PAGE and

submitted to electrophoresis, followed by Western blot, according

to procedures previously described [26]. Lung parenchyma was

assessed with specific antibodies for ET-1 (sc-21625), Hsp70 (sc-

1060), Cyp1A1 (sc-9828), Cyp1B1 (sc-32882), OGG1 (sc-12075),

HO-1 (sc-10789), MPO (sc-16128-R), Caspase3-p17 (sc-22139),

Caspase8-p18 (sc-7890), p-H3 (sc-8656-R) and H3 (sc-8654) (all

1:200, Santa Cruz). Heart homogenates were incubated with

specific antibodies for the same proteins evaluated in lungs. Then,

blots were incubated for 1.5 h with horseradish peroxidase-

conjugated anti-rabbit IgG (1:5000, Pierce) or anti-goat IgG

(1:2000, Santa Cruz) diluted in PBS-Tween20/milk or in TBS-

Tween20/BSA. Proteins were detected by ECL using the

SuperSignal detection kit (Pierce, Rockford, IL). Immunoblot

bands were analysed and the optical density (OD) quantified by

KODAK (Kodak Image Station 2000R); all the data have been

normalized to b-actin (1:1500, Sigma) and each protein in

PM2.5win-treated group has been normalized to respective sham

group.

All these proteins have been screened in the lung parenchyma of

mice submitted to gene expression and histology, in order to

confirm PM2.5win exposure.

Statistical analyses
Results have been expressed as mean 6 standard error of the

mean (s.e.). Data distribution was tested by Shapiro-Wilk test;

statistical differences were tested accordingly by t-test or non-

parametric U Mann-Whitney test. Statistical differences were

considered to be significant at the 95% level (p value ,0.05).

Lung histological analyses
Lungs from sham and PM2.5win-treated mice were properly

inflated, excised and immediately formalin fixed and processed for

routine histology. Briefly, after being preserved for 24 h in the

fixative, tissue samples were rinsed in distilled water, dehydrated in

an ethanol series from 70% to 100% and embedded in Bio-plast

tissue embedding medium. For each sham and PM2.5win exposed

lung sample, 7 mm serial sections were cut by a rotary microtome,

mounted on slides and stained with Mayer’s haemalaun and

alcoholic eosin. Samples were qualitatively screened by means of

Zeiss Axioplan microscope at a magnification of 406 and images

were taken using Zeiss AxioCam MRc5 digital camera interfaced

with the Axiovision Real 4.6 software. Figure panels were

prepared by means of Adobe Photoshop.

Gene expression profiling by Affymetrix GeneChip
For RNA analyses, a total of 5 sham and 5 PM2.5win-treated

mice were considered. Lungs, not submitted to BAL procedure

(called ‘‘no-BAL’’), have been excised, suspended in an appropri-

ate volume of RNA Later and submitted to total RNA extraction.

Total RNA was extracted from tissues (lung and heart) by means

of miRNeasy extraction kit (Qiagen, Hilden, Germany), according

to manufacturer’s instructions. RNA samples were quantified by

ND-1000 spectrophotometer (NanoDrop Technologies, Wilming-

ton, DE, USA). RNA quality was checked by microcapillary

electrophoresis with 2100 BioAnalyzer (Agilent Technologies,

Santa Clara, CA, USA). Total RNA integrity was assessed on the

Table 1. PM2.5win chemical composition.

INORGANIC IONS (mg/mg PM) ELEMENTS (mg/mg PM) PAHs (mg/mg PM)

mean mean mean

F- 0.00027 Al 0.00051 BaA 0.000014

Cl- 0.0134 As 0.00001 Cr 0.00002

NO3
- 0.2880 Ba 0.00005 BeP 0.000034

PO4
3- 0.0006 Cd 0.000007 Bb+jF 0.000056

SO4
2- 0.0671 Cr 0.00003 BkF 0.000013

Na+ 0.0022 Cu 0.00019 BaP 0.000023

NH4
+ 0.1277 Fe 0.00457 dBahA 0.000001

K+ 0.0071 Mn 0.00007 BghiP 0.000015

Mg2+ 0.0002 Mo 0.00003 IcdP 0.000022

Ca2+ 0.0024 Ni 0.00003

Pb 0.00018

V 0.000017

Zn 0.00075

Table summarizing mean chemical composition (mg/mg PM) of 4 PM2.5win pooled samples (modified by Perrone et al. [12]). Inorganic ions explained about the 50% of
the PM mass, the sum of all elements explained about the 0.6% while the contribution of PAHs was 0.019%. BaA: benzo[a]anthracene; BeP: benzo[e]pyrene; Bb+jF:
benzo[b+j]fluoranthene; BkF: benzo(k)fluoranthene; BaP: benzo[a]pyrene; dBahA: dibenzo[a,h]anthracene; BghiP: benzo[g,h,i]perylene; IcdP: indeno[1,2-Cd]pyrene.
Concerning sources, traffic and heating during cold season constitute the 49–53% of the primary combustion sources of fine PM; during warm season they constitute
about the 25%, while secondary sources are predominant (50–66%) [20]. Elemental carbon (primarily from traffic) contributes for about 10–15% to the fine fraction;
organic matter, calculated applying a specific organic matter-to-organic carbon conversion factor to each source, contributes for 31–38% to the fine fraction [20].
doi:10.1371/journal.pone.0109685.t001
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basis of the RIN (RNA Integrity Number) factor. RNA samples

were stored at 280uC until use. To perform a differential gene

expression analyses comparing PM2.5win-treated mice to sham,

we assessed gene expression levels in lung and hearth tissues by

means of Affymetrix GeneChip technology. RNA samples were

prepared and hybridized onto the GeneChip Mouse Gene 1.0 ST

Array (Affymetrix, Santa Clara, CA, USA), which measures gene

expression levels of 28,000 coding transcripts and 7,000 non-

coding (include ,2,000) long intergenic non-coding transcripts, by

means of a single probe set per gene comprised of multiple probes

distributed along the entire length of the genomic locus, thus

offering a whole-transcript coverage. Mouse gene 1.0 ST Array

probe design is based on the March 2006 human genome

sequence assembly (UCSC hg18, NCBI Build 36). Starting from

100 ng of total RNA per sample, labelled targets were prepared

using Ambion Whole Transcript (WT) Expression Kit (Applied

Biosystems, Life Technologies) and GeneChip WT Terminal

Labeling and Controls Kit (Affymetrix), following manufacturers’

instructions. Briefly, 100 ng of total RNA was primed with

synthetic primers containing a T7 promoter sequence and reverse

transcribed into first-strand cDNA. Afterwards, the single-stranded

cDNA is converted into double-stranded cDNA, using DNA

Polymerase and RNase H to simultaneously synthesize second-

strand cDNA and degrade the original RNA. The in-vitro
transcription (IVT) reaction is then performed to synthesize and

amplify the antisense cRNA. Next, the cRNA is purified and

measured for yield and size distribution. 10 mg of cRNA are

reverse transcribed using random primers, to synthesize second-

cycle cDNA. The cRNA template is degradated by RNase H to

leave a single-stranded cDNA, that is purified and assessed for size

distribution. Lastly, 5.5 mg of cDNA is fragmented, biotin

terminally labeled and hybridized for 16 hours at 45uC onto

Gene 1.0 ST Array. The array is then washed and stained using

the Affymetrix Fluidics Station FS-450. Fluorescent images of each

array are acquired using Affymetrix GeneChip Scanner 3000 7 G

and analyzed using GeneChip Operating Software (GCOS). Array

data quality control was conducted using Affymetrix Expression

Console (V 1.2). the data have been normalized by robust

multiarray average (RMA) and log-2 transformed. The entire data

set (20 samples, including four groups) were analysed by analyses

of variance (ANOVA) using Partek GS (Partek Genomic Suite, St

Louis, MO). To identify two lists of differentially expressed genes

(DEGs) we compared the group of five PM2.5win-treated mice to

five sham mice either for lung or for heart tissues on the basis of a

cut off a 2 fold-change (FC) and a significance level of p value ,

0.01. Average linkage hierarchical clustering of DEG (row) and

samples (column) has been performed by dChip software [27].

Data (CEL files) discussed in this publication have been deposited

in ArrayExpress repository (http://www.ebi.ac.uk/arrayexpress/)

and are available through the accession number E-MTAB-2751.

Identifications of gene ontology categories and genes
enrichment analyses

The identification of biological roles of DEGs were addressed

using various tools and database such as the Database for

Annotation, Visualization and Integrated Discovery (DAVID

v6.) [28], GeneTrail database [29] and NanoMiner database

[http://nanominer.cs.tut.fi/users/login]. We classifiedDEGs into

Gene Ontology (GO) categories and pathways. In particular for

each DEG list we focused the enrichment analyses on GO of

molecular function (MF) terms and KEGG pathway. The

categories with a p value ,0.05 were considered significantly

enriched.

Results

BALf analyses
All the biomarkers tested within the BALf of PM2.5win-treated

mice disclosed no differences comparing to sham mice (Tab.2, A

and B).

Lungs and heart parenchyma proteins analyses
In the lung parenchyma of PM2.5win-treated mice, ET-1,

Hsp70 and both the cytochromes 1A1 and 1B1 increased

Table 2. BALf analyses.

Sham PM2.5win

mean ± s.e. mean ± s.e.

A Total cells (E+06) 2.9 0.99 3.5 0.71

AMs% 80.87 3.85 73.72 9.39

PMNs% 18.70 3.67 25.25 9.79

Ls% 0.47 0.23 1.02 0.50

TNF-a (pg/mL) 165.05 50.70 193.14 25.51

MIP-2 (pg/mL) 172.97 40.23 217.36 32.32

IL-1b (pg/mL) 65.59 6.68 101.92 20.50

LDH (IU/L) 40.80 1.01 44.54 2.09

B ALP (IU/L) 0.47 0.18 0.42 0.06

MPO 1.00 0.28 1.47 0.24

Hsp70 1.00 0.22 0.78 0.07

(A): table summarizing results of cell counts and biochemical analyses in BALf from sham and PM2.5win-treated mice, 24 h after the third intratracheal instillation.
Statistical differences were tested accordingly by non-parametric U Mann-Whitney test. All the examined markers resulted unchanged comparing to sham.
(B): immunoblotting results in BALf from sham and PM2.5win -treated mice, 24 h after the third intratracheal instillation; each protein in PM2.5win-treated group has
been normalized onto respective sham group. Statistical differences were tested accordingly by non-parametric U Mann-Whitney test. All the examined markers
resulted unchanged comparing to sham.
doi:10.1371/journal.pone.0109685.t002
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comparing to sham. In the heart tissue Hsp-70, HO-1 and MPO

increased after PM2.5win treatment. All the other investigated

biomarkers both within lungs and heart were not affected by

PM2.5win repeated instillations (Tab.3A, Fig.1A, B and C;

Tab.3B, Fig.2A, B and C).

Lung histology
Abundant particulate matter was observed engulfed in phago-

cytic cells along the lung parenchyma and especially within

alveolar macrophages (Fig.3). The most evident morphological

changes have been found at terminal bronchioles and at adjacent

alveolar sacs: here the bronchiolar epithelium often appeared

eroded and the surrounding connective tissue was sometimes

infiltrated by inflammatory cells. Exudate was evident within the

alveolar and bronchiolar spaces, and the alveolar walls often

resulted swollen, confirming that PM2.5win affected the air-blood

barrier integrity.

Gene expression profiling of lung and heart RNA samples
Global gene expression profiling of lung and heart RNA

samples. In lungs of PM2.5win-treated mice we found a total of

57 differentially expressed genes (DEG): by means of hierarchical

clustering analyses based on DEG (Fig.4 and Fig. S1), we identified

14 up-regulated and 43 down-regulated genes.

Within lungs, the 90% of the genes displayed 2 to 3 fold-change

(Fig.4, Fig. S1 and Table S1). Within heart tissues of mice exposed

to PM2.5win, we found a modulation of gene expression of 359

DEG: the hierarchical clustering analyses based on DEG, showing

correct discrimination of treated and sham mice (Fig.5 and Fig.

S2), identified 181 up-regulated and 178 down-regulated genes.

Within hearts, the 89% of DEG displayed a differential

Figure 1. Lung protein analyses. (A) and (B): histograms and representative immunoblottings showing mean6 standard error of ET-1, Hsp70,
Cyp1A1, Cyp1B1 in lung parenchyma of sham (n = 5) and PM2.5win-treated (n = 5) mice. (C): graphs showing variability among individual animals in
significant markers analyzed in lung parenchyma.
doi:10.1371/journal.pone.0109685.g001

PM2.5win Effects on Lung and Heart Tissue
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modulation of gene expression of 2 to 3 fold-change (Fig.5, Fig. S2

and Table S2).

Functional annotation of modulated genes in mouse lung

tissues exposed to PM.2.5win. We performed gene ontology

enrichments on lung modulated gene list, (Tab.4). Overall, we

found a significant GO enrichment for genes involved in

cytoskeletal protein and calmodulin binding. Pathways analyses

using the list of 57 DEG resulted in 6 KEGG pathways with

significant p values ,0.05 (Tab.5). Among the down-regulated

genes, we found five genes (Ryr2, Ryr1, Cacna1f, Erbb4, Pde1c)

involved in calcium signaling. Among the up-regulated genes, we

found two members of cytochrome P450 gene family (Cyp1a1,

Cyp3a25) that encoded enzymes involved in an NADPH-

dependent electron transport pathway; such enzymes oxidize a

variety of structurally unrelated compounds, including steroids,

fatty acids, and xenobiotics (Table S1).

Functional annotation of modulated genes in mouse heart

tissues exposed to PM.2.5win. On modulated genes list of

heart tissues, we performed a gene ontology enrichments (Tab.6).

Overall we found enrichments in several of molecular function

GO categories, such as adenyl nucleotide binding, motor activity,

hydrolase activity and GTPase binding processes. Moreover we

found four modified gene families such as calcium (Cacna1b,

Cacna1s, Cacna1d, Cacna1e), kinesins (Kif5a, Kif24, Kif4a,

Kif3a, Kif20a, Kif20b), mucins (Muc6, Muc5ac, Muc2, Muc13),

and sodium family (Scn9a, Scnn1g, Scn10a). Pathways analyses

using the list of 359 DEG resulted in 15 KEGG pathways with

significant p values ,0.05 (Tab.7). Calcium signaling pathway was

the most modulated KEGG term including nine genes: five up-

regulated (Cacna1s, Cacna1e, Cacna1b, Adcy2, Gna15) and four

down-regulated (P2rx3, Gnal, Nos1, Cacna1d) (Table S2).

The most striking aspect of the present study is the twofold to

threefold increase in collagen and laminin related genes Col19a1,

Col4a3, Col12a1, Col11a1, Col7a1 and Lama3; binding to cells

via a high affinity receptor, laminin is thought to mediate the

attachment, migration and organization of cells into tissues [30]

(Table S2). Moreover we found many down regulated motor

protein related genes (likely to power actin-based membrane

trafficking in many physiologically crucial tissues) within heart of

PM2.5win-treated mice. Indeed, Kif24, Dnahc5, Kif5a, Dnahc8,

Myo7a, Kif4, Myh4, Myh13, Myo5c expression decreased twofold

to threefold (Table S2). Specifically Myo5c again plays a role in the

regulation of cell morphology and cytoskeletal organization and

Dnah8 is involved in regulation of myosins actin-based motor

molecules with ATPase activity while Myh13 appears to function

in the signal transduction from Ras activation to actin cytoskeletal

remodeling. Kif24 and Myh4 regulates cadherins, calcium

dependent cell adhesion proteins which preferentially interact

with themselves in a homophilic manner in connecting cells.

Interestingly, Pfkfb1 and Fpb1 genes, which encodes 6-phospho-

fructo-2-kinase/fructose-2,6-biphosphatase3 and fructose-1,6-bis-

Figure 2. Heart protein analyses. (A) and (B): histograms and representative immunoblottings showing mean6 standard error of Hsp70, HO-1,
MPO in hearts of sham (n = 5) and PM2.5win-treated (n = 5) mice. (C): graphs showing variability among individual animals in significant markers
analyzed in hearts.
doi:10.1371/journal.pone.0109685.g002
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phosphatase1, resulted twofold reduced in heart of PM2.5win

treated-mice (Table S2).

Discussion

Air pollution is a major concern for public health, reflecting

increased industrialization, energy use, and high road traffic

volumes [31]. Numerous adverse health outcomes, in particular

cardiovascular and respiratory problems, have been attributed to

both long- and short-term air pollution exposure [7,32]. Several

recent works have shown the influence of PM size, composition

and/or specific emission sources of particles on biological effects

[23,33,34,35,36] and numerous studies tried to explore the

unknown underlying mechanisms of PM-induced adverse health

effects [37,38,39]. In the current study a mouse model has been

used to evaluate the adverse health effects induced by PM2.5win

exposure.

Lungs protein analyses
Lungs are the primary site of exposure to PM. Biochemical

analyses performed on BALf and lung parenchyma of PM2.5win-

treated mice revealed no significant increase of inflammatory

markers, such as differential cells count, cytokines, chemokines and

myeloperoxidase, nor of cytotoxic markers, such as LDH or active

caspases, comparing to sham. Concerning cells counts, a single

PM2.5win intratracheal instillation significantly increased the

PMNs percentage 24 h after the treatment [26]; on the contrary,

repeated instillations did not change the AMs or PMNs

percentage, despite both a not significant increase of PMNs and

decrease of AMs. Similarly, after single PM2.5win intratracheal

instillation we observed an acute cytotoxic effect [26], while LDH

activity resulted unchanged 24 h after the third PM2.5win

intratracheal instillation comparing to sham. Actually, we cannot

conclude if the acute phase of inflammation is in its reversion

phase or if the repeated PM2.5win instillations induce per se less

inflammation comparing to a single PM2.5win treatment, due to

incoming compensatory mechanisms.

Histological evaluation of PM2.5win-exposed lungs fail to

disclose massive inflammation: the most significant evidence in

PM2.5win-treated lungs was the ubiquitous presence in the

alveolar airspace of AMs full of PM2.5win. These data evidenced

the active involvement of AMs in PM2.5win clearance. Despite all

the above investigated biomarkers of inflammation and cytotox-

icity basically resulted unaffected by the PM2.5win repeated

instillations, a still ongoing lung dysfunction could be sustained by

the here outlined increased levels of Hsp70, Cyp1B1 and ET-1.

Indeed lungs showed increased Hsp70 levels consistently with our

previous results, concerning a single intratracheal PM2.5win

instillation in BALB/c mice. Hsp70 is often associated to urban

particulate matter induced ER-stress, as demonstrated by in-vitro
experiments [40].

Table 3. Lung and heart protein analyses.

Sham (n = 5) PM2.5win (n = 5)

mean ± s.e. mean ± s.e. p

A ET-1 1.00 0.33 2.18 0.16 *

Hsp70 1.00 0.05 1.23 0.04 *

Cyp1A1 1.00 0.2 34.21 4.78 *

Cyp1B1 1.00 0.16 1.91 0.11 *

OGG1/2 1.00 0.16 1.47 0.12 ns

HO-1 1.00 0.09 1.75 0.24 ns

MPO 1.00 0.25 1.01 0.13 ns

Casp8-p18 1.00 0.12 1.33 0.06 ns

Casp3-p17 1.00 0.15 1.23 0.04 ns

pH3/H3 1.00 0.01 1.29 0.1 ns

B Hsp70 1.00 0.07 1.44 0.07 *

HO-1 1.00 0.01 2.75 0.49 *

MPO 1.00 0.18 2.23 0.35 *

ET-1 1.00 0.47 1.97 0.16 ns

Cyp1A1 1.00 0.38 0.61 0.06 ns

Cyp1B1 1.00 0.07 0.84 0.12 ns

OGG1/2 1.00 0.06 1.18 0.37 ns

Casp8-p18 1.00 0.15 0.99 0.13 ns

Casp3-p17 1.00 0.10 1.11 0.06 ns

pH3/H3 1.00 0.17 0.89 0.04 ns

Table summarizing results in protein markers analyses in lung (A) and heart (B) in sham (n = 5) and PM2.5win-treated mice (n = 5), 24 h after the last intratracheal
instillation; the data were normalized for the corresponding b-actin signal in each lane and expressed in relative to sham value. The data are expressed as mean 6 s.e.
Statistical differences were tested accordingly by non-parametric U Mann-Whitney test. Sham vs. PM2.5-treated: * p value ,0.05; ns = not significant.
doi:10.1371/journal.pone.0109685.t003
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The huge amount of PAHs which characterize our PM2.5win

samples increased lung cytochrome expression, particularly the

Cyp1A1 and Cyp1B1, well-known cytochromes deputized to

PAHs metabolism, generating electrophilic metabolites and other

reactive oxygen species [41]. In agreement with single instillation

treatment [26], however, PAHs metabolism within lungs didn’t

promote an increase in HO-1 levels. Indeed, despite their

lipophilic nature, PAHs are able to enter the bloodstream [42],

thus possibly spreading the oxidative stress damage far out from

lungs. Finally, ET-1 has been considered able to increase vascular

permeability without promoting albumin extravasation in lungs

parenchyma [43]. So far, repeated PM2.5win instillations failed to

promote significant inflammation or oxidative stress within the

alveolar district though sustaining ER-stress as well as endothelial

dysfunction. In this situation, we may speculate that the main

district involved within lungs of PM2.5win-treated mice could be

the alveolar capillary barrier. The endothelial activation may

therefore promote an increase of vascular permeability, thus

facilitating the translocation of fine particles or chemical

compounds from lungs to the bloodstream.

Heart protein analyses
PM2.5 generally has been associated with an increased risks of

myocardial infarction, stroke, arrhythmia, and heart failure

exacerbation within hours to days of exposure in susceptible

individuals [7].

Consistently with the hypothesis of a most striking effect of fine

particles on cardiovascular system, within the heart of our

PM2.5win-treated mice MPO, HO-1 and Hsp70 increased

comparing to sham. MPO catalyzes the conversion of hydrogen

peroxide to hypoclorous acid, which react with NO creating

peroxinitrite, with detrimental effects on cell function and thus

increasing oxidative stress [44]. Surprisingly, MPO activity may be

implicated in the activation of PAHs, such as Benzo[a]Pyrene

(BaP), to highly reactive intermediates by ROS generation [45]. As

Figure 3. Lung histological analyses. (A): sham lung parenchyma.
(B, C): PM2.5win exposed lung parenchyma showing the abundant
particulate matter engulfed in phagocytic cells along the lung
parenchyma end in cells free in the bronchiolar lumen (arrows), as
well as the tissue lesions and exudates (asterisks). A, C, bars = 50 mm; B,
bar = 150 mm.
doi:10.1371/journal.pone.0109685.g003

Figure 4. Hierarchical cluster analyses of differentially ex-
pressed genes in lung. Hierarchical cluster analyses of 57 DEG
between PM2.5win-treated lung (n = 5) and sham (n = 5) mice using
dChip software. Each column represents a mouse and each row
represents a gene. Red color indicates genes that were up-regulated
and green color indicates genes that were down-regulated.
doi:10.1371/journal.pone.0109685.g004
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PAHs are largely present within PM2.5win, PAHs not metabo-

lized in the lungs could translocate to the bloodstream being

metabolized by MPO thus generating oxidative stress within the

heart.

HO-1 role is to catabolize the heme group, generating CO,

biliverdin (converted to bilirubin) and Fe2+, thus playing a

protective role against inflammation and oxidative stress [46]

potentially induced by MPO in the heart of our PM2.5win-treated

mice. Furthermore, a post-translational down-regulation of

cytochromes following the HO-1 induction has been hypothesized,

possibly related to a decrease in the heme group bioavailability

[47]. This mechanism justify the unchanged cytochromes levels in

cardiac parenchyma, even though the presence of PAHs in

PM2.5win.

Oxidative stress and ER-stress promote the expression of

Hsp70, a well-known protein against inflammation and protein

misfolding [48]. Graff et al. [49] demonstrated that the treatment

of rat ventricular myocytes with Zn and V induced significant

increase in the expression of Hsp70; Zn and V are components of

our PM2.5win (Tab.1), and they both might spread in the

bloodstream and reach the heart [49,50], thus explaining the

increased Hsp70 in the heart parenchyma of our PM2.5win-

treated mice. Moreover, MPO from the bloodstream can be taken

up by endothelial cells and once in cardiac tissue it could

propagate matrix deposition and adverse ventricular remodeling

[51]. Thus, MPO may evolve as an early marker of heart failure

that does not simply reflect ventricular dysfunction, but points to

humoral and structural alterations that predispose to heart failure

[52].

Lungs and heart gene expression
We then evaluated how approaches at the genomic level would

potentially improve our understanding of the air pollutant induced

adverse health effects; the knowledge of PM-induced toxic

reactions could be useful in order to design strategies better

preventing and treating lungs and vascular diseases. Moreover,

this gene expression profiling study confirmed the health adverse

effects induced by particulate matter exposure both on lung and

cardiac tissues.

Among the down-regulated genes in lung tissue, we found five

genes Ryr2, Ryr1, Cacna1f, Erbb4, Pde1c involved in calcium

signaling. In particular, it is known that Ryanodine receptors

represent a key Ca2+ regulatory channel expressed within the

microsomal membrane of a wide variety of cells where many

xenobiotic molecules are metabolized to bioactive intermediates

by the cytochrome P450 system [53]. Intracellular Ca2+ has been

supposed a key factor in the regulation of Cyp1a1 by various

compounds [54]. On the other hand, ErbB4 signaling is important

in maintaining adult lung alveolar epithelial cell surfactant

synthesis [55].

Moreover, we found that Cyp1a1 gene was significantly

induced in lung mice exposed to PM2.5win versus sham mice.

In lungs of PM2.5win-treated mice, the expression of Cyp1b1
gene was higher than sham mice, but the differences between the

two groups did not reach the statistical significance. Moreover we

performed a quantitative PCR analyses of Cyp1b1 gene in lung

tissues and we confirmed the up regulation of this gene in PM2.5

treated lung tissue compared to sham (data not shown). PAHs

and PM are co-pollutants emitted as by-products of combustion

processes and convincing evidence exists for PAHs as a primary

toxic component of PM2.5win. As benzo[a]pyrene (BaP) is a

potent ligand of aryl hydrocarbon receptors (AhR) [56], we might

speculate that PAHs adsorbed on PM2.5win can bind to AhR

inducing its translocation to the nuclei and thus resulting in the

transactivation of genes of several drug-metabolizing enzymes,

such as Cyp1a1 and Cyp1b1 [57,58]. Cyp1A1 and Cyp1B1 are

involved in the conversion of BaP itself into an ultimate

metabolite, which forms DNA adducts [59,60]: it has been

demonstrated that incubation with BaP increased BaP-DNA

adduct levels in rat lung slices [61]. AhR activation and Cyp1a1-

Cyp1b1 induction are therefore important indicators of suscep-

tibility to BaP and many studies on lungs tissue demonstrated that

AhR and Cyp1a1 are mainly expressed in bronchiolar epithelial

cells of the peripheral lung [62,63], thus indicating that lungs are

target site of PAHs toxic effects.

Indeed Longhin et al. [64] provided evidence that Milano

PM2.5win induced marked cell cycle alteration, represented by

a transient arrest in G2, in bronchial epithelial cells even after

Figure 5. Hierarchical cluster analyses of differentially ex-
pressed genes in heart. Hierarchical cluster analyses of 359 DEG
between PM2.5win-treated heart (n = 5) and sham (n = 5) mice using
dChip software. Each column represents a mouse and each row
represents a gene. Red color indicates genes that were up-regulated
and green color indicates genes that were down-regulated.
doi:10.1371/journal.pone.0109685.g005
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3 h of PM exposure, while DNA adducts have been detected

after 24 h. The authors linked this effect to the metabolic

activation of PM2.5win organic chemicals, which cause

damages to DNA and spindle apparatus; such events could

be central to explain the increased lung cancer incidence

associated with PM2.5win and deserve further investigations

[64]. Lastly, we found a fivefold decrease in Nppa gene

encoding for Atrial Natriuretic Peptide (ANP). ANP could be

synthesized in type II alveolar cells, but while the release by

smooth muscle cells in blood has been demonstrated, the role

of ANP synthesis in the lungs remains to be determined [65].

Recently, Tankersley et al. [66] proposed that air pollutant

could interact with Nppa gene and that ANP secretion by lungs

could in part contribute to the circulating pool. Thus, the

observed down-regulation of NPPA could be crucial in cardiac

changes induced by air pollution.

Expression of a number of genes has been investigated for

their potential prognostic value in human heart failure [67,68].

It has been evidenced that the onset of heart failure triggers a

mechanism that up-regulates fibronectin and collagen gene

expression [69]. Since increases in fibrillar collagen in the heart

interstitium contribute to tissue stiffness, increases in fibronectin

and collagen gene expression may contribute to heart impaired

function. Indeed, in mice exposed to PM2.5win, the most

striking aspect is the twofold to threefold increase in collagen

and laminin related genes (Col19a1, Col4a3, Col12a1, Co-
l11a1, Col7a1 and Lama3). These results are consistent with the

concept that some myocytes in hearts of PM2.5 exposed mice

are putative prone to exhibit a nascent hypertrophic response

[67]. Moreover, we found many down regulated motor protein

related genes within the heart of PM2.5win-treated mice and

this surprisingly well correlates with the findings obtained from

the SHR model of heart failure [70].

In ventricular myocytes, a multitude of channels are involved in

the intracellular Ca2+ regulation mechanism [71]. We found that

calcium signaling pathway was the most modulated, as nine genes

resulted in KEGG pathways analyses: five up-regulated (Cacna1s,
Cacna1e, Cacna1b, Adcy2, Gna15) and four down-regulated

(P2rx3, Gnal, Nos1, Cacna1d). Dysregulation of ion channel gene

expression in heart tissues potentially contributes to altered

myocardial handling of Na+ and Ca2+ and subsequent Ca2+

overload, tissue hyperexcitability, and arrhythmogenesis. Indeed,

cardiac function depends on the appropriate timing of contraction

and the appropriate beating rate in each region. Excitation–

contraction (EC) coupling comprises processes involved in the

Ca2+ activation of contractile proteins and the subsequent removal

of Ca2+ facilitating relaxation; therefore, alterations of EC-

coupling may play a critical role in the pathophysiology of

myocardial failure [72,73,74].

Conclusions

Air pollution remains an important public health worldwide

problem. There is now a strong imperative to use the best air

Table 4. Lung GO enrichments analyses.

Database
Category ID Description p value genes # Total

GO_MF GO:0008307 structural constituent of muscle 0.000045 7 51

GO_MF GO:0008092 cytoskeletal protein binding 0.000013 14 784

GO_MF GO:0005516 calmodulin binding 0.000752 7 208

GO_MF GO:0003779 actin binding 0.000967 9 415

GO_MF GO:0005200 structural constituent of cytoskeleton 0.010510 5 127

GO_MF GO:0005219 ryanodine-sensitive calcium-release channel activity 0.023990 2 5

GO_MF GO:0090484 drug transporter activity 0.032430 3 32

Pathway WP383 Striated Muscle Contraction 0.000091 5 38

Pathway REACTOME_STRIATED_MUSCLE_CONTRACTION Genes involved in Striated Muscle Contraction 0.001583 4 31

Gene Family CDH Cadherins 0.028060 2 33

Functional enrichment of modulated genes in mouse lung exposed to PM.2.5win. Statistical differences were tested accordingly by t-test.
doi:10.1371/journal.pone.0109685.t004

Table 5. Lung pathways analsyis.

KEGG ID p-value Description Gene Names

5414 8.81E-07 Dilated cardiomyopathy Cacna1f, Cacna2d1, Dmd, Myh6, Ryr2, Ttn

5412 1.70E-04 Arrhythmogenic right ventricular
cardiomyopathy (ARVC)

Cacna1f, Cacna2d1, Dmd, Ryr2

4020 5.01E-04 Calcium signaling pathway Cacna1f, Erbb4, Pde1c, Ryr1, Ryr2

2010 1.25E-02 ABC transporters Abcb4, Abca12

3320 3.00E-02 PPAR signaling pathway Aqp7, Fabp4

5416 3.16E-02 Viral myocarditis Dmd, Myh6

Pathways analyses using the list of 57 DEG resulted in 6 KEGG pathways with significant p values ,0.05. Statistical differences were tested accordingly by t-test.
doi:10.1371/journal.pone.0109685.t005

PM2.5win Effects on Lung and Heart Tissue

PLOS ONE | www.plosone.org 10 October 2014 | Volume 9 | Issue 10 | e109685



pollution in-vitro and in-vivo models, combined with genomics, to

identify the key pathways involved in mechanisms of health

adverse effects induced by air pollution. The current study extends

our previous findings, showing that repeated instillations of fine

particulate matter trigger systemic adverse effect. The study of

genomic responses will improve understanding of disease mech-

anisms and enable future clinical testing of interventions against

the toxic effects of air pollutants. At present-day levels, PM2.5win

likely poses an acute threat principally to susceptible people, even

if seemingly healthy, such as the elderly and those with

unrecognized coronary artery or structural heart disease. While

there is clearly an important public health initiative to contain

rising levels of air pollution, it is also important to develop

strategies minimizing the damaging effects of air pollutant

exposure.

Table 6. Heart GO enrichments analyses.

Database Category ID Description p value genes # Total

GO_MF GO:0017111 nucleoside-triphosphatase activity 0.00002 39 877

GO_MF GO:0003774 motor activity 0.00007 14 141

GO_MF GO:0016817 hydrolase activity, acting on acid anhydrides 0.00008 39 926

GO_MF GO:0005216 ion channel activity 0.00059 23 425

GO_MF GO:0017016 Ras GTPase binding 0.00220 13 161

GO_MF GO:0022803 passive transmembrane transporter activity 0.00262 23 464

GO_MF GO:0015267 channel activity 0.00262 23 464

GO_MF GO:0000146 microfilament motor activity 0.00383 6 28

GO_MF GO:0005261 cation channel activity 0.00525 17 288

GO_MF GO:0031267 small GTPase binding 0.00622 13 177

GO_MF GO:0051020 GTPase binding 0.01945 13 197

GO_MF GO:0005245 voltage-gated calcium channel activity 0.02436 6 38

Pathway P00044 Nicotinic acetylcholine receptor signaling pathway 0.00044 11 89

Gene Family CACN Calcium channels 0.00049 4 17

Gene Family KIF Kinesins 0.00089 5 39

Gene Family MUC Mucins 0.00098 4 20

Gene Family SCN Sodium channels 0.01074 3 15

Functional enrichment of modulated genes in mouse heart exposed to PM.2.5win. Statistical differences were tested accordingly by t-test.
doi:10.1371/journal.pone.0109685.t006

Table 7. Heart pathways analyses.

KEGG ID p-value Description Gene Names

4020 0.00153 Calcium signaling pathway Adcy2, Cacna1b, Cacna1d, Cacna1e, Cacna1s, Gna15, Gnal, Nos1,
P2rx3

2010 0.00451 ABC transporters Abca4, Cftr, Abca12, Abca13

5146 0.00570 Amoebiasis Col11a1, Gna15, Gnal, Lama3, Lamc2, Muc2

561 0.00713 Glycerolipid metabolism Pnliprp1, Lipf, Dgki, Mboat1

4512 0.00978 ECM-receptor interaction Col11a1, Hmmr, Itga4, Lama3, Lamc2

4530 0.01646 Tight junction Myh3, Myh4, Ppp2r2c, Myh13, Inadl, Myh15

3450 0.01903 Non-homologous end-joining Prkdc, Rad50

5416 0.02469 Viral myocarditis Myh3, Myh4, Myh13, Myh15

4270 0.03305 Vascular smooth muscle contraction Adcy2, Cacna1d, Cacna1s, Kcnmb2, Kcnu1

4974 0.03599 Protein digestion and absorption Col11a1, Col12a1, Col17a1, Dpp4

4930 0.03742 Type II diabetes mellitus Cacna1b, Cacna1d, Cacna1e

300 0.04563 Lysine biosynthesis Aass

4742 0.04577 Taste transduction Cacna1b, Scnn1g, Trpm5

4710 0.04839 Circadian rhythm - mammal Arntl, Per1

5414 0.04985 Dilated cardiomyopathy Adcy2, Cacna1d, Cacna1s, Itga4

Pathways analyses using the list of 359 DEG resulted in 15 KEGG pathways with significant p values ,0.05. Statistical differences were tested accordingly by t-test.
doi:10.1371/journal.pone.0109685.t007
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Supporting Information

Figure S1 Lung differentially expressed gene (DEG)
distribution. Distribution of 57 DEG according the p value

(horizontal axes) and Fold Change value (vertical axes).

(TIF)

Figure S2 Heart differentially expressed gene (DEG)
distribution. Distribution of 359 DEG according the p value

(horizontal axes) and Fold Change value (vertical axes).

(TIF)

Table S1 Global gene expression in lung tissue. List of

differentially expressed gene (DEG) of lung exposed to PM.2.5win;

in lung tissue of PM2.5win-treated mice 14 up- and 43 down-

regulated genes have been found.

(XLS)

Table S2 Global gene expression in heart tissue. List of

differentially expressed gene (DEG) of heart exposed to

PM.2.5win; in heart tissue of PM2.5win-treated mice 181 up-

and 178 down-regulated genes have been found.

(XLS)
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