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ABSTRACT: Binding free energies of bromodomain inhib-
itors are calculated with recently formulated approaches,
namely ESMACS (enhanced sampling of molecular dynamics
with approximation of continuum solvent) and TIES
(thermodynamic integration with enhanced sampling). A set
of compounds is provided by GlaxoSmithKline, which
represents a range of chemical functionality and binding
affinities. The predicted binding free energies exhibit a good
Spearman correlation of 0.78 with the experimental data from
the 3-trajectory ESMACS, and an excellent correlation of 0.92 from the TIES approach where applicable. Given access to suitable
high end computing resources and a high degree of automation, we can compute individual binding affinities in a few hours with
precisions no greater than 0.2 kcal/mol for TIES, and no larger than 0.34 and 1.71 kcal/mol for the 1- and 3-trajectory ESMACS
approaches.

1. INTRODUCTION

Computational chemistry has been an established tool in drug
discovery for a number of years. The number of crystal
structures available in the public domain and within
pharmaceutical companies on which to base computational
studies continues to rise rapidly. Despite the increase in
resources applied and in experimental data on which to base the
studies, industrial structure-based design approaches have
evolved very little in recent times.1 In particular, the approaches
are largely qualitative and largely dependent on the experience
and knowledge of the practitioner.2,3 Attempts to quantify
protein−ligand binding affinities are rare. Expert practitioners
have little confidence in existing tools to make robust
predictions and certainly not to do so on a time scale that
can substantially impact medicinal chemistry programmes.
Recently, there has been a renewed interest in the use of free

energy calculations in drug discovery programmes. In particular,
the FEP+ implementation of Free Energy Perturbation (FEP)
has shown potential to improve the ability to predict protein−
ligand binding affinities on an industrially relevant time scale.4

Research is ongoing to understand how broadly applicable the
method is, and how accurate its predictions are when applied to
active drug discovery programmes.
Although FEP+ applies replica exchange solute tempering

(REST) in which exchange moves are made between different λ
windows, its predictions, like those from many other
approaches, are generated from a single output for each pair
of mutations. Advances in high-end computing capabilities offer
the opportunity to run vast numbers of calculations in parallel.
The application of these computational capabilities to free

energy calculations allows results to be returned quickly and
multiple replicas of simulations5 to be run, leading to tighter
control of standard errors. If such an approach could be
validated and implemented in an industrial setting it would
represent a major step forward in structure-based design
capabilities. The first step in this process is to validate the
performance on an industrially relevant data set.
Depending on the reliability, rapidity, and throughput of

these calculations, they might find application at various stages
of the drug discovery and development process across the wider
pharmaceutical industry. As these methods require significant
compute resources beyond existing in-house industrial capacity,
assessment (and any subsequent adoption) of the methodology
requires access to high performance computing resources.
Research into epigenetic proteins is currently a major and

rapidly evolving focus for the pharmaceutical industry.6−8

Bromodomain-containing proteins, and in particular the four
members of the BET (bromodomain and extra terminal
domain) family, each containing two bromodomains, have
been widely studied. Small molecule inhibitors able to
competitively antagonize the binding of acetylated histone
tails to these modules have been shown to exert profound
effects on gene expression and have shown promising
preclinical efficacy in pathologies ranging from cancer to
inflammation. Indeed, several compounds are progressing
through early stage clinical trials and are showing exciting
early results.9 Most inhibitors reported show similar binding
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potencies to all BET family bromodomains. A representative
inhibitor-protein structure is given in Figure 1, showing the key
elements for the inhibitor binding. This study will concentrate
on the first bromodomain of bromodomain-containing protein
4 (BRD4-BD1) for which extensive crystallographic and ligand
binding data are available.10−12

The purpose of the present study is to assess the potential for
rapid, accurate, precise, and reproducible binding affinity
calculations based on the use of a Binding Affinity Calculator
(BAC)13 software tool and associated services including a
Python-based toolkit, FabSim,14 to automate data transfer and
job submission. The approach is based on the use of high
performance computing in an automated workflow which
builds models, runs large numbers of replica calculations, and
analyzes the output data in order to place reliable standard
error bounds on predicted binding affinities.

2. COMPUTATIONAL SECTION

Models. In this study, chemical structures of 16 BRD4-BD1
ligands based on a single tetrahydroquinoline (THQ)
template16 were provided by GSK (Table 1). The compound
set was designed to represent a range of chemical functionality
and binding affinities, but also to contain sets of closely related
compounds with key SAR trends. Specifically, there are two
growth vectors which cause a drop off in potency, a growth
vector where substantial structural variation is tolerated and an
enantiomeric pair where one isomer is significantly more potent
than the other. These will be described below. The calculations
were then performed by the UCL group, initially blind, to
investigate the ability of BAC to reproduce the SAR trends. The
experimental binding affinities were not released to the UCL
group until all of the computations had been completed and the
estimation of binding free energies were reported (see Figure 3
below). These predictions were subsequently compared with
the independently measured experimental free energies of
binding (Table 1) as part of the assessment of the reliability of
the method.

The X-ray crystal structure used to represent BRD4-BD1
(published coordinates PDB ID: 4BJX15) is a complex with a
THQ (I-BET72616) chosen in order to reproduce the likely
conditions for which free-energy calculations might be used in a
real drug discovery program. The binding mode of I-BET726 is
shown in Figure 1. Both of the significant protein−ligand
hydrogen-bonding interactions take place through the THQ
N1-acetamide carbonyl group, which interacts directly with the
Asn140 side chain of the acetyl-lysine binding site and also
through the W1 water to the side chain of Tyr97. The W1
water forms part of a chain of water molecules buried within
the site (W2−W4, Figure 1). Substituents larger than acetamide
at the N1-position extend into the water-filled part of the site.
Our ligand data set included a small series of increasing size at
N1 (1, 8, and 9, see Table 1) to probe whether the computer
methodology can accurately predict the outcome of growing
into this region.
The THQ R2-position (S)-methyl group occupies a small

lipophilic site between the side chains of three residues of the
BRD4-BD1 ZA-loop (Val87, Leu92, and Tyr97). Carbon−
carbon contacts for all three lie within 4.25 Å, apparently
offering little room for extension of this group without some
structural reorganization. Our ligand data set includes a small
number of analogues exploring larger substituents at the R2-
position (10−14) to see whether the simulation can accurately
predict the consequences of pushing on these residues.
The THQ 6-phenyl substituent fills the narrow “ZA channel”

between Trp81 and Leu92. This ring can be substituted at the
R3- and R4-positions, but R2-substitution is detrimental
because this causes an increase in the inter-ring torsion. The
ZA channel does not seem to accommodate the resulting wider
6-substituents. The remainder of our data set includes a variety
of substituents probing electrostatic and steric changes at this
position.
The THQ 4-anilino substituent projects onto the “WPF-

shelf” subsite outside the acetyl-lysine pocket, close to Trp81.
SAR around this ring has been published previously,16 showing

Figure 1. Bromodomain inhibitor I-BET726 and its binding mode in BRD4-BD1. Two views are displayed for the binding mode (PDB ID: 4BJX15),
in which I-BET72616 is represented as stick in cyan/blue/red/green, the protein is shown as cartoon in silver, the crystallographic water molecules
are shown as red balls, and clipped protein surfaces are shown in orange.
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that substitution had small effects on potency, probably because
one edge of the aniline ring is solvent-exposed. Therefore, we
did not attempt to vary substituents at this position in our data
set, preferring to keep it as constant as possible while exploring
changes elsewhere.
In this series the 2-(S) 4-(R) isomers (see Figure 1) are

significantly more potent than their alternative trans enan-
tiomers. We included an enantiomeric pair of 2-(S) 4-(R)

(compound 10) and 2-(R) 4-(S) (compound 16) isomers to
explore whether the simulations were capable of distinguishing
between them.
The ligand-protein complexes were constructed by replacing

the ligand in the PDB file with the ligands of interest (see
structures in Supporting Information). For the congeneric
compounds studied here, it is plausible to assume that they
bind in the same mode in which all key compound-protein

Table 1. Compounds Used in This Study, Ordered According to Their R4 Group, and Their Experimental IC50s with Standard
Deviations Converted into Binding Free Energies ΔG (kcal/mol)

aCompounds 1−9 are electrostatically neutral, compounds 10−12 and 16 are positively charged, and compounds 13−15 are negatively charged.
bStatistical errors were calculated from repeated IC50 measurements.

cThere was no activity at the highest concentration (50 μM) tested. dAll
compounds are the 2-(S) 4-(R) isomers (Figure 1) except compound 16 which is 2-(R) 4-(S).
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interactions are preserved (Figure 1). For compounds with
significant structural differences, computational docking may be
required to generate reasonable complex structures.17 Prepara-
tion and setup of the simulations were implemented using
BAC,13 including parametrization of the compounds, solvation
of the complexes, electrostatic neutralization of the systems by
adding counterions and generation of configurations files for
the simulations. The AMBER ff99SB-ILDN18 force field was
used for the protein, and TIP3P was used for water molecules.
Standard protonation states were assigned to all titratable
residues at pH 7, with histidines protonated on the ε position
(HIE). Compound parameters were produced using the general
AMBER force field (GAFF)19 with Gaussian 0320 to optimize
compound geometries and to determine electrostatic potentials
at the Hartree−Fock level with 6-31G** basis functions. The
restrained electrostatic potential (RESP) module in the
AMBER package21 was used to calculate the partial atomic
charges for the compounds. All systems were solvated in
orthorhombic water boxes with a minimum extension from the
protein of 14 Å.
Some of the ligands could adopt several rotamers for the R4

group (Table 1) in solution, which due to the constrained
environment of the active site are unlikely to be sampled in a
single bound simulation run with the protocol used (see
Simulations subsection). To decide which rotamer(s) with
which to start, metadynamics simulations22 were employed
which used a history-dependent biasing potential to explore the
conformational space of the chosen degrees of freedom, here
the rotatable bond(s) involving groups R2 and R4 (see details
in the Supporting Information). Five replicas were used for
each metadynamics study to have a reasonable convergence of
the potential profile of the chosen dihedral angle(s) of a ligand
in complexed form. The calculated potential of mean force
(PMF) was used to determine the most favorable rotamer(s)
from which ESMACS simulations initiate. When unambiguous
results ensued, the energetically most favorable rotamer was
chosen. For some ligands, more than one rotamer showed
similar free energies. In these cases, multiple initial structures
were prepared using the rotamers suggested by the
metadynamics study. The ligands with multiple rotamers
were: 4, 7, 10, 11, 12, and 16. There are two rotamers for
each of these, except for 7 for which there are three generated
by the flip and twist between the two ring planes. This resulted
in a total number of 23 complexes being simulated in the
ESMACS study.
For each ligand with multiple rotamers, the energetic

properties were analyzed and the most favorable rotamer was
chosen as the final result of the ESMACS study (see Results
section) and was used as the initial structure in the TIES study.
For the latter, three subsets of the ligands were selected, within
which relative binding free energies were calculated with the
TIES approach. The subsets of the ligands were as follows: set
1 including ligands 1−9; set 2 including ligands 10, 11, and 12
which are positively charged; and set 3 including ligands 13, 14,
and 15 which are negatively charged. The division of the full set
of the cognate ligands into subsets is necessary because TIES,
just as any other TI and FEP based method, encounters specific
difficulties owing to major adjustments in long-range electro-
static interactions for the “congeners” where the net charges
change.23 For each subset, ligands were paired based on their
similarities, and TIES calculations were performed to alchemi-
cally mutate one ligand to another (see Theoretical Basis
below).

Theoretical Basis. The UCL group have recently
introduced new protocols for binding free energy calculations,
termed “enhanced sampling of molecular dynamics with
approximation of continuum solvent” (ESMACS)24 and
“thermodynamic integration with enhanced sampling”
(TIES).25 ESMACS is based on the molecular mechanics
Poisson−Boltzmann surface area method (MMPBSA)26 which
makes a continuum approximation for the aqueous solvent,
while TIES centers, as the abbreviation indicates, on
thermodynamic integration (TI). Although the approaches
are built around the standard MMPBSA and TI methodologies,
our abbreviations are used to emphasize the central importance
of the ensemble-based nature of the protocols employed as well
as, in the case of ESMACS the wider generality and flexibility of
the protocol.5,24 The size of the statistical mechanical
ensembles is determined systematically so that predictions are
accurate, precise, and reliable.24,27 Moreover, the term
“MMPBSA” is used to mean very different things28 in
numerous journal articles and textbooks, including calculations
based on single docked structures4 or on simulation trajectories,
calculations with or without the inclusion of configurational
entropies, and almost wholly using the so-called 1-trajectory
approach. In the ESMACS protocol, we always mean a fully
converged, ensemble-based determination of the free energy of
binding from either a one-, two-, or three-trajectory method:
this includes both the configurational entropy and the
association free energy,27,29 and (where appropriate) the
relative or absolute adaptation energy.24 Statistical analyses30

were performed throughout the study for all of the quantities
obtained. A Binding Affinity Calculator (BAC)13 was used to
perform ESMACS and TIES studies. BAC constitutes a
computational pipeline built from selected software tools and
services (see Supporting Information), and relies on access to a
range of computing resources. It automates much of the
complexity of building, running, and marshalling the molecular
dynamics simulations, as well as collecting and analyzing data.
Integration and automation are central to the reliability of the
method, ensuring that the results are reproducible and can be
delivered rapidly.
In ESMACS, the free energy is evaluated approximately

based on the extended MMPBSA method,24,27 including
configurational entropy, and the free energy of association.29

Free energy changes (ΔGbinding) are determined for the
molecules in their solvated states. The binding free energy
change is then calculated as

Δ = − −G G G Gbinding complex receptor ligand (1)

where Gcomplex, Greceptor, and Gligand are free energies of the
complex, the receptor and the ligands, respectively. The
Possion−Boltzmann calculation is performed here using the
Amber built-in PBSA solver31 with radii taken from the
parameter/topology files, and the configurational entropy is
calculated by a normal mode (NMODE) method.
The three terms on the right-hand side of eq 1 can be

generated from single simulations of the complexes or from
separated simulations of complexes, receptor(s), and ligand(s).
The former is the so-called 1-trajectory (1-traj) method of
which the trajectories of the receptor(s) and the ligand(s) are
extracted from those of the complexes. The latter is the so-
called 3-trajectory (3-traj) method of which the trajectories are
generated from separate simulations of the three components.
In the drug development field, binding is usually investigated
for a set of ligands bound to the same protein target. The free
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energy of the receptor Greceptor will then be the same for all
ligands in the 3-traj method. In the current study, we employ
three approaches to calculate the binding free energies
ΔGbinding: (A) using single simulations of the complexes (1-
traj); (B) same as (A) but using the average of the receptor free
energies ⟨Greceptor⟩ from the 1-traj method (denoted as 2-traj);
and (C) the same as (B) but invoking separated ligand
simulations for the derivation of Gligand (denoted as 3-traj).
In TIES, an alchemical transformation for the mutated entity,

either the ligand or the protein, is used in both aqueous
solution and within the ligand−protein complex. The free
energy changes of the alchemical mutation processes, ΔGaq

alch

and ΔGcomplex
alch , are calculated by

∫ λ
λ

λΔ = ∂
∂ λ

G
V( )

dalch

0

1

(2)

and the binding free energy difference is calculated from

ΔΔ = Δ − ΔG G Gaq
binding alch

complex
alch

(3)

Here λ (0 ≤ λ ≤ 1) is a coupling parameter such that λ = 0 and
λ = 1 correspond to the initial and final thermodynamic states,
and V(λ) is the potential energy of an intermediate state λ.
⟨···⟩λ denotes an ensemble average over configurations
representative of the state λ. To avoid the well-known “end-
point catastrophe”,32 a soft-core potential is used, along with an
approach to decouple at different rates the electrostatic and van
der Waals interactions of the perturbed atoms with their
environment (for more details see the Supporting Informa-
tion). The foregoing is a textbook account of thermodynamic
integration; TIES differs by virtue of performing ensemble
based calculations,25,33 in the same manner as for ESMACS,
thereby providing control of standard errors based on length of
simulation and number of ensembles used. Indeed, it is
important to note that the energy derivatives (eq 2) calculated
for all λ windows are well described by Gaussian random
processes, which makes it possible to draw on the theory of
stochastic calculus to compute relevant properties reliably.5

Simulations. The ESMACS and TIES studies follow the
protocol developed recently24,25 (see Supporting Information).
The Amber package21 was used for the setup of the systems
and analyses of the results, and the MD package NAMD2.934

was used throughout the equilibration and production runs of
all simulations, including the metadynamics. An ensemble
simulation was performed for each molecular system with
identical atomic coordinates for all replicas. Energy minimiza-
tions were first performed with heavy protein atoms restrained
at their initial positions. The initial velocities were then
generated independently from a Maxwell−Boltzmann distribu-
tion at 50 K, and the systems were heated up to and kept at 300
K within 60 ps. A series of equilibration runs, totalling 2 ns,
were conducted, while the restraints on heavy atoms were
gradually reduced. Finally, 4 ns production simulations were
run for each replica for all ESMACS and TIES simulations. In
ESMACS, we used 25 replicas in an ensemble calculation for
each ligand. In TIES, 5 replicas were used for each pair of the
ligands. Simulation of each replica consists of 2 ns for
equilibration and 4 ns for production run. Previous
studies24,27,30,35 have shown that the combination of the
simulation length and the size of the ensemble provides a trade
off between computational cost and precision.
Two independent ESMACS runs were performed to assess

the reproducibility of the calculations. One was run on
ARCHER, a Cray XC30 supercomputer (equipped with ca
118 000 cores), the UK’s National High Performance
Computing Service located in Edinburgh; the other run on
the BlueWonder2 supercomputer, an IBM NextScale Cluster
(8640 cores) located in Science and Technology Facilities
Council’s (STFC’s) Hartree Centre. A comparison between the
two runs is very instructive, both in terms of performance and
time to solution as well as providing an opportunity to conduct
a valuable reproducibility study. Thanks to the large number of
cores on ARCHER, we ran the entire set of ESMACS binding
affinity calculations concurrently and had the findings available
within 7 h. On BlueWonder2, we were hampered by a number
of issues, resulting in the calculations taking significantly longer
than on ARCHER. On BlueWonder2 and ARCHER, about
440 000 and 335 000 core hours were consumed in the course
of this study, including 300 000 and 225 000 core hours for
production molecular dynamics simulations and 140 000 and
110 000 core hours for free energy calculations, respectively.
The TIES study was performed entirely on ARCHER. TIES

simulations of 7 out of 12 pairs were packed together (the
currently enforced limit of maximum tasks for one job in

Figure 2. Correlation and standard errors of the calculated binding free energies from two independent studies of the BRD4-ligand models
performed on BlueWonder2 and ARCHER. (a) Correlation of the predictions, including all rotamers, from 1-traj calculations performed on
BlueWonder2 (BW2, horizontal axis) and ARCHER (vertical axis). Solid line, regression of the data using means of the calculated free energies;
dotted line, 1:1 ideal regression. (b) the averages and their standard errors from the two separate calculations. One rotamer is used for each ligand.
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ARCHER) and submitted as one single job, requiring 43 680
cores, which has high priority and executes rapidly on the
machine (waiting time in the ARCHER queue was around 8 h).
This made it possible to complete the entire TIES study of
seven pairs within 1 day including queuing time. Further speed
up is feasible on supercomputers with hybrid architectures
which would permit for example GPU acceleration for some
parts of these calculations.

3. RESULTS

To assess the accuracy and precision of the method, we
evaluated the binding affinities of the ligands (Table 1) to
BRD4 and compared the computed results with experimental
data. ESMACS was used for the full set of the ligands, including
the stereoisomer which cannot be considered as a perturbation
of any others. TIES was applied to three subsets of the ligands,
of which each includes congeners with the same net charge.
Reproducibility. It is well-known that many complex

systems exhibit sensitive dependence on initial conditions.5,36

The differences of the initial velocities among individual
simulations lead to rapid divergence of trajectories. The
calculated thermodynamic properties from individual simu-
lations will therefore inevitably differ. Two sets of ESMACS
simulations were performed for the complexes independently
on ARCHER and BlueWonder2 (see the Computational
Section above). The results are compared by linear regression.
Figure 2 shows the variances and correlation of the calculated
binding free energies from the two sets of simulations. The
correlation coefficient r is 0.98 ± 0.01, with no statistical
differences between slopes and intercepts of the calculated
regression line and the ideal line (x = y) (Figure 2a). The two
studies produce consistent results, with an average difference of
0.07 ± 0.10 kcal/mol, and an average unsigned difference of
0.39 ± 0.06 kcal/mol. Only 3 out of 16 predictions do not
overlap within their variances (Figure 2b). For the purpose of
ranking compound selectivity, the Spearman correlation
coefficient (rS) is also calculated, which shows that the rankings
from the two studies are very close to one another, with a

Figure 3. Calculated binding free energies from simulations on BlueWonder2 and ARCHER. The ligands are numbered as per Table 1. Circles with
red/blue colors are the results based on studies with different rotamers. The circles with crosses are the final results with selected rotamers which are
chosen on the basis of the sum of energies Gligand and ΔGbinding (see eq 1). All of the calculated binding free energies are associated with standard
errors of less than 1.7 kcal/mol, and are not shown in the figures for reasons of clarity.

Figure 4. Spearman ranking correlations of the calculated binding free energies and the experimental data from 1-traj (left panel), 2-traj (center), and
3-traj (right panel) ESMACS approaches. The equations on the subfigures indicate the calculations used in each case. The subscripts (com/rec/lig)
and the superscripts (com/lig) in the equations indicate the components (complexes, receptor, and ligands) and the simulations (complexes and free
ligands), respectively. The ligands with modifications at the R2-position of the tetrahydroquinoline are marked with crosses; they are all significantly
improved in the 2- and 3-trajectory version. The standard errors, which are 0.19−0.34 kcal/mol for the 1-traj and 1.02−1.71 kcal/mol for the 2- and
3-traj approaches, are not shown for reasons of clarity. They are calculated using a bootstrapping method (see Supporting Information). The 2- and
3-traj approaches have similar errors because the energy of the receptor is treated as a constant and hence the uncertainties are dominated by the
energies of the complexes.
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highly significant Spearman correlation of 0.98 ± 0.02. In the
following analyses, only the results from BlueWonder2
simulations are reported. The ARCHER-based calculations
produced very similar results.
Choosing Rotamers. Some of the ligands (Table 1) would

be able to adopt more than one rotamer in solution. When the
ligands are complexed with the protein, they are usually trapped
in a specific rotameric state. The energy barriers between
rotamers are sufficiently high, especially for groups occupying
the narrow ZA channel (Figure 1), that it is not feasible to
achieve equilibrated populations of rotamers using the current
protocol. We therefore initiated molecular dynamics simu-
lations of complexes from all possible rotamers for six out of
the 16 ligands. Simulations including different rotamers are
only applied to the complexes, as the free ligands in water are
able to fully sample all rotamers. The most favorable rotamer is
selected (Figure 3) for each ligand in its complex form, based
on the lowest ligand energy of the rotamer, which is
approximated by (Gligand + ΔGbinding).
Comparison between ESMACS Calculations and

Experiments. The predicted binding free energies from the
1-traj approach exhibit a weak Spearman correlation with the
experimental data (Figure 4a). In the current study, as
commonly employed in pharmaceutical drug development
projects, a series of ligands are investigated for the same protein
target. The energy of the protein therefore does not affect the
ranking of the binding affinities (eq 1). Treating it as a
constant, the 2-traj approach significantly improves the
correlation between the predictions and experimental data
(Figure 4b). Incorporating the free energies of the ligands from
their individual simulations in free form, the 3-traj approach,
further improves the correlation (Figure 4c). The most
significant improvement appears in the compounds involving
modifications at the R2 position of the tetrahydroquinoline
(Table 1), for which the 1-traj approach predicts an increase

(compound 11 to 12) or no change (compound 14 to 13) in
the binding affinities when an ethyl is replaced by an n-propyl.
The 2- and 3-traj approaches correctly rank the binding
potencies of the two pairs, and indeed of these four
compounds. Although the improvement is most evident for
the listed four compounds, it is indeed applied to the overall
correlation for the whole set (Figure 4). It should be noted,
however, that although the 2- and 3-traj methods significantly
improve the correlations between predictions and experimental
data, relatively large standard deviations, up to 1.7 kcal/mol, are
associated with the calculated free energies. This indicates that
the binding free energies must differ by no less than 3.4 kcal/
mol to be statistically significant to a 95% confidence level.
With the experimental free energy differences ranging from 0.0
to 4.9 kcal/mol, a larger ensemble would be required to reduce
the relatively large uncertainties in order to render all the
predictions statistically significant. It is important to mention
here that experimental binding affinities usually contain errors
to a greater extent37 than are implied by Table 1. Generating
reproducible binding free energies from experiments is as
important as that from simulations to make the comparisons
statistically significant.
The improvements are achieved by including the adaptation

energies of the receptor and the ligands (Figure 5). While the
adaptation energies for the ligands are calculated as the
differences between the free energies in their bound and free
states, those for the receptor are calculated relative to the
average of the receptor free energies in the bound states. The
absolute adaptation energies of protein for each ligand binding
would require a converged ensemble simulation of protein in
solvent, preferably initiated from structures of the protein in its
free state. As the ranking of the ligand binding is the main
concern of the study, and the relative adaptation energies of the
protein are energetically as informative as the absolute ones in
the binding affinity comparison, no attempt has been made

Figure 5. Improvement of the predictions by inclusion of the adaptation free energies of the receptor and the ligands: (a) the binding free energy
changes between the 1-traj (black circles) and 2-traj (magenta circles) indicate the relative adaptation energies of the receptor; those between the 2-
traj (magenta circles) and 3-traj (orange circles) show the adaptation energies of the ligands. The adaptation energies can be seen more clearly in
panels b as a function of binding affinities, and in panels c for each ligand.
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here to compute accurate absolute adaptation energies for the
protein (all adaptation energies for the protein are relative ones
in the current paper). Unfavorable adaptation energies are
usually induced within the protein by the introduction of larger
functional groups at R2 and R3 positions of the compounds
(Figure 5c). It is interesting to note that, for the ligands with
higher binding affinities (ΔGbinding < −8 kcal/mol), only small
adaptation energies arise for both the receptor and the ligands,
which makes the binding apparently closer to a “lock and key”
recognition mechanism; while for the ligands with lower
binding affinities, non-negligible adaptation energies are found
for both the receptor and the ligands (Figure 5b). The one
exception is the stereoisomer ligand 16 (Table 1) whose
binding induces the smallest relative adaptation energy of the
receptor but the largest adaptation energy for the ligand (Figure
5c). This compound was included in the set as a negative
control to investigate the ability of the computational
procedure to highlight the weak activity of the enantiomer of
compound 10. Compound 16 has a very high ligand strain,
suggesting that this isomer has the wrong shape for the binding
site and must adopt a high energy conformation to interact with
the protein.
The ESMACS predictions are precise and accurate in terms

of ranking the binding free energies, and are so in a
reproducible way. However, ESMACS does not provide
accurate absolute free energies. In our study, the 3-traj
ESMACS protocol yields a much better correlation than the
1-traj ESMACS approach, while they have similar mean
absolute deviations (1.97 ± 1.33 kcal/mol and 1.74 ± 0.29
kcal/mol, respectively). The mean absolute deviations can be
significantly larger for more flexible ligands such as peptides
binding to a major histocompatibility complex (MHC).24 Some
studies show that improved binding free energy prediction
could be obtained by including important water molecules
between ligands and protein.38 Inclusion of the bridging water
molecules (Figure 1) in the current ESMACS study, however,
does not improve the correlation between the calculated
binding free energies and the experimental measurements (see
Figure S3 in the Supporting Information). Indeed, ours is a
“generic” methodology which treats solvent implicitly and
works well as such. Embarking on any approaches for treating
water molecules explicitly would lead to a loss of simplicity in
the method without conferring any benefit.

Component analyses of the binding free energies could
provide insight into the mechanism of compound binding. In
our study of peptide-MHC binding,24 for example, the van der
Waals interaction was shown to be the dominant component
and to manifest a good correlation with the experimental
binding free energies in the 3-trajectory ESMACS study. In the
current molecular systems, however, there are no significant
correlations between any energy component and the
experimental data, except the bonded (including bond
stretching, angle bending, torsions and improper torsions)
and nonbonded (van der Waals, electrostatic and solvation)
interactions as shown in Figure 6. The sum of the two
interactions improves the correlation further, with a similar
correlation coefficient as shown in Figure 4 for the 3-trajectory
approach. It can therefore be deduced that the configurational
entropy component does not contribute to the quality of the
ranking prediction. As for the impact of the configurational
entropy on the ranking of calculated binding affinities, different
conclusionsimproving,27 worsening,39 or having no ef-
fect24have been drawn for diverse protein−ligand complexes.
The differences may indeed reflect the mechanism of protein−
ligand binding which can be driven predominantly by enthalpy,
by entropy, or by both.40

Comparison between TIES Calculations and Experi-
ments. Good agreement is found for the binding free energy
differences between the TIES calculations and the experimental
measurements. The TIES approach is both accurate and
precise, yielding a Spearman ranking coefficient of 0.92 for the
means of calculated and experimental binding free energy
differences. The bootstrap analyses give a Spearman coefficient
of 0.86 ± 0.15, drawn from a non-normal distribution of
resampling correlation coefficients (see Figure S4 in the
Supporting Information). An average difference of 0.06 ±
0.26 kcal/mol, and an average unsigned difference of 0.75 ±
0.14 kcal/mol, are found between the predictions and
experimental measurements (Figure 7). It should be noted
that experimental binding affinities may have statistical errors of
around 24% from isothermal titration calorimetry (ITC)37

which is a more reliable method to measure binding affinities
than the IC50 measurements used in this study. The variances
observed in the study can be partially attributed to these
experimental errors. The regression line is close to an ideal 1:1
regression, with a slope of 0.93 ± 0.24 and an intercept of
−0.10 ± 0.33 kcal/mol. A similar level of accuracy was recently

Figure 6. Correlations of free energy components and the experimental data from 3-traj approaches. Both bonded and nonbonded energy terms
contribute to the ranking of binding affinities. Their combination (the MMPBSA energy) exhibits a better correlation with experimental data than
the components themselves.
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reported17 in an absolute binding free energy calculation for a
set of drug-like molecules binding to BRD4, albeit little
attention was paid to reproducibility in that work.

4. DISCUSSION
To analyze the results it is necessary to consider the differences
between the 1-, 2- and 3-trajectory methods. The 1-trajectory
simulation calculates the ΔGbinding assuming there is no
energetic penalty for the adaptation of the protein or ligand
to the binding conformation, the 2-trajectory method takes the
change in protein energy into consideration and the 3-
trajectory method accounts for the changes in both protein
and ligand energy.
The test set for this evaluation was designed to investigate

the ability of ESMACS to predict specific SAR trends. The first
trend is the loss of potency observed as the hydrophobic part of
the acetyl lysine mimetics is grown from methyl (1) to ethyl
(8) to isopropyl (9). Figure 8 shows that, in the 1-traj
simulation, compound 1 is predicted to be more potent than
compounds 8 and 9, but no difference is predicted between 8
and 9. This is in contrast to the experimental results which
show a modest loss of potency going from methyl to ethyl, but
a substantial loss going from ethyl to isopropyl. On comparing
the same three compounds in the 2-traj simulation, the
predicted affinity of compound 9 is substantially reduced giving
the correct ranking of the three compounds. The predictions
for the three compounds are qualitatively the same for the 3-traj

calculation. These results indicate that the low activity of
compound 9 is the result of the increased bulk of the isopropyl
group causing strain in the system, which is manifested in an
increased internal energy of the protein. In fact, compound 9
has the highest protein internal energy of the whole data set
(Figure 6c). The TIES study gives the same ranking for the
binding affinities as those from the 2- and 3-traj ESMACS, but
with an enhanced correlation coefficient compared to that of
ESMACS. Structurally, this result makes sense because the
isopropyl group is rigid and so the strain caused by the
increased bulk cannot be accommodated by the ligand and
hence is transmitted to the protein.
The second SAR trend of interest is the effect of increasing

bulk at the R2-position of the tetrahydroquinoline (THQ).
Similar to the previous instance, increasing the size of the
substituent at this position from methyl (10) to ethyl (11) to n-
propyl (12) results in a sequential loss of activity. In this case
the 1-traj method inverts the rank order of the three
compounds (Figure 9), relative to experiment, predicting the
n-propyl to be the tightest binder. The 2-traj calculation
predicts a decrease of the potency of compound 12,
consequently predicting it to be substantially weaker than
compound 11, as observed experimentally. In the 3-traj method
the potency of compound 12 drops further, relative to the other
compounds. In all three ESMACS methods, the potency of
compound 10 is under-predicted relative to the other
compounds; the reason for this is unclear. The TIES study
also predicts the binding of compound 12 to be the weakest in
this subgroup, but could not distinguish the affinities of the
compounds 10 and 11. A second pair of compounds also has
the ethyl (14) to n-propyl (13) modification at the same
position, and qualitatively the results parallel those described
above. In this case, the n-propyl compound shows a correctly
predicted loss of activity in both the TIES and 2- and 3-traj
ESMACS methods, indicating the loss in potency for this bulky
group is due to a combination of protein and ligand strain
(Figure 6c). Again, this is consistent with the molecular
structure of compound 12, because the n-propyl group is more
flexible than the isopropyl group in the first example and
consequently is more able to adopt a slightly strained ligand
conformation.
The carbonyl group in all compounds forms a hydrogen

bond with a conserved asparagine Asn140 in the BRD4. This is
a key interaction observed in bromodomain-ligand complexes
as it mimics the interaction made by the carbonyl of the acetyl
lysine of the substrate. The occupancies of this hydrogen bond
in all of the compounds are very similar, and do not appear to
correlate with their binding affinities. Hence, when bulk is

Figure 7. Correlations of the calculated binding free energy differences
from the TIES study and from experimental measurement. The
standard error bars from the TIES calculations are all no greater than
0.2 kcal/mol.

Figure 8. Calculated vs experimental binding free energies for ligands 1, 8, and 9 which are labeled in the 1-traj subfigure.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00794
J. Chem. Theory Comput. 2017, 13, 784−795

792

http://dx.doi.org/10.1021/acs.jctc.6b00794


increased adjacent to this key binding motif, as described in the
previous cases, the loss of potency does not result from the
disruption of this hydrogen bond. Conversely, the interaction is
maintained at the expense of creating internal strain in the
system. This is consistent with the observation that this is a
ubiquitous interaction in this protein and a key binding
pharmacophore.
For compounds 13, 14, and 15, there is an extra hydrogen

bond formed between the carboxylate group of the ligands and
the Lys 91 of the protein. The replacement of n-propyl (13)
with ethyl (14) and methyl (15) slightly changes the
orientations of the compounds, making the carboxylate group
better aligned for the formation of hydrogen bonds. The
occupancies of this hydrogen bond are 16.6%, 31.7%, and
33.3% for the compounds 13, 14, and 15, respectively (the
cutoff values are 3 Å and 120° for the donor−acceptor distance
and donor−hydrogen−acceptor angle). The occupancies of the
hydrogen bonds for these 3 compounds appear to correlate
with their binding affinities (−7.41, −9.20, and −10.51 kcal/
mol). However, the energetic contribution of this solvent
exposed interaction is difficult to quantify, and the energetic
analysis elsewhere in this section suggests that differences in
intermolecular interactions in the complex contribute modestly
to the differences in binding free energy compared to
differences in internal energies. Further evidence for this is
seen in the pairs of compounds 11,14 and 12,13, which are
identical except for a carboxylic acid to piperidine (base)
modification in this region. These pairs of compounds have
very similar binding affinities both in terms of experimental and
predicted values.
These data suggest that the internal energy of the protein

and ligand are major contributors to the relative binding
affinities of this series of compounds. The internal energy
contributions are exemplified by plotting the difference
between the binding free energies predicted using the different
ESMACS methods (Figure 10).
Figure 10 plots the difference between the ΔGbinding

calculated by the 3-traj method and the 1-traj method against
the experimental ΔGbinding. This is a plot of the internal energy
of the protein and ligand against the experimental ΔGbinding; it
shows a strong correlation (r = 0.87 ± 0.13). If this is
contrasted with the 1 trajectory methodwhich essentially
contains the intermolecular contributions to ΔGbinding, Figure
4a (r = 0.29 ± 0.26)one can conclude that, for this protein
and set of ligands, the internal energy of the ligand and the
protein differentiate between the ligands to a far greater extent
than protein−ligand interaction energies.

5. CONCLUSIONS
The Binding Affinity Calculator (BAC) software environment
has been used to run ESMACS and TIES calculations against a
series of inhibitors of BRD4 from the THQ chemical series.
High performance computing was used in an automated
workflow to build models, run multiple replicas of calculations
and analyze the output, placing reliable standard error bounds
on predicted binding affinities.
Despite the challenging data set used for this evaluation,

good agreement is found for the binding free energy differences
between the experimental measurements and the theoretical
calculations, for both ESMACS and TIES. ESMACS is good as
an “absolute” method for ranking an arbitrary set of ligands,
which may be very diverse in terms of structures and electronic
properties. To produce good rankings it is necessary in this case
to use a 3-trajectory version, which has the further benefit of
clearly distinguishing between ligands that adhere more closely
to the “lock and key” or to the “induced fit” binding
hypotheses. TIES performs well in determining relative binding
free energies of congeners when there is no change of net
charge, even when there are differences in structural features
between pairs of compounds which one would not intuitively
regard as minor.
Overall, ESMACS provides reliable binding affinity rankings

and clear mechanistic insight into what factors drive binding
processes in individual ligand−protein systems. TIES offers
more quantitative accuracy in its predictions but, owing to its
alchemical basis which necessarily keeps two congeneric ligands

Figure 9. Calculated vs experimental binding free energies for ligands 10, 11, and 12 which are labeled in the 1-traj subfigure.

Figure 10. Correlations of the internal energy contributions to the
calculated binding free energies and experimental measurement. The
internal energy changes are calculated as the differences of the binding
free energies between those from the 1-traj and 3-traj approaches:
ΔΔGcalc = ΔGbinding

3‑traj − ΔGbinding
1‑traj .
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in play at all times, is less able to provide similar structural and
mechanistic insights into binding. The standard errors in
ESMACS and TIES are fully controlled through simulation
length and number of replicas used in the ensembles
chosen.24,27

The results also offer insight into possible design strategies
for BRD4 ligands. In particular it has been noted that, within a
chemical series, differences in binding affinity do not seem to
result from differences in protein−ligand interaction energies.
On the contrary, to avoid unfavorable (in this case, mainly
steric) interactions, both ligands and protein adopt strained
states resulting in large adaptation energies. Hence, during the
optimization of a chemical series for BRD4 it would be prudent
to carefully consider the shape complementarity of the ligand
and the active site cavity. It should be noted, however, that this
study did not include molecules in which unfavorable
electrostatic protein−ligand interactions were introduced.
The results offer encouragement that BAC, and its

underlying approach of running multiple replicas of each
simulation to improve predictive power,5 can accurately rank
ligands by their binding free energy. Further evaluations are
planned to confirm this potential. As large and secure
computing resources become more routinely available, for
example through cloud computing, it will become increasingly
easy for industrial groups to access approaches like the one
outlined in this study. Consequently, the robust prediction of
protein−ligand binding affinities in an industrial setting should
become more routine and offer a long awaited development in
the field of structure-based design.
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